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Abstract. In the recent work by Gusakov, Kantor & Ofengeim [Phys. Rev. D 96, 103012
(2017)] a new method to calculate the quasistationary evolution of magnetic field in the core of
a neutron star was proposed. Here we further develop it, focusing on a simple case of neutron-
proton-electron (npe) core composition with purely poloidal magnetic field B. We find that the
meridional flow of the npe-fluid can be unexpectedly large. We estimate the typical timescale
τ of the field evolution due to dragging of the magnetic field lines by this flow and show that τ
can be as small as ∼ (100− 1000) yr for magnetars with B ∼ 1016 G.

1. Introduction
One of the most intriguing problems of neutron star (NS) physics is understanding of interrelation
between various classes of neutron stars with often very different surface magnetic fields. What
are the factors that make their fields so distinct? A lot of effort has been devoted to answer this
question. Clearly, the magnetic field at the surface should be related in some way to the magnetic
field in the internal layers of NSs. Up until now the main body of research has been concentrated
on the magnetic field evolution in the crust (e.g., [1]). The evolution in the core has received less
attention partly because such an analysis is substantially more complicated, while the physics
involved is not well understood, and partly because it is often believed (but see, e.g., [2]) that the
typical timescales of the magnetic field evolution in the core are much larger than those in the
crust (see, e.g., recent papers [2], [3], and [4] for different approaches to the problem). This work
continues our studies of the magnetic field evolution in the NS core. Recently we formulated a
self-consistent approach to this problem [5]. In the present work we further develop it and apply
the ideas from [5] to the simplified case of normal (nonsuperfluid and nonsuperconducting) NS
core, composed of only three particle species (neutrons n, protons p, and electrons e). The
magnetic field in the core is taken to be axisymmetric and purely poloidal. Note that purely
poloidal configuration of the magnetic field in the whole star is known to be unstable (e.g. [6]; [4]
and refs. therein). Stable models seem to have mixed poloidal-toroidal structure (in principle,
the toroidal component can be localized in the stellar crust). The formalism presented below
can be applied to magnetic fields with toroidal component in the core, but such an analysis is
beyond the scope of this short paper.

2. Evolution equations
Let na(r) and μa(r) be the unperturbed (i.e., in the absence of the magnetic field) number
densities and chemical potentials of particle species a = n, p, e, respectively. Since we assume

http://creativecommons.org/licenses/by/3.0
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that an unperturbed star is non-rotating, na(r), μa(r) and other unperturbed quantities depend
on the radial coordinate only (hereafter we use the spherical coordinates r, θ, ϕ with the origin
at the stellar centre). These dependencies follow from the solution to the Tolman-Oppenheimer-
Volkoff equations. For a degenerate matter of NS core we have

∑
a μana = ε+P , where ε = ρc2

and P are the energy density and pressure, respectively.
An applied magnetic field drives the system out of diffusive and beta-equilibrium, which

disturbs chemical potentials, δμa ∼ (B2/P )μa, and induces motions of each particle species a
with the velocities uuua. For realistic internal fields, B � 1016 G [7], we have δμa � μa. It is
convenient to define a total flow velocity, UUU =

∑
a Xauuua, where Xa = μana/(ε + P ), and the

diffusion velocities wwwa = uuua −UUU . For an npe NS core Xn = nn/nb, where nb = nn + np is the

total baryon number density, Xe = �c(3π2ne)
1/3ne/(ε+P ), and Xp = 1−Xn−Xe. For future

convenience we also express the electric field EEE in the form: EEE = EEEcom −UUU ×BBB/c, where EEEcom

is the electric field in the frame comoving with the fluid (UUU = 0).
To simplify analysis of the magnetic field evolution in the NS core, we, following the papers

[4, 5, 8], neglect the effects of General relativity, although the equation of state is assumed to be
relativistic. We also assume that NS interiors are thermally relaxed (the evolution is sufficiently

slow) so that the (redshifted) core temperature is uniform, T̃ = T
√
g00, where g00 is the time

component of the metric tensor, and T is the local temperature. Then, in the quasistationary
approximation, the evolution equations can be written as [5]

eana

(
EEEcom +

wwwa

c
×BBB

)
= na∇∇∇δμa +

∑
b

Jab (wwwa −wwwb) , (1a)

div nn (UUU +wwwn) = − div np (UUU +wwwp) = − div ne (UUU +wwwe) = λΔμ, (1b)

ene (wwwp −wwwe) =
c

4π
rotBBB, (1c)

∂BBB

∂t
= −c rotEEEcom + rot(UUU ×BBB). (1d)

Here Jab(wwwa − wwwb) is the friction force between the species a and b, and λΔμ (with Δμ ≡
δμp + δμe− δμn) is the rate of non-equilibrium Urca processes, which is valid under assumption
Δμ � kT (k is the Boltzmann constant)1. The coefficients Jab and λ are taken from [9]
and [10, 11], respectively. Generally, they depend on na and T and, therefore, on the radial
coordinate r. Since Jnp, Jep � Jne, the latter quantity is neglected below. For simplicity we
neglect perturbations of gravitational force in equation (1a) (Cowling approximation). However,
it could be easily accounted for if necessary [5]. Below we shall demonstrate how to find UUU
and EEEcom from equations (1a) — (1c) for a given BBB. Knowledge of these quantities opens a
possibility to self-consistently study the evolution of the magnetic field with time using the
Faraday equation (1d).

The calculation of UUU and EEEcom proceeds in 5 steps. The first step consists in obtaining Δμ
and δμn from equation (1a), summed over the index a,

nb∇∇∇δμn + ne∇∇∇Δμ =
1

4π
rotBBB ×BBB = fffL, (2)

where fffL is the Lorentz force density acting on the fluid. In an axisymmetric and poloidal
magnetic field we are interested in here one has fLϕ = 0 and the solution to (2) can be written
as [5] (

P̂lΔμ

P̂lδμn

)
=

(
ne nb

n′e n′b

)−1( rP̂l

∫ θ
0 fLθdθ

∂r

(
rP̂l

∫ θ
0 fLθdθ

)
− P̂lfLr

)
, l � 1, (3)

1 As shown in [5], the case Δμ � kT can be realized only for superstrong magnetic fields > 1016 G, which are
not considered here.
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where the operator P̂l(·) extracts the l’th Legendre component of the function (·), i.e. P̂l(·) =
(2l + 1)/2

∫ π
0 (·)Pl(cos θ) sin θdθ, where Pl is the l’th Legendre polynomial. Note that the

components with l � 1 are independent of the neutron star temperature T̃ . Note also that
the components P̂0Δμ and P̂0δμn are still left undetermined.

The second step consists in expressing wwwa and EEEcom from equations (1a) for neutrons and
electrons, equation (1c), and the condition

∑
a Xawwwa = 0, following from the definitions of wwwa

and UUU . For the diffusion velocities the result is

wwwn = − (1−Xn)
nn

Jnp
∇∇∇δμn +

c

4πene
Xe rotBBB, (4a)

wwwp = Xn
nn

Jnp
∇∇∇δμn +

c

4πene
Xe rotBBB, (4b)

wwwe = Xn
nn

Jnp
∇∇∇δμn − c

4πene
(1−Xe) rotBBB, (4c)

while for the electric field

EEEcom = −∇∇∇δμe

e
+

cJep
4πe2n2

e

rotBBB − Xnnn

cJnp
∇∇∇δμn ×BBB +

1−Xe

4πene
rotBBB ×BBB, (5)

where δμe is a function of δμn and Δμ, and is specified by choosing equation of state.
In the third step we derive the poloidal components of UUU from the continuity equations (1b)

for, e.g., neutrons and protons. For poloidal BBB the terms with rotBBB in equations (4) have
azimuthal components only and due to axisymmetry of the system they do not contribute in
(1b). This leads to the relation divUUU = −(n′b/nb)Ur, where the prime ′ means d/dr. Then,
employing the method from Sec. III C 1 of [5], we find

Ur =
nb

n′bne − n′enb

[
div

(
Xn

nenn

Jnp
∇∇∇δμn

)
+ λΔμ

]
, (6a)

Uθ = − 1

rnb sin θ

∂

∂r

(
r2nb

∫ θ

0
Ur(r, θ

′) sin θ′dθ′
)
+

ξ(r)

sin θ
, (6b)

where ξ(r) is an arbitrary function.
The fourth step consists in accounting for the fact that Uθ(θ = 0) = 0 and Uθ(θ = π) = 0 for

any r. The first condition is satisfied with ξ = 0; the second one is equivalent to P̂0Ur = 0, or

1

r2
d

dr

(
r2Xn

nenn

Jnp

d

dr
P̂0δμn

)
+ λP̂0Δμ = 0. (7)

Using this equation together with the 0-th Legendre component of equation (2),

nb(P̂0δμn)
′ + ne(P̂0Δμ)′ = P̂0fLr, (8)

one can calculate P̂0δμn and P̂0Δμ, and hence fully determine the quantities δμn and Δμ (see
step 1). However, in order to solve equations (7) and (8) one has to specify three boundary
conditions.

One of these conditions, following from the requirement of finiteness of the first term in (7),

is (P̂0δμn)
′∣∣
r=0

= 0. This condition is equivalent to (P̂0Δμ)′
∣∣
r=0

= 0, since P̂0fLr
∣∣
r=0

= 0 due

to the symmetry of the system. The other two conditions should be the values of P̂0Δμ and
P̂0δμn at some point in the star. Possible options for these conditions are discussed in the end
of Appendix D in [5].
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However, in the two limiting (yet important) cases equations (7) and (8) can be easily
solved. The first is the case of low temperatures, when the second term in (7) can be

neglected. Then P̂0δμn ≈ C1 and P̂0Δμ ≈ C2 +
∫ r
0 P̂0fLr/nedr, where C1 and C2 are some

constants. The opposite case [large temperatures; the first term in (7) can be neglected] results

in P̂0Δμ ≈ C1 +
∫ r
0 P̂0fLr/nbdr and P̂0Δμ ≈ 0. As shown in [5], at intermediate temperatures,

when both terms in equation (7) are equally important, dissipation of magnetic field due to
ambipolar diffusion (driven by np friction) and due to non-equilibrium Urca processes are close
to one another. According to figures 1 and 2 of [5] this occurs at the redshifted temperature

T̃ ∼ (0.4− 0.9)× 108 K, if the direct Urca process is allowed and at T̃ ∼ (5− 10)× 108 K if it
is forbidden, and substituted by the next most powerful beta-process – the modified Urca one.
Since λ and Jnp rapidly vary with T̃ , the range of temperatures, where both limiting solutions
are inaccurate, is thin. For instance, when the direct Urca is forbidden, the low-temperature
limit is already valid at T̃ � 3× 108 K. Similarly, the high-temperature limiting solution can be

safely used at T̃ � 2× 109 K.
The fifth step consists in solving the problem of Uϕ that is easy for poloidal magnetic field.

Below, let us distinguish the poloidal and toroidal parts of vectors with the superscripts (p) and

(t), respectively. Then UUU (t) = Uϕeeeϕ, and we already know UUU (p), EEE
(p)
com, and EEE

(t)
com from the steps

2 — 4. In case of BBB(t) = 0 equation (1d) splits into two equations,

∂BBB(p)

∂t
= rot

(
UUU (p) ×BBB(p) − cEEE(t)

com

)
,

∂BBB(t)

∂t
= rot

(
UUU (t) ×BBB(p) − cEEE(p)

com

)
. (9)

From the second of these equations we see that if, initially, BBB(t) = 0, it will remain so if

UUU (t) = −c(EEE(p)
com +∇∇∇χ)×BBB(p)/(BBB(p))2, where χ(r, θ) is an arbitrary scalar function. Note that,

as follows from (9), the evolution of the magnetic field BBB = BBB(p) in this case is independent of
the toroidal velocity of the flow. Thus, applying steps 1 — 5 to a given poloidal field BBB(r, θ),
we can find ∂tBBB and hence follow the evolution of the magnetic field with time.

However, numerical calculations (e.g., [6]; see also [4] and references therein) indicate that
pure poloidal field is unstable. In the more general case of mixed poloidal-toroidal axisymmetric
configuration of the magnetic field, we can derive an equation for Uφ from the condition ∂tfLϕ = 0
[5]. Solving it, we can completely determine UUU , so that ∂tBBB could again be found from (1d).

3. Numerical example
To illustrate the results of the previous section, we consider a neutron star with the HHJ equation
of state [12] and mass M = 1.4 M�, that gives the circumferential radius R = 12.2 km. All
the non-perturbed quantities like na(r), ε(r), etc. are obtained from the solution of the Tolman-
Oppenheimer-Volkoff equations. The direct Urca process is forbidden in the whole NS volume.

We use a simple analytic model for the poloidal field BBB taken from [4] (their model A):

BBB =
∇∇∇Ψ× eeeϕ
r sin θ

, Ψ = BmaxR
2

(
r2

2R2
− 3r4

5R4
+

3r6

14R6

)
sin2 θ. (10)

Here Ψ is a magnetic flux function, Bmax is the maximum value of the magnetic field, which is
achieved in the NS centre. It is proportional to the magnetic field at the pole, Bp = (8/35)Bmax.
It is the simplest model of a dipole poloidal field which is matched with a vacuum dipole magnetic
field outside the star. Its configuration, as well as the direction of the Lorentz force density are
shown in figure 1a.

Figures 1b,c present Δμ and δμn in units of kT̃ , derived from equation (3) adopting the
low-temperature approximation to the solution of equations (7) and (8). This is a good

approximation for a chosen T̃ = 2 × 108 K. To plot the figures, we assume Bp = 1014 G



5

1234567890 ‘’“”

International Conference PhysicA.SPb/2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1038 (2018) 012009  doi :10.1088/1742-6596/1038/1/012009

r sin θ/R

r
c
o
s
θ/
R

B

Bmax
(a)

r sin θ/R

103
Δμ

kT̃(b)

Bp14 = 1
T̃8 = 2

r sin θ/R

103
δμn

kT̃(c)

Bp14 = 1
T̃8 = 2

r sin θ/R

logU (p)

[cm/s](d)

Bp14 = 1
T̃8 = 2

Figure 1. Properties of the NS model considered in the text. All figures show a meridional cross-
section of the NS core; on each plane the left vertical axis is the symmetry axis. (a) The magnetic field
model (equation 10). Different colors denote strength of the magnetic field in units of Bmax. Thin white

lines are the field lines, arrows show direction of fffL. (b) and (c) The ratios Δμ/kT̃ and δμn/kT̃ for

T̃ = 2×108 K and Bp = 1014 G calculated in the low-temperature approximation (it is assumed that the
direct Urca process is forbidden). (d) Poloidal velocity of the flow UUU (p) for the same conditions. Arrows
show direction of UUU (p), its magnitude is shown by colors in log10 scale.

(corresponding to Bmax ≈ 4.4 × 1014 G), which is a typical magnetar field [13]. Inspection of
the figures reveals that, typically, Δμ ∼ (nb/ne)δμn.

The ratio Δμ/kT was also calculated in [4] for a very similar NS model. The results of [4] are
presented in the left panel of their figure 2 and differ substantially from those shown in figure
1b. The reason for the discrepancy is some approximations made in [4], which, as we argue in
Appendix B of [5], are incorrect.

Figure 1d is the most interesting and it displays the poloidal flow velocity UUU (p) derived from
equations (6). The same friction coefficient Jnp as in [4] and [5] is employed. While one could
expect such a geometry of the flow for a dipole field BBB with the equatorial symmetry (e.g.,
a similar configuration was proposed in [14]), the typical velocities appear to be surprisingly
large, and they grow rapidly near the crust-core interface. The reason for this behavior is
easy to understand. According to (6), Ur and Uθ contain a number of terms depending on the

derivatives n′a(r), n′′a(r), n′′′a (r), and n′′′′a (r). Near the crust-core interface, one has |n(k+1)
a (r)| �

(10 − 15)|n(k)
a (r)/R| for k = 0...3, where a superscript (k) denotes k’th derivative with respect

to r. As a result, for a chosen fiducial values of Bp and T̃ one has U (p) � (10− 100)wa, because
the diffusion velocities depend on the first and second derivatives n′a(r) and n′′a(r) only. An

actual numerical value of the ratio U (p)/wa depends on Bp and T̃ , but for Bp � 1013 G the

flow velocity U (p) is always much larger than wa. The second interesting observation following
from the discussion above is that U (p) is not only very large near the crust-core interface but
this property is, to a large extent, independent of an equation of state employed (derivatives of
na(r) grow in the vicinity of the crust for any equation of state), as well as on the configuration
of the magnetic field (at least, for sufficiently large BBB). Implication of these results is discussed
in the next section.

4. Discussion and conclusions
The self-consistent method of calculation of ∂tBBB for a given BBB in the quasistationarity
approximation, was formulated in [5]. In this work it is further developed and applied to study
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non-equilibrium processes induced in npe NS core by applied poloidal magnetic field. One of
our main results is the analytic expression (6) for the meridional flow velocity UUU (p). It is driven
by frictional entrainment of neutrons by protons that interact with the magnetic field. The net
flow of npe-fluid appears to be substantially larger than the diffusion flows of individual particle
species. This result is of conceptual importance since it contradicts a standard point of view
that the matter of neutron star cores, which is mainly composed of neutral particles, is (roughly)
at rest in magnetized neutron stars (e.g., [4, 8]).

Comparing the terms −c rotEEEcom and rot [UUU×BBB] in the Faraday equation (1d), and using the
expression (5) for EEEcom, one can demonstrate that c |rotEEEcom| � |rot [UUU ×BBB]| for B � 1013 G,
provided that wa � U . This means that a sufficiently strong magnetic field is frozen in the
npe-fluid to a good approximation.

Let us consider several scaling relations for the quantities derived above. From equation
(2) we obtain Δμ, δμn ∝ B2, where B is some typical value of the magnetic field in the core

(e.g., Bmax). The n-p friction coefficient Jnp ∝ T̃ 2 and λ ∝ T̃ 6 for modified Urca process (see

[5], section VI). Then we have U ∝ B2/T̃ 2 in the low-temperature limit and U ∝ B2T̃ 6 in
the high-temperature limit. Defining now the characteristic timescale of the field evolution as
τ ∼ B/∂tB ∼ R/U and taking into account that the velocity U near the crust-core interface

can be as large as ∼ 10−7 cm/s for B ∼ Bmax ≈ 4.4 × 1014 G and T̃ ∼ 2 × 108 K, we get the
following estimate, valid in the low-temperature case

τ � (1− 10)Myr

(
T̃8

B14

)2

, (11)

where B14 = B/(1014G) and T̃8 = T̃ /(108K). Note that this is a timescale of nondissipative
transformation of the magnetic field, in contrast to the timescale τB, defined in [5], which is purely
dissipative. As one can see from this estimate, the typical evolution timescale for magnetars
with the highest interior field B ∼ 1016 G [7] is of the order of ∼ 100− 1000 yr.

In the end let us mention that the approach to quasistationary evolution of the magnetic
field developed here, can be extended in a number of ways. In particular, it can be generalized
to include various additional particle species (e.g., muons and hyperons), baryon pairing, and
non-axisymmetric magnetic field [5].
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