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Abstract
We have investigated theoretically the formation of a coherent population
trapping resonance in a finite-size vapour cell without a buffer gas. We have
demonstrated the novel mechanisms of the resonance narrowing: an analogue
of the Dicke effect and light-induced narrowing. In the light-induced narrowing
regime the parameters of the coherent population trapping resonance weakly
depend on the cell size and the type of coating.

1. Introduction

Coherent population trapping (CPT) in atomic vapours and the related effect of
electromagnetically-induced transparency (EIT) in coherent media are subjects of continuous
interest for many research groups. This interest, besides the fundamental aspects
of these phenomena, is caused by various possible applications of the CPT and EIT
effects, such as trapping of ions [1], slowing down and storage of light [2, 3], quantum
information storage and processing [4], development of the new types of frequency standards
(atomic clocks) (see [5–7]) and magnetometers (see [8, 9]), high-resolution spectroscopy (see
[10, 11]) and subrecoil laser cooling of atoms [12].

The physical essence of CPT is the accumulation of the whole population in a certain
quantum superposition state of a multilevel quantum system, which is decoupled from the
incident laser radiation consisting of a few mutually correlated modes [13]. CPT exists
in a narrow range of the difference of the frequencies of the involved laser modes, near a
two-photon resonance. By scanning one frequency, while the others are kept fixed, one can
observe a narrow (much narrower than the natural line width of the optically excited state)
resonant dip in the absorption spectrum. Such a sharp frequency dependence allows for various
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applications of CPT. EIT is, in fact, CPT in an optically dense medium, or in a pulse regime
of laser radiation, or in the case when one laser component (drive) is much stronger than the
other (probe).

Quantum frequency standards (atomic clocks) are widely used in many scientific and
technological applications, such as positioning and navigation systems, telecommunication
networks, high-precision set-ups for testing the fundamental laws of physics, etc. Vapour-
cell-based standards are now at the frontiers of development of the secondary standards,
because of the rapid progress in the relevant laser techniques. CPT-based quantum frequency
standards (see [14]) comprise a specific class of atomic clocks, since their set-ups do not
include microwave cavities (in contrast to the formerly used atomic clocks based on a double
radio-optical resonance). The absence of a cavity is a key factor in miniaturization of frequency
standards. CPT-based atomic clocks with dimensions of about a few millimetres have been
developed (see [6]).

The figure-of-merit is one of the most important parameters of a quantum discriminator.
It is determined by a few CPT parameters, such as amplitude, width and contrast. In particular,
the shorter the mean time of coherent interaction between an atom and the resonant laser field,
the lower the figure-of-merit. In other words, relaxation of the coherence between the atomic
states comprising the working transition due to atom–atom and atom–wall collisions imposes
major limitations to the figure-of-merit value (see [15] for more details).

Several methods of increasing the atom–field coherent interaction time are known. For
example, a buffer gas can be admixed to the active medium in a cell. Usually, inert gases,
methane or nitrogen are used as a buffer gas. Active atoms collide with the buffer gas atoms
or molecules. Therefore, their mean free paths increase significantly, leading to efficient
suppression of relaxation due to the wall collisions. This effect was first discovered by Dicke
in [16]. The presence of a buffer gas can reduce the CPT resonance width to values as low as
40 Hz (see [17]).

On the other hand, the presence of a buffer gas negatively affects the CPT resonance,
in particular shifts and broadens the working transition, mixes Zeeman sublevels, etc. To
circumvent this difficulty, one may use a method proposed by Robinson and co-workers
nearly 50 years ago [18]. This method implies coating of the cell walls with an anti-relaxation
material (most commonly, paraffin). Anti-relaxation coating significantly (by four orders of
magnitude [19]) decreases the atomic coherence relaxation rate due to atom–wall collisions.
In other words, the atomic superposition state corresponding to CPT survives a collision with
a wall with probability very close to 1. As a result, the time of coherent interaction of an atom
with the resonance multimode laser light increases by the same four orders of magnitude. The
narrowing of the double radio-optical resonance line was detected experimentally in [18, 20],
and the corresponding theory was developed in [21, 22]. Recent progress in laser techniques
has given a new momentum to the experimental studies of coherent excitation of atomic
vapours in coated cells (see [23, 24]). In particular, cells with a coating made more than
40 years ago have been tested in [23]. The results demonstrate quite weak degradation of the
anti-relaxation coating due to the ‘ageing’: the estimation of the working transition line shift
is less than 10 Hz per 30 years.

Recalling the analogy with the double radio-optical resonance, one may expect that the
CPT resonances in coated cells are quite narrow. Indeed, there are many observations of
narrow EIT resonances [4, 25, 26]. However, the CPT line narrowing has been observed
not only for coated cells, but for cells without coating (vacuum cells) as well [25, 26].
This narrowing has been observed for cell lengths a larger than the range of relaxation
suppression qa � 1, according to the Dicke theory. In fact, the product qa in some cases
was of the order of 1 and sometimes even appreciably exceeded 1. �q = �k1 − �k2, �k1 and �k2
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Figure 1. �-system excitation scheme.

are the wave vectors of a two-mode laser field (see figure 1). These results are explained
within the theory of laser-induced line narrowing (LILN), which was first developed in [27].
This effect has been investigated theoretically in many works [28–30]; however, the effects of
the finite size of the cell have been neglected.

Therefore, investigation of CPT and EIT in finite-size cells is a timely problem and can
have a wide variety of promising practical applications. In the present work, we investigate
theoretically the formation of the CPT resonance in a vapour of atoms possessing the �-type
level structure in a gas cell of finite size. We consider both the cases of the presence and
absence of the anti-relaxation coating.

2. Equations describing the CPT resonance formation

Consider a cell filled with a gas of active three-level atoms with the �-scheme of levels (see
figure 1). We denote by |1〉 and |2〉 the two relevant sublevels of the hyperfine structure of the
atomic ground state, and the excited state by |3〉.

The resonant coherent laser radiation,

E(�r, t) = �E1 exp[i(�k1�r − ω1t)] + �E2 exp[i(�k2�r − ω2t)] + c.c., (1)

drives the optical transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉. The laser radiation frequencies ω1 and
ω2 are tuned near to the resonance with the transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉, respectively.
We denote the detunings of laser components off the corresponding transitions as �1 and �2,
δR = �1 − �2 is the two-photon (Raman) detuning, δL ≈ �1 ≈ �2 is the single-photon
(optical) detuning, γ is the decay rate of state |3〉 and � is the ground-state relaxation rate.

The equation describing the evolution of the atomic density matrix �
ρ(�r, �p, t) in the Wigner

representation reads as

ρ̇ij (�r, �p, t) ≡ ∂ρij

∂t
+

�p
m

∇ρij = − i

h̄

∑
k

[Hikρkj − ρikHkj ] + (
��

�
�
ρ)ij . (2)

Here
��

� is the relaxation matrix, m is the atomic mass and
�

H is the Hamiltonian which can be
represented as

�

H = �

H 0 + h̄
�

V , (3)

with
�

H 0 being the atomic Hamiltonian in the absence of the laser radiation, and

h̄
�

V = h̄V1 exp[−i(ω1t − �k1�r)]|3〉〈1| + h̄V2 exp[−i(ω2t − �k2�r)]|3〉〈2| + h.c. (4)
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describes the dipole interaction of the atom with the laser field (1). Here Vi is the Rabi
frequency of the transition |i〉 ↔ |3〉 (i = 1, 2). The phases of the resonant laser fields can be
set to zero without the loss of generality, so we can consider Vi , i = 1, 2, as real parameters.

We assume that the translational degrees of freedom of the atoms are in equilibrium,
i.e., are described by the Maxwellian distribution M(�p) = exp

(−p2
/
p2

T

)/
(pT

√
π)3, where

pT = √
2kBmT and kB is the Boltzmann constant. We adopt the following normalization

condition for the density matrix:
∑

i

ρii(�r, �p, t) = M(�p)

Vcell
, (5)

where Vcell is the cell volume.
In the absence of a buffer gas, and under the condition γ, γ ′ � V1, V2, where γ ′ is

the decay rate of optical coherences and V1, V2 are the Rabi frequencies of the laser field
components, we can adiabatically eliminate the optically excited state |3〉 and obtain the
following set of equations for the ground-state density matrix:

∂f

∂t
+

�p
m

∇f = −
[(

G
V 2

1 + V 2
2

γ ′ + �

)
f − 4V1V2

γ ′ F · J

]
− G

V 2
2 − V 2

1

γ ′
M(�p)

Vcell
,

∂R

∂t
+

�p
m

∇R = −
[
G

V 2
1 + V 2

2

γ ′ + �

]
· R −

(
δR − � + �q · �p

m

)
· J − V1V2

γ ′ G
M(�p)

Vcell
, (6)

∂J

∂t
+

�p
m

∇J =
(

δR − � + �q · �p
m

)
· R −

[
G

V 2
1 + V 2

2

γ ′ + �

]
· J − V1V2

γ ′ F · f.

Here f = f (�r, �p, t) = ρ22(�r, �p, t) − ρ11(�r, �p, t) is an inversion, R = Re ρ12(�r, �p, t),
J = Im ρ12(�r, �p, t), � = F

(
V 2

1 − V 2
2

)/
γ ′, and the real coefficients G and F are defined by

the following expression:

G + iF = γ ′

γ ′ − i(δL − �k · �p/m)
, (7)

where �k ≈ �k1 ≈ �k2 (we consider the case of co-propagating laser modes �k1, �k2), �q = �k1 − �k2

(q � k). The coefficients G and F determine the efficiency of interaction of atoms with a
given velocity with the laser radiation. The population of the excited state is found to be

ρ33 = G

γγ ′
[
V 2

1 ρ11 + 2V1V2R + V 2
2 ρ22

]
. (8)

In a cell without a buffer gas, γ is the spontaneous decay rate of state |3〉 and γ ′ is determined
by the spectral width �L of the laser radiation [31, 32],

γ ′ = γ + �L

2
. (9)

Let us consider the processes that occur during an atom–wall collision. If a cell is coated with
an anti-relaxation material, such as long-chain polymeric paraffin, atoms are not absorbed on
the walls. The phase dispersion of an atom after a collision is very small. Hence, the total
relaxation of the atomic momentum requires a huge number of collision events. In this case,
the ‘specular coherent reflection’ boundary condition [22]

ρij (�r, �p) �r∈S
pn>0

= ρij (�r, �p) �r∈S
pn<0

(10)

is a fair approximation.
The opposite limiting case takes place if every collision of an active atom with the cell

wall results in total randomization of the atomic spin. This case can be modelled by the
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‘total quenching’ boundary conditions [22], which assume that any coherence and population
inversion are absent in the flow of atoms just reflected from the cell wall:

f (�r, �p) �r∈S
pn>0

= 0, ρ12(�r, �p) r∈S
pn>0

= 0, (11)

where the condition �r ∈ S defines the coordinate points on the inner surface S of the cell and
the lower index n denotes the component of the atomic momentum normal to S.

Solving equations (6) with the boundary conditions (10) or (11), using the normalization
condition (5) and invoking adiabatic elimination of the excited state (equation (8)), we obtain
the momentum-dependent population ρ33(�r, �p) of the excited state, which can then be averaged
over the cell volume and the atomic momentum:

ρ̄33 =
∫ ∫

ρ33(�r, �p) d�r d�p. (12)

The power δP of the laser radiation absorbed in the cell is proportional to ρ̄33 [35]:

δP = h̄ω · 2γ · N · ρ̄33, (13)

where ω ≈ ω1 ≈ ω2 is the optical transition frequency and N is the total number of active atoms
in the cell. The CPT resonance is a narrow dip in the absorbed power spectral dependence
on the two-photon detuning δR . Since δP ∝ ρ̄33, we can call a CPT resonance also the
corresponding minimum in the dependence ρ̄33 = ρ̄33(δR).

3. Calculations

We now define the main parameters of the CPT resonance. The difference ρ̄NR
33 − ρ̄R

33, where
ρ̄NR

33 and ρ̄R
33 are the excited state averaged populations off the resonance and exactly at the

resonance, respectively, is called the amplitude. The FWHM of the resonance we call the
width and denote by �CPT. The contrast is defined as

C(δR) = ρ̄NR
33 − ρ̄33(δR)

ρ̄NR
33

. (14)

We consider the case δL = 0. It follows from equation (9) that the coefficients F and G

approach their maximum possible values (of the order of 1) only for atoms with momenta of
the order of or less than pc = γ ′m/k. It is convenient to introduce the new parameter

µ = pc

pT

= γ ′m
k · pT

= γ ′

k · υT

≈ γ ′

�D

, (15)

where υT = pT /m is the thermal velocity and �D = kυT is the standard Doppler broadening.
If µ � 1, then only sufficiently slow atoms contribute to the CPT resonance formation.

Then the residual Doppler broadening of the CPT resonance is of the order of qpc/m, i.e.
much less than qpT /m. This effect is known as laser-induced line narrowing. If µ � 1, then
the residual broadening of the CPT resonance is ∼qυT . However, if CPT resonance is excited
in a vapour cell with anti-relaxation coating, and the cell size is smaller than the half of the
wavelength of the two-photon (hyperfine) transition between the levels |1〉 and |2〉, then the
Dicke-type narrowing occurs [16].

In this section, we present numerical results for a CPT resonance for different values of
the rate γ ′ of the optical relaxation and different cell lengths a. The cell radius is assumed
to be much larger than the cell length, so we consider, in fact, a one-dimensional cell model.
But, as was shown in [21, 33], for a coated cell these results will not be sufficiently different
from the results of a three-dimensional cell.
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(a) (b)

Figure 2. CPT resonance line shape for various lengths of a gas cell in the case of (a) specular-
coherent reflection and (b) total quenching. γ ′ = 2 × 109 s−1, V1 = V2 = 106 s−1, q = 0.

(a) (b)

Figure 3. Dependence of CPT width on the drive-field intensities when γ ′γ � V 2
1 � �2

Dγ ′/γ
(a) and at higher intensities (b).

3.1. Case of q = 0

Here, we consider the numerical results for a CPT resonance for different values of the rate
γ ′ of the optical relaxation and different cell lengths a. The cell temperature is 50 ◦C and the
relaxation rate for the ground-state manifold � = 100 s−1. The parameters of the active atoms
are chosen to be close to those of 87Rb: m = 87 au, ω = kc = 2.4 × 1015 s−1, ω12 = qc ≈ 0
(i.e., qυT � �). Such a case can be realized when the levels |1〉 and |2〉 are the Zeeman
sublevels of the same hyperfine sublevels of the ground state. In this case, we could not see the
Doppler broadening of the CPT resonance, and for the coated cell the CPT line shape should
not depend on the cell size. But for an uncoated cell such dependence takes place because of
the relaxation on the cell walls (see figure 2). We can see that the smaller the cell the lower
the contrast and the broader the CPT resonance.

We also investigated the case when one component of laser field (V1) is strong and the
other (V2) is weak in the coated cell. We found that the dependence of the CPT line width
�CPT on the strong field Rabi frequency V1 has the linear character, �CPT ≈ V1

√
2γ ′/γ , if

γ ′γ � V 2
1 � �2

Dγ ′/γ (see figure 3(a)), and the quadratic character, �CPT ≈ V 2
1

/
�D (see

figure 3(b)), at higher intensities. This result coincides with the theoretical result of [29] and
experimental results of [25].
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Figure 4. CPT resonance line shape for various lengths of a gas cell in the case of specular-
coherent reflection conditions (a) γ ′ = 2 × 107 s−1, V1 = V2 = 105 s−1; (b) γ ′ = 2 × 109 s−1,
V1 = V2 = 106 s−1.

3.2. Case of q �= 0

The parameters of the active atoms are chosen to be close to those of 87Rb: m = 87 au,
ω = kc = 2.4 × 1015 s−1, ωhf s = qc = 4.3 × 1010 s−1 = 2π × 6.8 GHz, which correspond
to the |1〉 ↔ |2〉 transition wavelength λ ≈ 4.4 cm. The cell temperature is 50 ◦C and the
relaxation rate for the ground-state manifold � = 100 s−1. Such a choice yields kυT ≈
2π × 315 MHz ≈ 2 × 109 s−1. qυT ≈ 2π × 5.7 kHz ≈ 3.56 × 104 s−1. According to (9),
the value of γ ′ is determined by the laser spectral width �L and not less than the half of the
excited-state spontaneous decay rate, γ ′ � γ /2 ≈ 1.8 × 107 s−1.

In figure 4, we present our results: (a) for a narrow-band laser (�L � γ ; γ ′ = 2×107 s−1,
µ = 0.01) and (b) for a broad-band laser (�L ≈ 4 × 109 s−1 � γ ; γ ′ = 2 × 109 s−1,
µ = 1), assuming the ‘specular coherent reflection’ boundary conditions (10). One can see
from figure 4 that for µ = 1 the width and the best achievable contrast of the resonance
strongly depend on the cell lengths, and for a ∼ λ the widths approach the value of the residual
Doppler broadening. However, for µ = 0.01, there is no significant dependence of the CPT
resonance parameters on the cell length. This result shows that there are two different regimes
of narrowing: In the former case, the Dicke effect dominates and in the latter case LILN
determines the CPT resonance properties.

Figure 5 displays the results obtained for the total quenching boundary conditions (12).
In the case of light-induced narrowing (figure 5(a)) the CPT resonance weakly depends on
the cell length, and the results are very similar to those presented in figure 4(a). On the other
hand, the Dicke-type narrowing is quite inefficient in a cell without coating, as can be seen
from figure 5(b).

Thus, we can conclude that the light-induced narrowing mechanism works independently
of the size of a cell containing no buffer gas and the presence of the wall coating, in contrast
to the Dicke narrowing.

3.3. Figure-of-merit for frequency standards

Comparison of efficiency of the light-induced narrowing in an uncoated cell irradiated by a
laser with a narrow spectral width �L � kυT and in a coated cell irradiated by a broad-band
laser is of great practical interest. It is known [35] that the figure-of-merit of a CPT-based
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Figure 5. CPT resonance line shape for various lengths of a gas cell in the case of total quenching
conditions (a) γ ′ = 2 × 107 s−1, V1 = V2 = 105 s−1; (b) γ ′ = 2 × 109 s−1, V1 = V2 = 106 s−1.

Figure 6. Parameter Q versus the Rabi frequency of laser fields. The gas cell length a = λ/4. The
solid curve corresponds the total quenching boundary conditions with γ ′ = 2 × 107 s−1, and the
dotted curve corresponds the specular-coherent boundary conditions with γ ′ = 2 × 109 s−1.

quantum discriminator that determines the stability of the frequency standard is proportional
to the product of the second derivative of the absorbed power over the two-photon detuning
and the width of the linear part of the discrimination curve, and is inversely proportional to the
square root of the intensity of the radiation approaching the photodetector. Since, according
to equation (15), the absorbed power is linear in ρ̄33, and the intensity of the ith component is
quadratic in the corresponding Rabi frequency a Vi , the figure-of-merit for the CPT resonance
can be estimated by means of the quantity

Q = s�s

V1 + V2
, (16)

where s = ∣∣d2ρ̄33(δR)
/
dδ2

R

∣∣ at the absorption minimum and �s is the width of the linear part
of the discrimination curve.

We show in figure 6, the results of the calculation of the parameter Q for µ = 0.01 and
the boundary conditions (12), and µ = 1 and the boundary conditions (11). We assume that
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the cell length is a = λ/4 and the Rabi frequencies of the two transitions are equal, V1 = V2.
The best value of Q in the Dicke narrowing regime (µ = 1) is greater by approximately an
order of magnitude than in the LILN regime (µ = 0.01). The explanation is that in the LILN
regime the number of atoms contributing to the CPT resonance formation is sufficiently less
than that in the Dicke narrowing regime.

4. Conclusions

In the present paper, we have investigated theoretically the formation of the CPT resonance
in a finite-size cell with and without an anti-relaxation coating. The existence of two distinct
regimes of narrowing (light-induced and Dicke-type) has been demonstrated. The light-
induced narrowing mechanism is effective only in the case of excitation by a narrow-band
laser (�L � kυT ), and the narrowing weakly depends on the cell size and the coating type.
On the other hand, the use of broad-bandwidth laser radiation and coated cells allows us to
improve the stability of the frequency standard by an order of magnitude.
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