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ABSTRACT
We have derived analytic expressions that describe cooling of isolated neutron stars with
nucleon cores after reaching the state of internal thermal relaxation. The results are valid for a
wide class of equations of state of nucleonic matter and, in this sense, are universal. Moreover,
they accurately reproduce the evolution of neutron stars at the neutrino and photon cooling
stages as well as during transition from one stage to the other. These results greatly simplify
theoretical analysis of internal structure of cooling neutron stars. For illustration, we analyse
the thermal state of the bright nearby neutron star RX J1856.5−3754 and present arguments
that this star has already left the neutrino cooling stage and contains superfluidity of neutrons
and protons inside. We discuss possible efficiency of its neutrino cooling and heat capacity of
its core.
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1 IN T RO D U C T I O N

Cooling neutron stars have been studied for a long time. Nowa-
days one knows a few dozens of such stars whose thermal X-ray
emissions have been detected and whose ages have been measured
or constrained. These observations can be compared with differ-
ent theoretical scenarios of neutron star cooling for individual stars
and for the entire set of objects (e.g. Yakovlev & Pethick 2004;
Shternin et al. 2011; Yakovlev et al. 2011; Ofengeim et al. 2015;
Page et al. 2015).

It is well known that neutron stars cool via neutrino emission
from their body (mainly from the core) and via electromagnetic
emission from their surface. For certainty, we restrict ourselves
to neutron stars that have nucleon cores neglecting the effects of
magnetic fields and possible internal reheating mechanisms. A few
decades after its birth, a star becomes isothermal (thermally relaxed)
inside, with a strong temperature drop in a thin heat blanketing
envelope near the neutron star surface (Gudmundsson, Pethick &
Epstein 1983; Potekhin, Chabrier & Yakovlev 1997). With account
for general relativity, its redshifted temperature T̃ in the isothermal
region is spacially constant,

T̃ = T
√

g00 = const, (1)

where T is the local temperature and g00 is the metric tensor com-
ponent. We will study the temperature evolution T̃ (t) (t being the
star’s age) at the cooling stage at which the star is thermally relaxed
inside. For about 100 kyr, the star cools mainly via neutrino emis-
sion (being at the so-called neutrino cooling stage), and then transits
to the photon cooling stage where the cooling is governed by the
photon thermal emission. In order to calculate T̃ (t), one needs to
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know the total heat capacity C as well as the total neutrino L∞
ν and

photon L∞
γ luminosities of the star (the superscript ‘∞’ marks the

quantities measured by a distant observer). To find C and L∞
ν , one

should have a model equation of state (EOS) of stellar matter and
models for superfluidities of neutrons and protons. To derive L∞

γ ,
one requires a model for a heat blanketing envelope. It relates the
effective surface temperature Ts of the star and the temperature Tb

at the bottom of the heat blanketing envelope. Then L∞
γ is given by

L∞
γ = 4πσR2T 4

s (1 − xg), (2)

where σ is the Stefan–Boltzmann constant, xg = 2GM/(Rc2),
M is the gravitational mass and R the circumferential star’s ra-
dius. The surface temperature redshifted for a distant observer is
T ∞

s = Ts
√

1 − xg .

The internal redshifted temperature T̃ is

T̃ = Tb

√
1 − xg . (3)

The cooling theory derives the so-called cooling curves (either
T ∞

s (t) or L∞
γ (t)) to be compared with the observations. One has

obtained simple analytic T ∞
s (t) relations at the neutrino and photon

cooling stages (e.g. Yakovlev & Pethick 2004; Page et al. 2015 and
references therein). They allow one to analyse cooling neutron stars
that are either at the neutrino or at the photon cooling stage but not
at the transition from one stage to the other.

Here, we obtain an approximate analytic T ∞
s (t) solution that is

valid for the neutrino and photon cooling stages and at the transi-
tional stage as well. Our analysis is based on the analytic approxi-
mations of L∞

ν and C by Ofengeim et al. (2016), which are nearly
universal (valid for different EOSs) and take into account super-
fluid states of nucleon cores. We will also use the Ts–Tb relations
obtained by Potekhin et al. (1997, 2003) and Beznogov, Potekhin &
Yakovlev (2016). Our formalism gives a neutron star temperature
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for any age t (after the end of internal thermal relaxation), mass M
and radius R.

In order to illustrate possible applications of the new formula,
we use it to analyse the internal state of the neutron star RX
J1856.5−3754 (Section 4). We will conclude in Section 5, where, in
particular, we formulate the applicability conditions of our results
and possible extensions of the work.

2 A NA LY T I C SO L U T I O N O F IS OT H E R M A L
C O O L I N G EQUATI O N S

The equation of neutron star cooling after the initial internal thermal
relaxation reads

C
dT̃

dt
= −L∞

ν − L∞
γ . (4)

The neutrino luminosity L∞
ν is mainly determined by neutrinos

emitted from the stellar core. For most important neutrino emission
mechanisms in the core one often has L∞

ν ∝ T̃ n, where n = 6 or 8
(see, e.g. Yakovlev et al. 2001 for details). Since the heat capacity
of the star is also mainly provided by the core and C ∝ T̃ , we can
set

L∞
ν

C
= ζqT̃ n−1

9 , (5)

where ζ = (109 K)/(1 yr) ≈ 31.69 K s−1 and T̃9 = T̃ /(109 K). The
dimensionless neutrino cooling factor q depends only on the mass
of the star and on the EOS model.

One can obtain a similar expression for L∞
γ /C but under addi-

tional simplifications. It is well known (e.g. Page et al. 2015) that a
Ts–Tb relation can often be approximated by a simple power law,

T 4
s6 = ag14T

α
b9, (6)

where g14 is a surface gravity expressed in 1014 cm s−2,
Ts6 = Ts/(106 K) and Tb9 = Tb/(109 K). The scaling relation T 4

s ∝ g

is well justified (Gudmundsson et al. 1983); a and α can be ex-
tracted, e.g. from accurate Ts–Tb fits by Potekhin et al. (1997, 2003)
and Beznogov et al. (2016). Here, we consider Ts–Tb relations that
are similar to the model by Gudmundsson et al. (1983), for which
α ≈ 2. Combining equations (2) and (3), we get

L∞
γ

C
= ζ sT̃ α−1

9 , (7)

where s is approximately constant; it can be called a dimensionless
photon cooling factor. Equation (7) can be used to calculate s.

Now the cooling equation (4) can be rewritten as

dT̃9

dtyr
= −qT̃ n−1

9 − sT̃ α−1
9 , (8)

where tyr = t/(1 yr). Its formal solution is

tyr − t0yr =
∫ T̃0 9

T̃9

dT̃ ′
9

qT̃ ′
9
n−1 + sT̃ ′

9
α−1

. (9)

It is assumed here that the redshifted temperature is equal to T̃0

at some initial moment of time t0. One can express tyr through a
dimensionless integral

tyr − t0yr =
1

q(n − 2)

( q

s

)k
∫ x

x0

dy

y1/k + 1
, x =

(
s

q

)k

T̃ 2−n
9 ,

(10)

where k = (n − 2)/(n − α) and x0 = x
∣∣∣T̃0 9

.

At the next step let us focus on the important case of t � t0

and T̃ n−2
0 � T̃ n−2. Then the initial condition becomes forgotten

(see, e.g. Yakovlev et al. 2011; Shternin & Yakovlev 2015). In this
case, introducing

Iβ (x) =
∫ x

0

dy

yβ + 1
, (11)

from equation (10) we get

tyr

(
T̃9

)
= 1

(n − 2)q

( q

s

)k

I1/k

(
(s/q)k

T̃ n−2
9

)
. (12)

At first, let us discuss the case of α = 2. It leads to β = 1 in
equation (11), I1(x) = ln (1 + x) and to the cooling curve

T̃9(tyr) =
[

s/q

exp
{

(n − 2)styr

} − 1

]1/(n−2)

. (13)

At the neutrino cooling stage, styr 	 1, one gets the well known
expression T̃9 = [(n − 2)qtyr]1/(n−2) (e.g. Yakovlev et al. 2011). At
the photon cooling stage, styr � 1, equation (13) reduces to the ex-
pression T̃9 = (s/q)1/(n−2) exp(−styr) given, for instance, by Page
et al. (2015). However, the latter authors have not presented a cool-
ing equation valid at the transition between the neutrino and photon
cooling stages.

For many realistic models of heat blanketing envelopes, we have
|α − 2| � 0.2. Even in the case of fast direct Urca cooling, n = 6
(Yakovlev & Pethick 2004), such values of α give |β − 1| � 0.05.
Accordingly, we can use the approximation

Iβ (x) ≈ (x + 1)1−β − 1

1 − β
. (14)

For the indicated values of β, its accuracy is good, and the relative
error does not exceed 3 per cent (as can be checked by direct
calculation). One can combine equations (14) with (12) and get

T̃9(tyr) =
[

(s/q)k(
(α − 2)skqγ tyr + 1

)−k/γ − 1

]1/(n−2)

, (15)

where γ = (2 − α)/(n − α). This formula allows one to determine
the redshifted temperature of the star at both the neutrino and photon
cooling stages. One just needs to know the cooling factors q and s
(Section 3). Note that equation (15) is easily inverted to obtain tyr

as a function of T̃9.
Let us outline some properties of the new formula. First, it repro-

duces the simple relation (13) in the limit α → 2. Then, for small t
(neutrino cooling) it gives true T̃ (t) for any α. In the opposite case
of large t (photon cooling) equation (15) reads

T̃9(tyr) ≈
(

s

q

)1/(n−α) [
(α − 2)skqγ tyr + 1

]1/(2−α)
. (16)

In the limit α → 2, it gives the same expression as the photon
cooling limit of equation (13). Note that at α < 2 equations (15)
and (16) give a non-physical result, according to which T̃ drops
to zero at a finite t. However, it is not a fatal disadvantage of our
approach, as the Ts–Tb relation (6) with α ∼ 2 works only in the
temperature range of Tb � 3 × 106 K (Potekhin et al. 2003). At
the later cooling stage, the Ts–Tb relation has to be modified but
a star becomes so cold that it is not observable even with the best
currently available detectors. Therefore, equation (15) is valid for
exploring observable cooling neutron stars.
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Figure 1. Cooling curves for three neutron star models with iron heat blanketing envelopes. Circles and squares are numerical solutions of equation (4)
with modified Urca process (no proton superfluidity) and neutron–neutron collisions (fully superfluid protons) as the leading neutrino cooling mechanisms,
respectively. Solid and dashed lines are the analytic approximations (15) for the same models. Lower panels display absolute values of relative errors of the
analytic approximations. See text for details.

3 MATC H I N G W I T H N U M E R I C A L C O O L I N G
SIMULATIONS

To test our approximate analytic solution (15), we have solved the
cooling equation (4) numerically for three selected neutron star
models with different masses and EOSs. For all of them, we have
used the iron heat blanketing envelopes with the Ts–Tb relation
derived by Potekhin et al. (1997). The results are plotted in Fig. 1.
The left-hand panel is for a 1 M� neutron star with the NL3ωρ EOS
(Fortin et al. 2016); this is an example of a relativistic mean field
EOS. The second panel corresponds to a 1.5 M� star with the BSk21
EOS (e.g. Potekhin et al. 2013). Finally, the right-hand side panel is
for a 2.0 M� star with the SLy4 EOS (Douchin & Haensel 2001).
The latter two EOSs belong to the family of modified Skyrme EOSs.
The selected neutron star models each have a different compactness
and average density that are the main regulators of L∞

ν and C. The
NL3ωρ 1 M� star is less compact and cools most slowly at the
neutrino cooling stage, while the SLy4 2 M� star is rather compact
and cools faster.

In all the three neutron star models in Fig. 1, the most powerful
direct Urca process of neutrino cooling (Lattimer et al. 1991) is
forbidden. For each star, we consider two leading neutrino cooling
mechanisms. In the first case, we neglect possible superfluidity of
nucleons in neutron stars; then the leading neutrino emission is
provided by the modified Urca process. In the second case, we
assume strong proton superfluidity throughout the stellar core that
suppresses all neutrino mechanisms involving protons as well as
the proton heat capacity. Then the leading neutrino emission is
produced by a weaker neutrino-pair bremsstrahlung due to neutron–
neutron collisions; a star cools slower than in the non-superfluid
case. Exact solutions of equation (4) for non-superfluid stars are
shown by open circles, while the exact solutions for stars with strong
proton superfluidity are shown by open squares. Corresponding
approximate analytic cooling solutions (15) are displayed by solid
and dashed lines, respectively.

To construct these approximate solutions T ∞
s (t), one needs to

find a and α in equation (6) for the chosen heat blanketing envelope,
and to calculate q and s in equations (5) and (7). We have verified

that the Ts–Tb fits derived by Potekhin et al. (1997) for the iron
heat blanketing envelope can be approximated by equation (6) with
a = 73 and α = 2.2. In the range of Tb = 107 − 109 K, this
approximation has the relative root mean square error ∼3 per cent,
with the maximal error ∼7 per cent at the lowest Tb. We note that we
do not recommend calculating T ∞

s (t) by combining (6) and (15);
one should better use the Ts–Tb relations by Potekhin et al. (1997)
or Beznogov et al. (2016) to avoid extra inaccuracies. To get q and s,
we have used the approximations of Ofengeim et al. (2016) for L∞

ν

and C. These approximations and equation (2) allow one to treat q
and s as independent functions of M and R. Such an approach makes
our approximate cooling curves valid for a wide class of nucleonic
EOSs in neutron star cores (see Ofengeim et al. 2016 for details). In
particular, we have checked that these approximations are valid for
the APR EOS (Akmal, Pandharipande & Ravenhall 1998), which
has not been used for deriving the approximations.

The agreement between the exact and approximate cooling curves
in Fig. 1 is impressive. This is additionally confirmed by the curves
at the bottom panels of Fig. 1, which display absolute values of rel-
ative deviations δ between exact and approximate solutions T ∞

s (t).
For 1 and 1.5 M� neutron stars, our approximation reproduces
the neutrino cooling stage almost exactly and has δ � 7 per cent
during the photon cooling stage. The reason for the growing inac-
curacy in an older star is the lack of a simple and accurate Ts–Tb

relation (6) at low temperatures. For massive stars (the right-hand
panel of Fig. 1), we have the opposite situation; the L∞

ν (T̃ ) ap-
proximations by Ofengeim et al. (2016) have the worst accuracy
for M � 2 M�. However, they lead to relatively small inaccuracies
δ ∼ (2–3) per cent of the cooling curves at both cooling stages.

4 TH E R M A L S TATE O F R X J 1 8 5 6 . 5−3 7 5 4

RX J1856.5−3754 (hereafter RX J1856) was identified as an iso-
lated neutron star by Walter, Wolk & Neuhäuser (1996). It is one
of the brightest thermally emitting nearby neutron stars; it be-
longs to the group of neutron stars called ‘The Magnificent Seven’
(Haberl 2007). Ho et al. (2007) successfully fitted its spectrum by
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Figure 2. Cooling curves compared to the measured temperature and age of
RX J1856 (the diamond with error bars) obtained assuming M = 1.48 M�
and R = 12.1 km (Potekhin 2014) and using equation (15). The curves are
marked by the values of two dimensionless parameters (17). Cooling of
the ‘standard neutrino candle’ (black solid line) makes RX J1856 too warm.
The grey dashed and dash–dotted lines display two cooling models modified
by superfluidity; they are consistent with the observations. The symbols in
brackets mark cooling scenarios (the same as in Fig. 3). See text for details.

a model of a thin magnetic hydrogen atmosphere on top of a con-
densed iron surface with T ∞

s = (4.34 ± 0.03) × 105 K (as detailed
by Potekhin 2014). Walter et al. (2010) refined parallax distance
measurements to RX J1856 (123+11

−15 pc at 1σ level), that allowed
Potekhin (2014) to constrain mass and radius of the neutron star,
M = 1.48+0.16

−0.19 M�, R = 12.1+1.3
−1.6 km. The age of RX J1856 is not

very certain. Here, we adopt the age range, log tyr = 5.5 − 5.7,
given by Viganò et al. (2013). Fig. 2 displays observational cooling
properties of RX J1856 in the T ∞

s −t plane.
Here, we adopt the interpretation of the RX J1856 spectrum

mentioned above (condensed iron surface under a thin hydrogen
atmosphere). Then we can assume a fully iron heat blanketing en-
velope of the star and employ the Ts–Tb relation given by Potekhin
et al. (1997). Therefore, we can use the simple T̃ (t) solution (15) to
analyse the RX J1856 cooling.

Fig. 2 shows three cooling curves obtained from equations (2),
(3) and (15) for M = 1.48 M� and R = 12.1 km (see above).
The solid cooling curve corresponds to a ‘standard neutrino candle’
(Yakovlev et al. 2011), which is a non-superfluid star where the
direct Urca process is forbidden. Its neutrino cooling goes mainly
though the modified Urca process. Solid lines in Fig. 1 are derived
in the same way but for different values of M and R. According to
Fig. 2, RX J1856 cannot be the ‘standard neutrino candle’ (under
the formulated assumptions). However, the data can be explained
by deviations from the standard candle that can be caused by super-
fluidity in the neutron star core.

Recall that for several leading neutrino cooling mechanisms (e.g.
Gusakov et al. 2004; Page et al. 2004), the neutrino luminosity
of a superfluid star has the same temperature dependence as for a

Figure 3. Possible values of the cooling factors (17), f� and fC, for RX
J1856. The double-hatched strip is the restriction from the observational
ranges of T ∞

s and t. The filled circle corresponds to the ‘standard neutrino
candle’ (the solid cooling curve in Fig. 2). The open square and triangle
refer to an enhanced cooling with f� = 70, fC = 0.8 and to a slow cooling
with f� = 0.07, fC = 0.35, respectively (the dashed and dash–dotted cooling
curves in Fig. 2). The single-hatched area is the (f�, fC) domain for RX J1856
with non-superfluid neutrons and party superfluid protons. The dark shaded
regions A–D are forbidden for various reasons explained in the text.

‘standard neutrino candle,’ L∞
ν ∝ T̃ 8. It is instructive to introduce

two dimensionless factors,

f� = L∞
ν /C

L∞
ν SC/CSC

= q

qSC
and fC = C

CSC
= sSC

s
. (17)

Here, L∞
ν SC, CSC, qSC and sSC correspond to the ‘standard neutrino

candle,’ while L∞
ν , C, q and s are actual values that deviate from the

standard candle ones. The factor f� has been introduced before (e.g.
Yakovlev et al. 2011) and has been called the dimensionless neutrino
cooling function. It is the ratio of L∞

ν /C (which regulates neutron
star cooling at the neutrino cooling stage) to the corresponding ratio
for the standard candle. The factor fC is the ratio of the heat capacity
of the given star to the heat capacity of the standard candle (i.e. of the
non-superfluid star with the same M and R). It can be called the heat
capacity function. It has not been introduced before because it has
no direct effect on cooling at the neutrino cooling stage. Since we
consider both (the neutrino and photon) cooling stages, we should
introduce both factors (17) to specify the cooling curves.

Standard neutrino candle cooling corresponds to f� = 1 and fC = 1.
The factor f� governs the neutrino cooling stage (e.g. Weisskopf
et al. 2011; Yakovlev et al. 2011), since the corresponding limit of
equation (15) does not contain s. The photon cooling stage involves
both q and s and is thus regulated by both factors.

Let us outline physical effects that influence neutron star cooling
(see Page et al. 2015, for a comprehensive review). The heat capacity
is affected by neutron and proton superfluidities in a similar way. If a
local T � Tc, where Tc is a local critical temperature for some pairing
type, the specific heat is slightly enhanced but it becomes suppressed
with the further drop of T. As a result, the total heat capacity is either
slightly enhanced (fC can barely exceed 1.1) or suppressed. In Fig. 3,
which displays the f�–fC plane, the right-hand-side dark-grey area A
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roughly corresponds to the fC restrictions described above. Different
models of pairing gaps change upper bounds on fC. That is why we
smooth out the boundary of the forbidden domain.

However, the total heat capacity C cannot be lower than its elec-
tron contribution. As a result, one has fC � 0.06–0.1; accordingly,
we display the fC axis in Fig. 3 for fC > 0.1.

The neutrino cooling factor f� can drastically deviate from f� = 1
due to a strong superfluid suppression or enhancement of L∞

ν . More-
over, neutron and proton pairings affect the neutrino emission in the
opposite ways. Proton 1S0 pairing (if it occurs in a neutron star core)
can exponentially suppress all neutrino emission processes involv-
ing protons. The strongest suppression of the modified Urca (MU)
process, is L∞

ν nn/L
∞
ν MU ∼ 0.01, where L∞

ν nn is the neutrino luminos-
ity owing to neutron–neutron collisions and L∞

ν MU is the luminosity
provided by the MU process (both luminosities were approximated
by Ofengeim et al. 2016). Different EOSs give different strongest
suppressions; this restriction is displayed on Fig. 3 by the lower
dark horizontal strip B with a smooth upper bound.

The single-hatched region qualitatively represents an (f�, fC) do-
main for a star with non-superfluid neutrons. The region starts from
the ‘standard neutrino candle’ point (the black circle, f� = fC = 1)
and spreads down to the lower bound of f� slightly declining from
the vertical direction fC = const, because proton pairing gradually
reduces the proton heat capacity. In contrast, neutron 3(P − F)2 pair-
ing, whose appearance in the stellar core is also expected, enhances
the neutrino luminosity due to Cooper pairing (CP) neutrino emis-
sion, which is especially strong for this pairing type; e.g. Leinson &
Pérez (2006); Page et al. (2009) and references therein. In this way
f� can be as high as ∼100. Different models of neutron superfluidity
lead to different maximal values of f�, and we approximately show
this restriction by the upper dark strip C with smoothed out lower
bound.

The CP neutrino emission switches on sharply when the temper-
ature T falls below the maximum value of Tcn in the stellar core.
When the star cools further, f� stays approximately constant and can
be as high as ∼100 or much lower depending on the stellar mass M
and neutron critical temperature profile Tcn(ρ) in the core (e.g. Page
et al. 2004; Gusakov et al. 2004; Page et al. 2009). Many neutron
superfluidity models, which are thought to be realistic, have char-
acteristic Tcn(ρ) profiles that imply the presence of non-superfluid
neutrons at least somewhere in the core. If fC is less than the mini-
mal value that proton pairing can provide, then one can expect some
neutron pairing in the core, i.e. the neutrino luminosity can be en-
hanced by the CP neutrino emission. Accordingly, for small fC there
should be some minimal f� that grows up when fC decreases. Such
a relation between the minimal f� and fC should depend on pairing
models. In any case, it should prohibit the left-hand bottom corner
in Fig. 3. This corner is displayed as the dark area D; since we do
not know the exact boundary of the prohibited area, the darkening
is smoothed out. In any case, this domain disappears with growing
f� and/or fC.

Strictly speaking, f� and fC can vary with time as the star cools.
However, RX J1856 is sufficiently cold so that f� and fC are ex-
pected to be ‘frozen’, almost independent of time, which justifies
our consideration. In this case, any cooling curve in Fig. 2 is equiv-
alent to some point in the f�–fC plane (Fig. 3). For example, we
have chosen two (f�, fC) points that are consistent with the RX
J1856 observations. One point corresponds to a slow neutrino cool-
ing (f� = 0.07, fC = 0.35, the triangle on Fig 3), while the second
one to the enhanced neutrino cooling (f� = 70, fC = 0.8, the square
on Fig. 3). Corresponding cooling curves are plotted in Fig. 2 by
the dash–dotted and dashed lines. In the first case, the neutrino

cooling is slow but the heat capacity is noticeably lower than for the
standard neutrino candle. Because of lower heat content, RX J1856
leaves the neutrino cooling stage more quickly (than the standard
neutrino candle) and then cools faster via photon surface emission;
in this way the cooling curve hits the observational error box. In the
second case, the star cools faster through the CP neutrino emission
at the neutrino cooling stage, but its heat capacity is almost the
same as for the standard neutrino candle. Then the neutrino cooling
stage is delayed with respect to the first case, but once the photon
surface emission becomes important, the cooling curve also hits the
observational error box.

Which area of the f�–fC plane is appropriate for RX J1856? To
answer this question we have selected a grid of f� and fC values,
with log f� from –2.5 to 2.5 and log fC from –1.0 to 0.2. For each
(f�, fC) point of this grid, we have checked if there exists any t in the
RX J1856 age error box that gives T ∞

s in the observational error
box for RX J1856. The points satisfying this condition constitute
the double-hatched domain in Fig. 3. Any point from this domain
represents a formal solution of the cooling problem (and is formally
consistent with the observations of RX J1856). As expected, both
the open triangle and open square lie within this domain (but in its
opposite corners).

Note that this domain remains nearly the same if we use the
photon cooling limit (16) instead of the full solution (15). This
indicates that RX J1856 has already passed the neutrino cooling
stage.

However, one should distinguish between formal and realistic
solutions. In our case, it is reasonable to consider the solutions in
the dark areas of Fig. 3 as unrealistic (see above). Therefore, the
realistic solutions belong to the non-darkened area of the double-
hatched region, with the centre at log f� ≈ 1 and log fC ≈ −0.3. This
area is still too wide to greatly constrain f� and fC. It contains many
different solutions, but nevertheless restricts f� and fC. Note that the
domain of realistic solutions does not intersect the single-hatched
domain that corresponds to RX J1856 with non-superfluid neutrons.
This means that our realistic cooling solutions favour for RX J1856
models with essentially both proton and neutron superfluidities.

Having the family of realistic values of f� and fC, at the next
step one can try to find realistic physical models for neutron and
proton superfluidities [corresponding profiles of critical tempera-
tures, Tcn(ρ) and Tcp(ρ)] that result in these f� and fC. This is a
difficult problem, which is beyond the scope of the present work.
One can expect that realistic solutions would imply strong proton
superfluidity in an appreciable part of the neutron star core as well
as moderate neutron superfluidity whose Tcn(ρ) profiles resemble
those predicted for the neutron star in the Cas A supernova remnant
(Page et al. 2011; Shternin et al. 2011; Shternin & Yakovlev 2015).

5 C O N C L U S I O N S

We have derived an approximate analytic expression (Sections 2
and 3) for cooling curves T ∞

s (t) of isolated neutron stars after they
reach the state of internal thermal relaxation (a few decades after
their birth). The expression is equally valid at the neutrino and pho-
ton cooling stages as well as at the transition from one stage to the
other at t ∼ 105 yr. It is obtained for a wide class of EOSs of nucleon
matter in neutron star cores (the same EOSs as used in Ofengeim
et al. 2016). The expression depends on the mass and radius of the
star and on superfluid properties of neutron star cores but it is one
and the same for all EOSs. From this point of view, it is universal
and allows one to perform a simple and almost model-independent
theoretical interpretation of thermal states of observed isolated
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neutron stars. We have started to develop such a model-independent
analysis (Yakovlev et al. 2011; Weisskopf et al. 2011; Shternin &
Yakovlev 2015; Klochkov et al. 2015; Ofengeim et al. 2015, 2016);
this paper extends previous considerations to the photon cooling
stage.

To illustrate the efficiency of this method, we have analysed (Sec-
tion 4) possible thermal states of the nearby thermally emitting neu-
tron star RX J1856, taking the observables (M, R, T ∞

s and t) from
the literature (Ho et al. 2007; Walter et al. 2010; Potekhin 2014;
Viganò et al. 2013). We have assumed that the strongest direct Urca
neutrino process does not operate in RX J1856. It is convenient
to specify a thermal state of RX J1856 by the two dimensionless
cooling parameters (17), f� and fC, which determine the neutrino
cooling function and heat capacity of the star in terms of the same
quantities for a standard neutrino candle (e.g. Yakovlev et al. 2011).
These two parameters seem to realize a general description of cool-
ing isolated neutron stars; they can be extracted from observations
using our analytic expressions, and they are good for comparing
internal structures of different cooling neutron stars. In the case of
RX J1856, a possible domain of f� and fC is plotted in Fig. 3 as the
non-darkened part of the double-hatched region. Our analysis indi-
cates that RX J1856 has already passed the neutrino cooling stage
and the stellar core contains both neutron and proton superfluidities.

Let us stress that even if we could accurately pinpoint f� and fC

for some star, this would not mean a complete determination of the
physical state of the stellar interior because one and the same f� and
fC can be realized by a number of physical models. Nevertheless,
one can try to restrict a real physical model at a later stage, taking
into account other observational data.

The presented results should be treated as preliminary, as a sketch
of a model-independent analysis of internal states of cooling neu-
tron stars to be elaborated in the future. The current state of the
affair is not complete. For instance, our analytic approximations
of L∞

ν and C are obtained using simplified expressions for the
neutrino emissivities in different neutrino reactions assuming fixed
effective masses of nucleons in the stellar cores (as described, e.g.
by Ofengeim et al. 2016). So far we have not included the effects
of magnetic fields on the neutron star cooling, and we have not
considered neutron stars that can be additionally heated inside like
magnetars (e.g. Kaminker et al. 2009; Pons & Rea 2012). While
applying our results, we have used the models of heat blanketing
envelopes consisting of pure iron; more complicated composition
of these envelopes needs a more careful analysis of analytic ap-
proximations. Finally, we warn the readers against applying our
formulae to old and cold neutron stars (say, Ts � 105 K) because
the Ts–Tb relations for these stars (whose thermal surface emission
is very difficult to detect) are still far from being perfect because of
many theoretical obstacles like partial ionization and the effects of
non-ideal plasma, as reviewed by Potekhin (2014).
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