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Abstract. We have estimated the probability of a partial coverage of QSO broad-line regions
by intervening H2-clouds. This effect has been revealed by an analysis of H2 absorption systems
in QSO spectra [1, 2]. Accounting of the effect may change significantly physical parameters of
interstellar clouds derived from the spectral analysis [2].
We show that the probability of incomplete coverage turns out to be not lower than about 8%.
Actually, a frequency of the effect revealing may occur essentially higher than this quantity,
encouraging us in further systematic searches of the incomplete coverage in the H2 absorption
QSO spectra.

1. Introduction

It was widely accepted until recently that intervening H2 absorption clouds fully cover
cosmologically remote quasars (QSOs) usually treated as point-like powerful sources of radiation.
The interstellar clouds in remote galaxies situated on lines of sight between QSOs and an observer
imprint a set of absorption lines into initial QSO spectra which consist of a smooth continuum
and broad emission lines. The latter are formed within a broad-line region (BLR) in a wider
vicinity of a central QSO machine.

The partial coverage of a BLR by an intervening absorption cloud was firstly reported in
[1] and investigated in detail by [2]. It was demonstrated that the H2-bearing cloud covers the
QSO1232+082 (zem = 2.57) intrinsic continuum source completely but only a part of the BLR.
The details of this unique effect and different alternative interpretations were discussed in the
paper by [2].

Recently another H2 absorption system with partial coverage of the appropriate QSO has been
revealed in Q0528-250 spectrum [3]. Since taking into account of the partial coverage leads to
serious changes of the results of QSO spectra analysis (e.g. column densities of absorbers), it
is important to investigate possibility of the partial coverage effect in other QSO H2 absorption
systems. Following [2], one can introduce noncoverage factor f as the ratio of a light flux passing
by the cloud (i.e. came to the detector without absorption) to a flux which would be detected
in absence of the cloud. It is useful to calculate a distribution function of f , i.e. a probability
to reveal f > f0 (f0 is an assigned value) for an arbitrary absorption system.
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Figure 1. Schematic illustration of an absorption cloud with a transverse size lc (grey circle) situated

between the observer and QSO broad-line region (BLR) with a transverse size lq (red ellipse); θq is an

angular size of BLR, ∆θ is an angle between the line-of-sights from the observer to the centres of QSO

and cloud. Ωq is a solid angle (light cone) of the whole BLR radiation flux, Ωuncov is a solid angle filled

by non-absorbed radiation. Radiation from the QSO without H2-absorption systems is shown as yellow

area of the light cone and radiation containing the absorption systems – as a dimly coloured area. Note

that the light cone is curved due to the expansion of the Universe.

Note that there is an important reason to search the partial coverage phenomenon for
molecular clouds in contrast with H I clouds (mostly forming Lyα forest) which is likely to
have transverse sizes well exceeding the probable sizes of QSO BLRs (e.g. [4]).

In the present paper, we build the probability function of noncoverage factor f for QSO
BLRs with zem = zq (QSOs) by absorption systems with zabs = zc (clouds). We consider an
arbitrary angular distance between line-of-sights to the centres of the cloud and corresponding
BLR, as well as an arbitrary ratio κ of the cloud to BLR transverse sizes. In Section 2 we
introduce noncoverage factor f and consider the main parameters determinative f . In Section 3
we calculate distribution of noncoverage factor for certain distributions of physical parameters.
In Section 4 we discuss obtained results and their relation to observations.

2. Geometry of partial coverage

A sketch of partial coverage is represented on Fig.1. Light from the QSO propagates through
the Universe and it is registered by an observer. The observer detects a light cone within an
angle θq or solid angle Ωq. Some part of light passes by the cloud and comes to the observer
without formation of an absorption-line system in a spectrum. This part is comprised within a
solid angle Ωuncov. The rest light is partly screened by the cloud in such a way that absorption
of molecules in the cloud imprints a set of absorption lines in the initial spectrum. In result
the observer detects a complex radiation from QSO with spectrum integrated over angles. A
screened (covered) flux of radiation may be approximately estimated as a flux comprised by a
solid angle Ωcov = Ωq − Ωuncov.

Noncoverage factor f is a ratio of the flux which goes by the cloud without absorption to the
flux of radiation which would come to the observer if there was no cloud on its path. Let us
assume roughly that both the screened and unscreened fluxes are uniformly distributed within
their solid angles. Thus f may be estimated as a ratio of the solid angle Ωuncov to the whole
solid angle Ωq of BLR observations:

f =
Ωuncov

Ωq
, (1)
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where at θq ≪ 1 one can write Ωq = πθ2q .
Using the well-known definition of the angular size distance, DA(z), for cosmologically distant

objects with a proper transverse size l at a cosmological redshift z, one can determine the angular
size [5] θ = l/DA(z), where DA = cdA(z)/H0 is the angular size distance, H0 is the Hubble

constant at present, c is the speed of light and the dimensionless value dA(z) in the standard
ΛCDM cosmological model is:

dA(z) =
1

1 + z

∫ z

0

dz′
√

Ωm(1 + z′)3 +ΩΛ

. (2)

Here Ωm is the dimensionless cold matter density parameter and ΩΛ = Λc2/(8πG) is determined
by the cosmological constant Λ, G – gravitational constant. According to Fig. 1 one can set
θq = θ/2 and employ the equation θq = lH0/(2cdA(z)). Then using this relation we obtain the
final equation for Ωq. Estimations of the values Ωuncov and f will be outlined below.

Let us demonstrate that the phenomenon of incomplete covering is amplified by cosmological
properties of the space-time. Fig. 2 displays two dependencies of an angular size of a
cosmologically distant object (with proper linear size l and redshift z) on the distance L = ct(z),
where t(z) is the standard expression for the cosmological time of the light-signal propagation
from the object to observer. Thus the green curve in Fig. 2 demonstrates the dependence of
θ(z) on the light-propagation distance L = ct(z) in expanding ΛCDM model. In the Euclidean
(stationary) cosmological model it is a hyperbolic dependence θ = l/L on the distance L to the
object.

One can see that an angular size in the expanding Universe is larger than it would be expected
in the stationary model, and it grows with L at L > 3 Gpc. This is well known phenomenon in
the Friedmann cosmological models (e.g. [6]). Specific light trajectories in such models relatively
to the observer reference frame are schematically drawn in Fig. 1.
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Figure 2. Angular size (in arcsec) θ(z) of an

object with a proper transverse size l = 1 pc and

cosmological redshift z versus distance L = ct;

light passes from the object to the observer for

cosmological time t(z) in expanding (green curve)

and stationary (Euclidean; red curve) Universes.

Figure 3. Four types of coverage. Types of

mutual relations between cloud (grey circles) and

QSO BLR (red circles) in the observer reference

frame: 1) is full coverage (widely known case),

2) – crescent-like coverage, 3) – an “annular”

coverage, 4) – full lack of coverage.

15th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb) IOP Publishing

Journal of Physics: Conference Series 461 (2013) 012046 doi:10.1088/1742-6596/461/1/012046

3



Thus, if BLR transverse size lq is comparable with the cloud size lc, then the phenomenon
of partial coverage may occur for essentially different zq and zc. The condition L > 3 Gpc
corresponds to z > z∗ ≈ 1.64. For detected H2 absorption systems in QSO spectra both values
zem = zq and zabs = zc typically exceed the value z∗, so it is necessary to take into account the
cosmological expansion.

Assuming that BLRs and clouds are spherical one can determine Ωuncov (see Eq. (1)) using
an estimation of two partly overlapping circle areas. A circle conventionally representing the
BLR may be characterized by the radius θq and a circle representing the cloud – by the radius θc.
Then the square of the BRL circle is πθ2q = Ωq. Let us introduce also an overlapping square S (in

units of rad2) of the BLR and cloud circles. Then one can define f = 1−S/Ωq, and additionally
ρ = θc/θq, κ = lc/lq. In these terms we have ρ(κ, zq, zc) = κ dA(zq)/dA(zc), f = 1− s/π, where
s = S/θ2q . Note that ρ may be either > or < κ. It is useful to introduce also a relative angular
deviation δ = ∆θ/θq, where ∆θ is an angular distance between line-of-sights to the centres of
BRL and cloud. In our schematic approach δ characterizes a distance between circle centres.
One can compose the resulting expression for f = f(κ, δ, zq, zc) as function of four parameters
κ, δ, zq and zc.

Fig. 3 displays all possible relative positions of two conventional circles referred to the BLR
and cloud; it is suitable to represent all values in units θq, then the radius of the BLR is 1.

1) Full coverage. All flux from the QSO goes through the cloud, f = 0. The condition is:
1 + δ ≤ ρ.

2) Crescent coverage. The condition for this case is: |ρ− 1| < δ < ρ+1. After some geometric
calculations with f(s) = 1− s/π we obtain

f = 1−
ρ2

π
arccos

ρ2 + δ2 − 1

2ρδ
−

1

π
arccos

1 + δ2 − ρ2

2δ
+

1

2π

√

[ρ2 − (δ − 1)2] [(δ + 1)2 − ρ2].

(3)

3) Annular coverage. The angular size of the cloud should be less then the BLR size. The
condition is ρ+ δ ≤ 1; ρ ≤ 1, δ ≤ 1. In this case we get f = 1− ρ2.

4) Full noncoverage. Relative angular deviation is large and all flux from the QSO goes by the
cloud, i.e. the cloud remains unobservable in the QSO spectrum, i.e. f = 1. The condition
of this case is 1 + ρ ≤ δ.

3. Distribution of noncoverage factor

Let us determine a distribution of noncoverage factor f , i.e. probability P (f > f0) to detect
the absorption systems in QSO spectra with noncoverage factor exceeding a value f0. We fix
zq and zc and treat the parameters κ and δ as arbitrary ones. Firstly note that the very
fact of absorption-lines registration excludes the case (4) with f = 1, i.e the probability of
full noncoverage P (f = 1) = 0. According to the conditions of Section 2 it is true when
δ < 1 + ρ(κ, zq, zc). We assume the uniform distribution of the deviation parameter δ and
introduce the probability P and probability density function Φδ according to the standard
definition: P (δ′ < δ < δ′ + dδ′) = Φδ(δ

′) dδ′. In such a way we use:

Φδ(δ
′) =

Θ(1 + ρ(κ, zq, zc)− δ
′)

1 + ρ(κ, zq, zc)
, (4)

where Θ(x) is the Heaviside function.
Distribution of κ is determined by distributions of lc and lq. Hereafter we assume that

lq = 0.1 pc and consider only dependence of the distribution on lc, which is assumed [7] to be
lc ∼ 0.1÷ 10 pc. The probability density function Φκ for κ-distribution P (κ′ < κ < κ′ + dκ′) =
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Φκ(κ
′) dκ′ may be represented as Φκ(κ

′) = ψ(κ′)Θ(κ′−κmin)Θ(κmax−κ
′), where ψ(κ′) describes

a distribution function over cloud sizes lc; below we consider the function ψ(κ) as a power-law

distribution in a general form: ψ(κ) = (1− β)κ−β (κ1−β
max − κ

1−β
min)

−1, uniform distribution over κ
corresponding to β = 0.

We assume that the parameter δ is fixed and calculate the reciprocal function κ(f, δ, zq, zc).
Actually, the reciprocal function κ(f, δ) at certain zq and zc can be represented analytically in
five regions completely covering the whole domain of permissible values f and δ. Our calculations
show that κ(f, δ) in all cases is a decreasing function of f , i.e. κ < κ0 = κ(f0) when f > f0, and
f = 1 at κ = 0. On the contrary, the greater δ, the greater f ≤ 1 can be obtained. Summing
up all points discussed above one can write

P (f > f0) =

∫

∞

0

∫ κ(f0,δ,zq ,zc)

0
Φκ(κ

′) Φδ(δ
′)dκ′dδ′. (5)

Resulting dependencies P (f > f0) are given in Figs. 4, 5, where P (f > 0) = 1−P(f = 0) 6= 1,
and P(f = 0) is a probability of full coverage.
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Figure 4. P (f > f0) for uniform

distribution of cloud sizes at zq = 2.57,

zc = 2.33. Coloured curves correspond to

different κmax.
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Figure 5. P (f > f0) for power-low

distribution of cloud sizes at zq = 2.57,
zc = 2.33. Coloured curves correspond to

different β.

4. Results and conclusions

In the present paper we investigate the probability of the partial coverage of a QSO BLR by
an intervening H2-cloud. Partial coverage is estimated by noncoverage factor, i.e. the ratio
of a solid angle comprising the whole BLR emission to a solid angle of an uncovered part. A
distribution of noncoverage factor was calculated for fixed redshifts of the QSO and cloud in the
cases of uniform and power-law distributions of cloud sizes.

Using the obtained value, P (f > f0), one can estimate the probability to reveal the incomplete
coverage at a chosen level f ≥ 0.02 which might affect the absorption lines analysis and obtained
physical conditions (see [2]). It is shown that in the most unfavourable case of uniform κ-
distribution and sufficiently large κmax = 100 the probability to reveal the lowest noncoverage

factor is P (f > 0.02) ≥ 0.08. In more realistic cases the probability can reach values exceeding
0.3. It means that at the analysis of QSO spectra one should expect the possibility of the
incomplete coverage phenomenon.
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Two molecular clouds with actually estimated linear sizes has lc ∼ 0.1 ÷ 0.2 pc. It means
that appropriate κ ∼ 1 ÷ 2 at lq ∼ 0.1. It is not likely that all ∼ 20 registered molecular
H2-clouds at high redshifts correspond to a small sizes. So, it is very important to accumulate
some additional information on the distribution of the clouds, as well as the QSO BLRs, over
their sizes. In the case of the power-law distribution it would increase minimal P (f > 0.02)
estimation. It is good reason to investigate QSO absorption-line spectra with systematic search
for the partial coverage. Being revealed the partial coverage phenomenon may lead to essential
revision of interstellar medium parameters at high redshift z ∼ 2− 4.
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