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The equation of state (EOS) for partially ionized carbon, oxygen, and carbon-oxygen mixtures at temperatures
3 × 105 K � T � 3 × 106 K is calculated over a wide range of densities, using the method of free energy
minimization in the framework of the chemical picture of plasmas. The free energy model is an improved
extension of our model previously developed for pure carbon [Potekhin, Massacrier, and Chabrier, Phys. Rev.
E 72, 046402 (2005)]. The internal partition functions of bound species are calculated by a self-consistent
treatment of each ionization stage in the plasma environment taking into account pressure ionization. The
long-range Coulomb interactions between ions and screening of the ions by free electrons are included using our
previously published analytical model, recently improved, in particular for the case of mixtures. We also propose
a simple but accurate method of calculation of the EOS of partially ionized binary mixtures based on detailed
ionization balance calculations for pure substances.
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I. INTRODUCTION

An understanding of the physical properties of matter at
high densities and temperatures is important as a problem
of fundamental physics as well as for various applications.
A particularly challenging problem is the calculation of the
equation of state (EOS) for stellar partial ionization zones,
where the electrons and the different ionic species cannot
be regarded as simple mixtures of ideal gases: Coulomb
interactions, bound-state level shifts, pressure ionization, and
electron degeneracy must be taken into account. In a previous
publication [1], we calculated the EOS for carbon at temper-
atures 105 K � T � 107 K over a wide range of densities ρ,
based on the free energy minimization method [2,3], which
enables us to include the complex physics in the model and
ensures thermodynamic consistency. For the case of carbon,
in particular, the EOS developed by Fontaine et al. [4] (FGV)
more than three decades ago and widely used in astrophysics
up to now is based on the free energy minimization method at
relatively low densities ρ � 0.1 g cm−3.

The free energy model inevitably becomes complicated
when density increases above ρ � 0.1 g cm−3 because of the
growing importance of nonideal contributions and the onset
of pressure ionization. This latter phenomenon is difficult to
treat in the framework of the “chemical picture” of plasmas,
which assumes that the different ion species retain their identity
(see, e.g., Refs. [5–7], for discussions). On the other hand,
EOS calculations within the more rigorous “physical picture,”
quite successful at relatively low ρ (e.g., Ref. [8]), become
prohibitively complicated at high densities. First principles
approaches based on path integral Monte Carlo (PIMC) [9,10]
or molecular dynamics (MD) calculations [11,12] are com-
putationally highly expensive, especially at high temperatures
when excited ionic cores should be considered.
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Besides these first principles based computations and a few
works that consider the influence of anisotropic distributions
of neighboring ions (e.g., Refs. [13,14]), hot dense plasma
studies of medium- to high-Z elements are generally built
around the modeling of an ion in its plasma environment,
placing it at the center of a spherically symmetric system. The
complexity of the physics that is still required leads to a wealth
of models. In ion sphere (IS) models [15] neighboring ions
act as a mere neutralizing background beyond some radius,
while some correlation with the central ion can be introduced
through the computation of pair distribution functions [16], for
instance, in the hypernetted chain approximation (HNC) [17].
The free electron background may be obtained from model pre-
scriptions like Thomas-Fermi [18,19] or may involve quantum
computations, usually from the Kohn-Sham equations in the
density functional theory (DFT) context [20,21]. Several levels
of refinement are possible to model the atomic structure of the
central ion. Most of them merge the various excitation and/or
ionization states into a fictitious average atom (AA) [22].
This saves a lot of computation time because the overall
self-consistent scheme for the ion and its environment has to be
solved only once for a given thermodynamics condition. The
price to pay, especially when interested in opacities, is some
additional statistical procedure to infer individual ionization
stages populations from the AA solution (e.g., Ref. [23]).
This undoubtedly works well for high-Z elements due to their
innumerable quantum states which translate into unresolved
transition arrays (UTAs), but for lighter elements such as
carbon or oxygen the relevance of the AA scheme becomes
questionable.

In this paper we employ a generalized version of the EOS
model [1] which relies on the free energy minimization in
the framework of the chemical picture and is applied to high
densities across the pressure ionization region. We combine
separate models for different ionization stages in the plasma
environment, taking into account the detailed structure of
bound states (configurations, LS terms), and use Boltzmann
statistics to sum up the internal partition functions of these ions.
The atomic structure of each ion embedded in the dense plasma
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is calculated using a scheme [24] which self-consistently takes
into account the modification of bound states due to the envi-
ronment. The free electron density around each ion is treated
quantum mechanically, thus resolving the resonances. Though
neighboring ions act at this level as a neutralizing background,
the long-range interactions in the system of charged particles
(ions and electrons) is included in the thermodynamics using
the theory previously developed for fully ionized plasmas (see
Ref. [25] and references therein). This model allows us to
obtain not only the thermodynamic functions, but also directly
number fractions for every ionization stage, unlike AA models.

As different ions are treated on an equal footing, whether
from the same element or not, our approach allows to treat
mixtures in a similar way as pure plasmas. We apply the
model to carbon and oxygen plasmas at temperatures between
3 × 105 K and 3 × 106 K and mass densities in the range
10−3 g cm−3 � ρ � 104 g cm−3. We also consider carbon-
oxygen mixtures at the same plasma parameter values and
propose a simple but accurate method of calculation of
thermodynamic functions of the mixtures based on the solution
of the ionization equilibrium problem for the pure substances.
At T � 3 × 105 K the model remains valid in principle, but
the calculation becomes numerically much more difficult in
the current implementation, and it has not been realized in this
work. For temperatures higher than �3 × 106 K our model
recovers a simpler one where the free electron density is
assumed to be uniform.

In Sec. II we briefly describe the total free energy model.
In Sec. III we present the model for internal free energy of
ions, which takes into account bound-state configurations in
LS coupling and their interactions with the continuum of free
electrons. The technique for the calculation of thermodynamic
functions at equilibrium and its update with respect to Ref. [1]
is briefly described in Sec. IV. In Sec. V we discuss the results
of the EOS calculations for carbon and oxygen plasmas and
for their mixtures. Section VI is devoted to the conclusion.

II. FREE ENERGY MODEL

Consider a plasma consisting of Ne free electrons and Ni =∑
jν Njν heavy ions in a volume V , where Njν is the number

of ions of the j th chemical element having ν bound electrons,
and ν can range from 0 to Zj , where Zj is the j th element
charge number. The free energy model is basically the same
as in Ref. [1]. The total Helmholtz free energy is Ftot = Fe +
Fi + Fex, where Fi,e denotes the ideal free energy of ions and
free electrons, respectively, and Fex is the excess (nonideal)
part, which arises from interactions. The term Fi is the kinetic
free energy of an ideal Boltzmann gas mixture, which can be
written as

Fi = kBT
∑

j

Zj∑
ν=0

Njν

[
ln

(
λ3

jNjν

/
V

) − 1
]
, (1)

where λj = (2πh̄2/mjkBT )1/2 is the thermal de Broglie
wavelength of the ions of the j th chemical element in the
plasma, mj is the mass of these ions, and kB is Boltzmann
constant. For the electrons at arbitrary degeneracy, Fe can be
expressed through Fermi-Dirac integrals (we calculate Fe and
its derivatives using the code described in [25]). The nonideal

term can be written as

Fex = FCoul + Fint, (2)

where the first term, FCoul, includes contributions due to the
long-range part of the Coulomb interactions between different
(classical) ions, between free electrons (including exchange
and correlations), and between ions and free electrons. The
second term, Fint, linked to internal partition functions,
involves sums over localized bound states around the nuclei
and includes interactions between bound and free electrons. No
strict definition of either free and bound electrons or ions exists
in a dense plasma; therefore, in general, the terms in Eq. (2)
are interdependent. In our approach, we handle this difficulty
as follows: We first calculate the properties of the ions, treated
individually, embedded in the plasma, by developing self-
consistent models for these ions; we then couple these models
with a model which describes the long range interactions;
finally, we minimize the resulting total free energy Ftot.

We calculate the Coulomb term and its thermodynamic
derivatives using previously published fitting formulas (see
Ref. [25] for references). Compared to our previous paper [1],
there are two main improvements in the calculation of this
term. First, we employ a correction to the linear mixing rule
for the ions of different types, derived in Ref. [26]. Second,
we have implemented fully analytical calculations of all
derivatives of FCoul needed to obtain thermodynamic functions
(previously some derivations were made numerically). The
latter improvement increases the accuracy of the calculations
of these derivatives and allows us to proceed straightforwardly,
with no need to include the additional refinement described
Sec. III C of Ref. [1], based on an extraction of the long-
distance contribution FCoul from calculated values of Ftot.

III. BOUND-STATE CONTRIBUTION
TO THE FREE ENERGY

In order to evaluate Fint, we calculate the ionic structure
in the plasma using the scheme described in Ref. [24].
It is based on the IS approximation, which replaces the
actual plasma environment for every ion with the statistically
averaged plasma effects on the electron wave functions within
a spherical volume centered at the ionic nucleus. At present
we do not include neutral atoms (ν = Zj for the j th element),
which is justified at the temperatures and densities where the
ionization degree of the plasma is high. For each ion containing
ν bound electrons, a radius of the IS Rjν is determined
self-consistently from the requirement that the sphere is overall
electrically neutral. The Hamiltonian describing the ion (j,ν)
immersed in the plasma is written as

Hjν =
ν∑

i=1

hjν(r i) + Wjν, (3)

where

hjν(r) = − h̄2

2me

∇2 + V
jν

at (r) + V
jν

f (r), (4)

Wjν =
ν∑

i=1

(
− Zje

2

ri

− V
jν

at (ri)

)
+

ν∑
i<k

e2

|r i − rk| , (5)
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V
jν

f is the potential due to the plasma on the ion (j,ν),

which must be determined self-consistently, and V
jν

at is a
scaled Thomas-Fermi potential of the nucleus and ν bound
electrons [27] independent of the density and temperature.
Note that V

jν
at disappears in Eq. (3). The effective Hamiltonian

hjν generates a one-electron wave function basis with a finite
number of bound states. The coordinate parts ψ

jν

nlm of the
bound-state wave functions are obtained from the Schrödinger
equation

hjνψ
jν

nlm = εjνnlψ
jν

nlm, (6)

where n, l, and m are, respectively, the principal, orbital, and
magnetic quantum numbers for a given orbital. Then Hjν is
diagonalized in the subspace of Slater determinants generated
by the set of all ψ

jν

nlm. The interaction term Wjν is responsible
for the LS splitting of configurations. It may also lead to
some configuration interactions. As Wjν does not depend on
the plasma properties, its matrix elements are influenced only
through the modifications of the wave functions in Eq. (6)
due to plasma effects through V

jν

f . Our experience shows that
the ν-electron energies of the bound states of the ions are
well approximated as Ejνα = E0

jνα + ∑
(nl)∈α(εjνnl − ε0

jνnl),
where E0

jνα and ε0
jνnl are calculated for the isolated ion, and

α = (nl)1(nl)2 . . . (nl)2S+1
ν L defines a particular LS term of a

configuration. The boundary condition at the IS radius Rjν to
solve Eq. (6) does not noticeably affect Ejνα except near the
densities where the corresponding term α becomes pressure-
ionized. At these densities we use the dependence of the one-
electron eigenenergy on the external boundary condition in
order to estimate the degree of electron delocalization due to
pressure effects and to determine the corresponding occupation
probabilities, in the same manner as in Ref. [1].

The free electron density n
jν

f (r) and the potential V
jν

f (r)
are determined self-consistently in the potential generated
by the nucleus charge and a Boltzmann average of the
ν-electron wave functions, solving for Kohn-Sham states in
the local density approximation of the DFT, and assuming
Fermi distribution of the free electrons at a given chemical
potential μe. The contributions from resonances are taken into
account, as explained in Refs. [1,24]. Together with n

jν

f and

V
jν

f , the IS radii Rjν and the corresponding neutrality volumes
vjν = 4πR3

jν/3 are obtained from the neutrality condition for
each ion.

For a uniform free electron background, we would have
vjν = v0

jν = (Zj − ν)/n0
e , where n0

e(μe,T ) is the “fiducial”
electron density, which would correspond to the true electron
density of the ideal Fermi gas of electrons at the given μe and
T values. When taking into account the interactions of the free
electrons with the ions, vjν deviates from v0

jν , as illustrated
in Figs. 1 and 2 for carbon and oxygen plasmas, respectively.
The drops of the curves at certain values of n0

e(μe,T ), which
are especially sharp at lower temperatures (see Fig. 2), are the
consequence of pressure ionization of separate bound levels:
When a nl level of ion ν + 1 crosses the continuum limit
and appears as a resonance in the neighboring ionization state
ν, the corresponding IS shrinks to compensate this increase
in the free electron density of states (note that Z − ν free

FIG. 1. (Color online) Neutrality volumes vν normalized with the
fiducial number density of free electrons n0

e (see text), as functions
of n0

e for T = 2.2 × 106 K for carbon ions with ν bound electrons
(ν = 0,1, . . . ,5). The results from Ref. [1] (dashed lines) are
compared with the present improved results (solid lines).

electrons are still present in the volume vjν). For a given level
nl, pressure ionization occurs at electronic densities which
roughly depend on the ionic charge as (Zj − ν)4. If the number
of bound states that remain in the IS is not sufficient to accept
ν electrons, that ion disappears: ν = 5,6,7 disappear with
the 2p subshell, and ν = 3,4 with 2s (see Figs. 1 and 2).
We emphasize that, in contrast to AA models, separate
ions have their own fate. Compared to Ref. [1], we have
extended the calculation of the free electron states to higher
electron energies and to higher μe. The consequences of these
improvements for the neutrality volumes are seen in Fig. 1,
where the dashed lines show our previous results and the solid
lines correspond to our new calculations. The extension of
μe to higher values allows us to capture the last dips of the
neutrality volumes of naked nuclei (ν = 0) as functions of n0

e ,
which appear at n0

e > 1026 cm−3 for both carbon and oxygen.
These dips are due to the coupling of the hydrogenlike (ν = 1)

FIG. 2. (Color online) Neutrality volumes vν normalized with n0
e

(analogous to Fig. 1), as functions of n0
e for T = 2.2 × 106 K (solid

lines) and T = 5.52 × 105 K (dotted lines) for oxygen ions with ν

bound electrons (ν = 0,1, . . . ,7).
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bound states to the continuum and are related to the pressure
ionization of the K shell (where the curves ν = 1 in Figs. 1
and 2 terminate).

Pressure ionization of each atomic shell is accompanied
by a spreading of the electronic level into a band, eventually
passing into the continuum. We account for this effect by
using occupation probabilities wjνα = ∏

(nl)∈α wjνnl , which
are equal to the fraction of the band corresponding to the
electron configuration α that remains below the continuum
level at given (T ,μe) values (see Ref. [1] for details).

In order to get a smooth pressure ionization and a smooth
extension from calculated values of the neutrality volumes to
higher densities, we replace vjν by v∗

jν = vjνwjν + v0
jν(1 −

wjν), where wjν is the occupation probability wjνα calculated
for the ground-state configuration α of the ion with ν electrons.

The separation of Hν into parts (4) and (5) allows
us to capture the plasma effects in one-electron energies
and wave functions through Eqs. (4) and (6), while the
ν-electron structure—configuration energy mean shifts and
LS splitting—results from the contribution Wν . In Ref. [1]
we calculated this contribution to binding energies using a
modified version of the SUPERSTRUCTURE code [27], as in
Ref. [24]. However, our experience has revealed that the use
of the atomic code is unnecessary for our purposes. This
contribution is calculated once for the isolated ion and then
combined with the one-electron energies εjνnl (see above) at
any density. Indeed, the dependence of this contribution on the
plasma conditions is weak (of the second order in perturbation)
compared to the dependence of the energies εjνnl . In the present
work we have updated the corrections due to Wν by using the
detailed atomic energy database of the Opacity Project (OP)
(Ref. [28] and references therein).

Having calculated energies Ejνα and occupation probabil-
ities wjνα at given values (T ,μe), we obtain the contribution
of the internal degrees of freedom of all the ions to the free
energy as

Fint = −NikBT
∑

j

Zj∑
ν=0

xjν lnZjν, (7)

whereZjν = ∑
α wjνα (2S + 1)(2L + 1) exp(−Ejνα/kBT ) is

the internal partition function of the ion (j,ν) in the plasma
and xjν ≡ Njν/Ni is its number fraction (

∑
j,ν xjν = 1). Since

we do not consider neutral atoms, the actual upper limit of ν

summation is Zj − 1.

IV. THERMODYNAMIC EQUILIBRIUM

We use a generalization of the free energy minimization
method of Ref. [1] to the case of multicomponent mixtures.
The minimum of Ftot is sought at constant V , T , and Nj .
The free parameters are the chemical potential μe and the ion
fractions xjν , subject to constraints

xjν � 0,

Zj −1∑
ν=0

xjν = Yj , Ni

∑
j

Zj −1∑
ν=1

xjνvjν = V, (8)

where Yj are fixed chemical element abundances (Yj � 0,∑
j Yj = 1). The last condition in Eq. (8) reflects that V is

constant. We ensure this condition by using the Lagrange

multiplier method. The other conditions in Eq. (8) are imposed
explicitly in our minimization procedure by allowing the set
of {xjν} to contain only the values for which these constraints
are satisfied. Note that the charge neutrality condition is
fulfilled automatically, because the volume vjν around every
nucleus is neutral by construction. Some further details of the
minimization algorithm can be found in Ref. [1]. For a mixture
of chemical elements, we have in total 1 + ∑

j (Zj − 1)
independent parameters of minimization.

The minimization procedure provides the values of Ftot

with a typical accuracy of four digits. Further improvement
of the accuracy becomes problematic. The main sources of
the numerical noise are the finite precision of calculation
of the internal partition functions and neutrality volumes
and the finite precision of the minimization procedure. The
achieved accuracy is not sufficient for an accurate evaluation
of thermodynamic functions, especially those that involve
second and mixed derivatives of Ftot (specific heat CV ;
logarithmic pressure derivatives with respect to density, χρ ,
and temperature, χT ; adiabatic temperature gradient, and so
on). To overcome this difficulty, we use an additional filtering
of the numerical noise after the minimization. The filtering
procedure is modified relative to that in Ref. [1]. Specifically,
for the results shown in the next section, we have performed
calculations for a grid of points (ρ,T ) separated by 
 log10 ρ =
0.05 and 
 log10 T = 0.1, and at each point we have deter-
mined an improved value of Ftot using a bicubic 10-parameter
polynomial fit to Ftot(ρ,T ) on this grid. The fitting was done by
χ2 minimization with weights decreasing with increasing dis-
tance between a given point (ρ,T ) and the grid point (ρ ′,T ′) in
the log10 ρ-log10 T plane as {1 + [log10(ρ ′/ρ)/
 log10 ρ]2 +
[log10(T ′/T )/
 log10 T ]2}−1. This improved method of pri-
mary filtering of numerical noise allows us to avoid the
additional secondary smoothing of thermodynamic functions
that was employed in Ref. [1].

V. RESULTS

A. Ionization equilibrium

The minimization of the total free energy immediately
gives a solution to ionization equilibrium. Examples of partial
fractions of ions as functions of T at constant ρ, or of ρ at
constant T , are shown in Figs. 3–6, as well as in panels (b) of
Figs. 7 and 8 in Sect. V B. Figure 3 shows current results (solid
lines) in a pure carbon plasma for the partial fractions of ions
with different numbers of electrons (marked by the numbers
near the respective curves) and for the mean effective charge
(marked by the symbol 〈Z〉 and scaled to the right vertical
axis) at (a) ρ = 0.2 g cm−3 and (b) ρ = 10 g cm−3. This
effective charge is calculated by taking into account the partial
delocalization of the outer-shell electrons in the pressure
ionization region as 〈Z〉 = ∑

jν(Zj − ν + 1 − wjν) xjν . The
ions recombine with decreasing temperature at both densities,
but at the high density ρ = 10 g cm−3 there is no room
for the existence in carbon of bound states other than 1s

(as can be inferred from Fig. 1, though for a fixed temper-
ature: ρ = 10 g cm−3 corresponds to ne � 2–3 × 1024 cm−3).
Hence, recombination cannot proceed past the He-like (ν = 2)
stage.
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FIG. 3. (Color online) Number fractions of different carbon ions
(left vertical axis, marked by the numbers of bound electrons ν

near the curves) and mean effective charge 〈Z〉 (right vertical axis)
in a pure plasma versus temperature at (a) ρ = 0.2 g cm−3 and
(b) ρ = 10 g cm−3. Solid lines, accurate results; dashed lines,
approximation where partition functions Zjν and neutrality volumes
vjν are calculated assuming a uniform free electron density; dash-
dotted lines, results for 〈Z〉 from FLYCHK [29]. In panel (a) the
circles are the experimental results from Gregori et al. [30] for
ρ = 0.2 g cm−3.

The dashed lines in the figure correspond to a simplified
approach, where the neutrality volumes vjν and internal
partition functions Zjν are calculated assuming the uniform
electron density ne = n0

e . In this simple approximation we
can obtain results in a wider range of T than in the accurate
calculation. This approximation works well at relatively low
densities, as proved by the good agreement of the dashed and
solid curves in Fig. 3(a). With increasing density, the coupling
of the bound and continuum states becomes significant. More
accurate calculation becomes necessary, as can be seen in
Fig. 3(b), especially at low temperatures where the difference
in the IS between a uniform free electron density and the
density constructed from quantum continuum states will be
more pronounced.

We also report in Fig. 3 the mean ion charge as obtained
from FLYCHK (dash-dotted lines), a suite of codes based on
simplified atomic models aimed at providing fast collisional-
radiative models and spectra [29]. FLYCHK gives generally a
lower mean effective charge, especially at temperature-density
conditions where several ionization stages are present. This
is probably due to its treatment of density effects through a
simplified approach. The experimental data points of Gregori

FIG. 4. (Color online) (a) Number fractions of ions for a pure
oxygen plasma (solid lines) at T = 6 × 105 K as a function of the
density ρ. Numbers of bound electrons ν for each ion are marked
near the curves. Dashed lines are twice the ionization fractions xjν

for oxygen in a plasma mixture composed of equal numbers of C and
O nuclei at the same temperature. (b) Mean effective charge 〈Z〉 for
the pure oxygen plasma (solid line). The dot-dashed line is the result
from FLYCHK under the same conditions.

et al. [30] for 〈Z〉 are plotted in Fig. 3(a) as circles. They agree
with our results at this density, especially if one considers
the experimental uncertainties of ±20 eV for the temperature
and ±0.25 for 〈Z〉.1 Experiments at higher densities would
certainly be very valuable.

The effects of pressure ionization are most appreciable
in Fig. 4, where ion population fractions (a) and the mean
effective charge (b) for a pure oxygen plasma (solid lines)
are plotted versus density at T = 6 × 105 K. The results of
FLYCHK for 〈Z〉 are also reported in Fig. 4(b) (dot-dashed
line). Recombination with increasing density is modulated
at the lowest densities (ρ � 0.5 g cm−3) by the successive
pressure ionizations of the Li-like (ν = 3) ion shells (see
Fig. 2: ρ = 0.5 g cm−3 corresponds to ne � 1023 cm−3 for
〈Z〉 = 5.5). The temperature is sufficient to populate excited
states of that ion but not of He-like ions, so that only the
Li-like ion partition function is affected (the 1s22s – 1s23s

energy difference is 9 × 105 K, while the 1s2 – 1s2s one is
6.5 × 106 K). Between ρ � 0.5 g cm−3 and 20 g cm−3, Li-like
ions gradually disappear with the n = 2 shell to the benefit of
He-like ions. On the contrary [see Fig. 4(b)], FLYCHK still
allows recombination into the Be-like ion (ν = 4) until ρ �

1The FLYCHK mean ion charge 〈Z〉 reported here for ρ = 0.2 g cm−3

and obtained from the NIST web site appears to be different from the
data as plotted on Fig. 4 in Gregori et al. [30]. We think there is an
inversion in the naming of the FLYCHK and PURGATORIO results on
that figure in this paper.
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FIG. 5. (Color online) Number fractions of different carbon
(dotted lines) and oxygen (solid lines) ions in the mixture of equal
number of ions of each chemical element at ρ = 1 g cm−3 as functions
of T .

8 g cm−3, where it is sharply pressure ionized, just before
Li-like ions. Oxygen remains at higher densities in the He-
like stage up to ρ � 103 g cm−3, where the last 1s shells
for He-like and H-like ions are moved into the continuum.
In this density range our results show a more complex
behavior due to several effects: The free electrons become
degenerate, the ionization occurs on a large density range due
to band broadening, and the influence of neutrality volumes is
strong.

Dashed lines in Fig. 4(a) show the ionization fractions of
oxygen in a mixture of equal numbers of C and O nuclei. The
fractions xjν have been multiplied by two to be compared with
the pure oxygen plasma case. The behavior of the ionization
equilibrium of oxygen is quite similar in the two cases, the
biggest difference occurring in the pressure ionization zone
around ρ � 103 g cm−3. In Fig. 5 we show the temperature
dependence of the partial ion fractions for the two chemical
elements C (dotted lines) and O (solid lines) in the same
mixture at ρ = 1 g cm−3. At this density, the curves for the
fraction of ν ions for carbon are roughly shifted to lower
temperatures when compared to the oxygen ones by the ratio
of the ionization energies (ZC − ν)2/(ZO − ν)2.

Comparing Fig. 5 and analogous figures for mixtures and
pure substances, we notice that the temperature and density
dependences of partial ion fractions in mixtures of different
elements are similar to those in pure substances, scaled by the
element abundances Yj . Two examples are presented in Fig. 6.
Here the dashed lines show partial fractions xjν of oxygen ions
with ν bound electrons in a mixture where half the ions are
oxygen ions and half are carbon ions, at (a) ρ = 0.1 g cm−3

and (b) ρ = 10 g cm−3, as function of T , while the dotted lines
show fractions of the same ions, multiplied by 0.5, in a pure
oxygen plasma. The close agreement between these curves,
which has been tested at several densities [see, e.g., Fig. 4(a)] or
compositions, prompted us to suggest the following method for
an approximate solution of the ionization equilibrium problem
and a construction of the EOS for plasma mixtures of different
elements (at least in the temperature range considered in the
present study):

FIG. 6. (Color online) Number fractions of different oxygen
ions as functions of T in the mixture of equal number of ions
of each chemical element C and O at (a) ρ = 0.1 g cm−3 and
(b) ρ = 10 g cm−3. Dashed lines show the result of direct free energy
minimization for the mixture, and dotted lines show the result of an
approximation based on the solution of the ionization equilibrium
problem for pure C and O plasmas (see text).

(i) calculate the fractional numbers of different ions xjν for
pure substances at the same ne and T (let us denote their
values x0

jν);
(ii) multiply them by Yj and keep them fixed: xjν = x0

jνYj ;
(iii) adjust the electron chemical potential μe so as to fulfill
the last condition in Eq. (8).

The advantage of this method for a mixture of J chemical
elements is that, instead of minimizing Ftot in a space of
1 + ∑J

j=1(Zj − 1) independent parameters, one needs to
perform J minimizations in a space of Zj parameters each,
and then to adjust μe. As a rule, these J partial minimizations
go much faster than the single minimization in the space of all
parameters, thus saving the computer cost of the procedure. For
example, it is much easier to find the minima of Ftot for carbon
(6 parameters) and for oxygen (8 parameters) separately than
to find a minimum for their mixture (13 parameters). Moreover,
having found the number fractions of ions for pure substances
once, one can calculate thermodynamic functions of mixtures
with any fractions of chemical elements Yj without repeating
the whole minimization procedure. Note, however, that carbon
and oxygen are chemical species that are not very different,
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FIG. 7. (Color online) (a) Normalized pressure PV/NikBT for
pure carbon along the isotherm T = 5 × 105 K. The present results
(long-dashed line) are compared with the results from Ref. [4]
(dot-dashed line) and Ref. [1] (short-dashed line). Note the different
scale in the figure above and below the middle horizontal line.
(b) Number fractions of different carbon ions (present results) for
the same temperature.

so one should proceed with caution before applying this
simplified approach to other mixtures without further studies.

B. Thermodynamic functions

To illustrate our results for the EOS and compare them with
the results of Ref. [1], we show in Fig. 7(a) an isotherm for the
pressure P (ρ) for carbon at T = 5 × 105 K. Our present result
is shown by the long-dashed line, our previous result [1] by
short dashes, and the dot-dashed line shows the result obtained
with the FGV EOS [4] based on a Thomas-Fermi model at
ρ � 3 g cm−3. In order to make the differences visible in the
figure, we have normalized the pressure by its value for an ideal
Boltzmann gas of ions, NikBT/V . The vertical scale is smaller
for the upper part of the figure, to take into account the rapidly
increasing pressure contribution of degenerate electrons. The
differences between our and FGV results have become smaller
for ρ � 10 g cm−3 than in Ref. [1], and the additional features
have become less spectacular. This change is mainly caused
by the improved treatment of the electron continuum in the
present work (see Sec. II).

However, the additional features still persist near the
densities where electron shells become pressure ionized, as

FIG. 8. (Color online) (a) Logarithmic pressure derivative χρ =
∂ ln P/∂ ln ρ along the isotherm T = 3.16 × 106 K. The present data
for carbon (long-dashed line) are compared with the results from
Ref. [4] (dot-dashed line) and Ref. [1] (short-dashed line). The solid
line shows the isotherm of χρ for oxygen. (b) Present results for the
number fractions of carbon ions (dashed lines) and oxygen ions (solid
lines) at the same temperature.

expected. For instance, it can be seen from the ionization
fractions as given in Fig. 7(b) for the same isotherm that the
feature in the pressure just above ρ = 1 g cm−3 is linked to
the disappearance of the Li-like carbon ion. These features are
clearly revealed in the logarithmic derivative of the pressure,
χρ = (∂ ln P/∂ ln ρ)T , shown in Fig. 8(a). In this panel, the
dot-dashed, short-dashed, and long-dashed lines correspond
to the same three models for carbon plasma as in Fig. 7(a).
In addition, the solid line shows χρ for the oxygen plasma
at the same temperature. When analyzed with the help of the
ionization fractions as plotted in Fig. 8(b) the features for
carbon around ρ � 5 g cm−3 and 3 × 102 g cm−3 appear to
be linked to the pressure ionization in H-like ions of the n = 2
and n = 1 shells, respectively; those for oxygen around ρ �
10 g cm−3 and 6 × 102 g cm−3 are linked to the same shells
with a supplementary contribution from the He-like ions. In
the latter case, the features due to pressure ionization are more
pronounced because of the higher binding energies compared
to carbon, and they are shifted to higher densities because
of the higher net charge and respectively smaller neutrality
volumes of ions [this shift can be roughly estimated as the
ratio of the volumes of hydrogenlike carbon and oxygen ions,
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FIG. 9. (Color online) Specific internal energy logarithms (in
cgs units) for various isotherms: T = 5 × 105 K, 1.26 × 106 K,
and 3.16 × 106 K (the curves are marked by log10 T values) for
oxygen (solid lines), carbon (long-dashed lines), and the mixture of
equal number of ions of each chemical element (short-dashed and
dotted lines). In the latter case short-dashed lines show the result
of direct free energy minimization for the mixture, while dotted
lines show the result of an approximation based on the solution of
the ionization equilibrium problem for pure C and O plasmas (the
difference between them is almost unnoticeable; see text).

∼(ZO/ZC)3 = 64/27]. Note also that the pressure ionization
of a given (sub-)shell leaves an imprint on thermodynamics
functions at different densities depending on which ionization
stage is dominant. For instance, the features due to the n = 2
shell in carbon appear at ρ � 1 g cm−3 or 5 g cm−3 depending
on whether Li-like or H-like ions are concerned (compare
Figs. 7 and 8).

Figure 9 shows three isotherms for the internal energy
per unit mass for carbon (long-dashed lines), oxygen (solid
lines), and the mixture containing equal numbers of C and
O nuclei (short-dashed and dotted lines). The energy per
unit mass U ∗ = U/(Ni

∑
j mjYj ) + U ∗

0 is measured from the
ground-state energy of nonionized atoms, which corresponds
to a shift with respect to the electron continuum level equal
to U ∗

0 = ∑
j YjU

∗
0,j , where U ∗

0,j = 8.28 × 1013 erg g−1 for
carbon and U ∗

0,j = 1.23 × 1014 erg g−1 for oxygen. For the
mixture, the short-dashed lines portray the results of the
numerical minimization of the complete free energy Ftot, while
the dotted lines illustrate the results of the approximate method
described in Sec. V A. The near coincidence of the dotted
and short-dashed lines, indistinguishable at the scale of the
figure, confirms the accuracy of the approximate method in that
case.

As an example of a second-order thermodynamic function
calculated with our model, Fig. 10 presents isochores for the
heat capacity at (a) ρ = 0.1 g cm−3, (b) ρ = 1 g cm−3, and
(c) ρ = 10 g cm−3 for carbon (long-dashed line), oxygen
(solid line), and the carbon-oxygen mixture with Yj = 0.5. For

FIG. 10. (Color online) Normalized specific heat per ion for
the isochores (a) ρ = 0.1 g cm−3, (b) ρ = 1 g cm−3, and (c) ρ =
10 g cm−3 for carbon (long-dashed line), oxygen (solid line),
and mixture of equal number of ions of each chemical element
(short-dashed and dotted lines). In the latter case, the short-dashed line
shows the result of direct free energy minimization for the mixture,
while the dotted line shows the result of an approximation based on
the solution of the ionization equilibrium problem for pure C and
O plasmas. For comparison, alternating short and long dashes show
analogous isochores for the fully ionized plasma model.

the mixture, the short-dashed lines portray the results of the
numerical minimization of the complete free energy Ftot, while
the dotted lines illustrate the results of the approximate method
described in Sec. V A. As well as in Fig. 9, the short-dashed and
dotted lines nearly coincide. For comparison, lines drawn with
alternating short and long dashes show the results obtained for
the fully ionized plasma model. The presence of bound states
yields big bumps on the curves. Comparison with Figs. 3 and
6 (for 0.1–0.2 g cm−3 and 10 g cm−3) and with Fig. 5 (for
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1 g cm−3) reveals that these bumps are associated with the
thermal ionization of heliumlike ions into hydrogenlike ones
and then into nuclei. At higher temperatures, the results for
fully ionized plasmas are recovered, as it should be due to the
complete ionization of C and O at such high temperatures, in
agreement with the Saha equation.

VI. CONCLUSIONS

We have further improved our model [1] for the calculation
of the EOS for dense, partially ionized plasmas, based on the
free energy minimization method, suitable to handle pressure
ionization regimes. The free energy model is constructed
in the framework of the chemical picture of plasmas and
includes a detailed, self-consistent treatment of the quantum
states of partially ionized atoms in the plasma environment
as well as a quantum treatment of the continuum electrons.
The improvements with respect to our former pure carbon
calculations include implementing updated fitting formulas
[25,26] for the long-range Coulomb contribution to the free
energy, the use of the OP database for energies of bound-state
configurations [28], an increased range of density, and the
extension to mixtures of different chemical elements.

We have extended the calculations from pure carbon to
arbitrary carbon-oxygen mixtures. We have also suggested an
efficient, approximate but accurate method of EOS calculation
in the case of mixtures of different chemical elements, based on

the detailed information about the various ionic state fractions
for the pure species.

The present EOS results can be used in studies of carbon-
oxygen plasmas in the domain of so-called warm dense matter,
as well as in astrophysical calculations of stellar structure
and evolution. The possible astrophysical applications include
oxygen and carbon plasmas and carbon-oxygen mixtures in
various types of stars, for example, the interiors of carbon-
oxygen white dwarfs. However, in order to apply it also to
the outer parts of the white dwarf envelopes, it is desirable
to extend the results to lower temperatures. We are planning
to perform such extensions in the future work.
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