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Two different approaches to the calculation of the wave spectra of magnetized strongly coupled liquid one-
component plasmas are analzyed: the semianalytical quasilocalized charge approximation (QLCA) and the
angle-averaged harmonic lattice (AAHL) theory. Both theories are benchmarked against the numerical evidence
obtained from molecular dynamics simulations. It is found that not too far from the melting transition (� � 100),
the AAHL theory is superior to the QLCA, while further away from the transition, the QLCA performs comparably
to or better than the AAHL theory.
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I. INTRODUCTION

Strongly coupled plasmas are an important class of plasmas
that in recent years have been the focus of increasing research.
In these plasmas the interparticle energy exceeds the thermal
energy, which gives rise to a plethora of new physical
effects. Examples of such plasmas in the laboratory are dusty
plasmas [1], ions in traps [2], and ultracold neutral plasmas [3].
Examples from astrophysics include neutron star crusts, white
dwarfs, and the interior of Jovian planets (see, e.g., Ref. [4]).

These plasmas are often subjected to an external magnetic
field that significantly influences the dynamics of the charged
particles as well as their collective behavior [5]. In the
laboratory, external magnetic fields can be directly applied
to the system. Furthermore, it was recently demonstrated
that a rigid-body rotation of the plasma imposes an effective
magnetization via the mathematical equivalence of the Lorentz
and Coriolis forces [6,7].

Physical quantities that are affected by the complex inter-
play between a strong correlation and magnetization include
thermodynamic and transport properties. For instance, the
low-temperature specific heat of a magnetized one-component
plasma crystal was shown to increase by orders of magnitude
in strong magnetic fields [8]. As another example, the particle
diffusion perpendicular to the field lines was shown to
decay as 1/B for strong fields, whereas the field-parallel
diffusion, which is unaffected in weakly coupled plasmas,
decays algebraically with the decay exponent depending on
the strength of the coupling [9]. This behavior is expected
to be caused by collective excitations and similar effects
are anticipated for other transport quantities. The study
of the collective behavior of strongly magnetized plasmas
close to but below the crystallization point is therefore of
central importance for the understanding of such complex
phenomena.

In this paper we wish to expand the theoretical model of
the collective excitation spectra of strongly coupled plasmas
in the magnetic field. The system under consideration is the
one-component plasma (OCP), which is a paradigm for the
behavior of plasmas [10,11]. For the magnetized OCP, several
sum rules for the long-wavelength behavior of the dynamical

structure factor have been derived previously [12–14]. Deep
in the strongly coupled liquid phase, the collective modes of
the OCP have been successfully described in the framework
of the quasilocalized charge approximation (QLCA) [15,16].
Here we present a comparison between the QLCA and
a complementary approach rooted in the harmonic lattice
description of the magnetized OCP solids (Wigner crystal) [8].
Our goals are to test critically both the QLCA description
and the harmonic lattice approach against numerical data and
compare both approaches in terms of their general features and
respective predictive powers.

The harmonic lattice approach allows for a purely analytical
calculation of the wave spectra. However, the results obtained
in this way are independent of the coupling strength and
their applicability is limited by anharmonic effects in finite-
temperature systems. In principle, the crystalline Wigner lat-
tice is fundamentally different from the liquid phase. Consider
the radial pair distribution function g(r) [17] (Fig. 1). In the
moderately coupled OCP, � = 10, the relative distribution
of particles is practically uniform [g(r) = 1], except for the
correlation hole at short distances. With increasing coupling
(� = 50 and 150), gradually, a more structured particle
configuration emerges, which is evidenced by departures of
g(r) from unity. The amplitude of these oscillations decays
in the liquid regime. If the coupling is further increased,
the OCP undergoes a phase transition to a solid. The pair
distribution function of the lattice (plotted in Fig. 1 at � = 180
and labeled HL) is completely different. It shows pronounced
oscillations corresponding to a well-defined sequence of
shells of nearest neighbors, next-nearest neighbors, etc. The
oscillations decay very slowly with r , indicating a long-range
order.

To extend the established harmonic lattice theory of the
magnetized OCP [8] to the liquid regime, we rely on the
physical picture that a sufficiently strongly coupled liquid
plasma is composed of randomly oriented microcrystalline
patches [20,21]. A suitable averaging procedure over the
relative orientations of the crystal axes, the magnetic field,
and the wave vector should then result in an approximation of
the liquid phase wave propagation [22].
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FIG. 1. (Color online) Pair distribution function g(r) of the
classical OCP from molecular dynamics simulation for � = 10, 50,
and 150 and in the harmonic lattice approximation for the bcc lattice
at � = 180 [18,19]. Distances are normalized to the Wigner-Seitz
radius a (see Sec. II).

The remainder of this work is structured as follows. In
Sec. II we introduce the model and its dimensionless param-
eters. In Sec. III we present the two theoretical methods of
modeling the wave propagation in the OCP. We then introduce
the numerical solution of the OCP by molecular dynamics
simulation in Sec. IV. Both theories are benchmarked against
the first-principles simulation results in Sec. V. We summarize
in Sec. VI.

II. MAGNETIZED ONE-COMPONENT PLASMA MODEL

Our model is the classical one-component plasma with a
neutralizing homogeneous background in which the particles
are subjected to an external magnetic field B = Bb (B is the
magnetic-field strength and b is the unit vector). The equations
of motion read

r̈i = Fi/m + ωcvi × b, i = 1, . . . ,N, (1)

where N is the number of particles, m their mass, ωc = qB/m

the cyclotron frequency, and q the particle charge. The
equations are coupled via the Coulomb force Fi on particle
i due to all other particles.

In thermodynamic equilibrium, the OCP is characterized
by the single (coupling) parameter

� = q2

4πε0akBT
, (2)

where a = (3/4nπ )1/3 is the Wigner-Seitz radius with the
number density n and T is the temperature. Generally, a OCP
is considered strongly coupled whenever � > 1. It is known,
however, that a substantial change in the characteristic dy-
namics occurs around �crit ≈ 30 [9,23], at which the so-called
caging, i.e., negative portions in the velocity autocorrelation
function or quasiclosed loops in phase space, occurs. It is
this critical value that we consider as the boundary between a
strongly coupled OCP and an intermediately coupled OCP
(which are still considerably more highly correlated than
weakly coupled systems � < 1).

A magnetized OCP is characterized by an additional
parameter: the strength of the magnetic field. We take this
as the ratio between the cyclotron and the plasma frequency
β = ωc/ωp, where ω2

p = nq2/ε0m.

III. THEORETICAL APPROACHES

The dispersion relations for the eigenmodes of the magne-
tized OCP are given by solutions of a general equation of the
type

det{ω2δαβ − Mαβ(k) − iωωcεαβγ bγ } = 0, (3)

where ω(k) is the mode frequency, b = B/B, εαβγ is the Levi-
Civita symbol, greek indices denote Cartesian components,
and the matrix Mαβ(k) depends on the chosen theoretical
approach.

A. Harmonic lattice approximation

The harmonic lattice (HL) solution to the spectrum of the
magnetized OCP has recently been analyzed in Ref. [8]. In
the HL model, the OCP is assumed to form a perfect body-
centered-cubic (bcc) lattice in space. The particles undertake
small thermal excursions from their equilibrium positions. The
matrix Mαβ(k) of Eq. (3) is the dynamic matrix of the bcc
lattice:

Mαβ(k) = ω2
p

3
δαβ − q2

4πε0m

∂2

∂uα∂uβ

∑

l

′ e−ik·l

|l − u| , (4)

where the derivative on the right-hand side is taken at u = 0
(see, e.g., Refs. [18,24]). The summation is over all bcc lattice
vectors l, excluding l = 0.

In the HL model, at each k there are three generally
different solutions ω1,2,3(k) of Eq. (3). They depend also
on the strength and orientation of the magnetic field with
respect to the crystal axes. To obtain a description of liquid
systems (i.e., systems with rotational symmetry), we propose
the angle-averaged harmonic lattice (AAHL) model. In this
approach, the exact crystal dispersion curves obtained from
the HL model undergo a two-step averaging procedure. First,
we fix the magnetic-field direction with respect to the crystal
axes and the angle � between k and B. We then average
ω(k) over the azimuthal angle of k with respect to B. The
three solutions (with minimum, intermediate, and maximum
frequencies) are averaged separately. In the second step, we
average over all nonequivalent directions of the magnetic field
with respect to the crystal axes. This procedure is equivalent to
analogous averaging for two-dimensional lattices [20,25,26].
Note that even though the averaging introduces an isotropy
into the description, the theory is still based on the anisotropic
ground state of the crystal.

The validity of applying a theory based on lattice config-
urations to the liquid state can be estimated by comparing
the relevant time scales of the particle localization and the
lifetime of the excited modes. The cage-decorrelation time
tc, i.e., the average time a particle spends in a crystal-like
environment before undergoing larger excursions, has been
measured in Ref. [27]. For � > 100, tc exceeds 100ω−1

p .
This is much longer than the lifetime of any mode under
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consideration (see, e.g., Figs. 4 and 5). Thus the particles
experience a crystal-like environment during the entire lifetime
of the mode. This argument in favor of the AAHL model is
further strengthened by considering the relevant length scales.
The typical cage size in a strongly coupled liquid exceeds the
Wigner-Seitz radius a [27]. This means that modes with wave-
lengths below that (i.e., ka � 1) propagate in a crystal-like
environment.

Since the phonon frequencies in the harmonic bcc OCP
crystal are strictly real, the angle-averaged frequencies are
also real, which means an infinite lifetime of the respective
excitations. This is not very realistic because anharmonic
effects become stronger with a decrease of � and the associated
phonon decay and merger processes would reduce the lifetime
of the collective modes. In our approach we hope to describe
correctly only the real parts of the excitation frequencies.
Additionally, the dispersion curves obtained in this way are
independent of �. This is also not very realistic for a strongly
coupled liquid and thus the model may be expected to get
worse with a decrease of �.

The phonon wave vector normally is limited to the first
Brillouin zone, which corresponds roughly to ka ≈ 2.4.
If k goes beyond the first Brillouin zone, one can find
the reciprocal lattice vector G such that q = k − G is in
the first Brillouin zone. Then q is the actual phonon wave
vector that determines its wavelength. For the sake of the
dispersion curve approximation in the liquid at wavelengths
shorter than what is allowed in the crystal (i.e., ka � 2.4),
we have to take k in our averaging procedure beyond the
first Brillouin zone. This can easily result in situations where
ions oscillating along k at the same time oscillate across q.
Besides that, generally, in a crystal, phonons have mixed
polarizations oscillating neither along nor across their wave
vector. Both effects introduce ambiguity into the frequency
averaging procedure. Our procedure outlined above consists
of sorting modes according to their frequencies. It is the
simplest approach, but, as we shall see, it yields reasonable
results. However, it may be worthwhile to investigate angular
averaging taking into account phonon polarization in an effort
to further improve the description of liquid dispersion curves
within the AAHL model framework.

For illustration, a selection of crystal dispersion curves
for various orientations of the wave vector with respect to
the crystal axes for the OCP at zero magnetic field and for
the OCP at β = 1 (k ‖ B) is shown in Fig. 2 (gray lines)
together with the angle-averaged dispersion (black line). For
each magnetization, there are two shear modes (left and middle
columns) and one plasmon mode (right column). For β = 0,
this is in contrast with the QLCA description of the system
(see the next section), in which only a single degenerate shear
mode is predicted.

B. Quasilocalized charge approximation

In the quasilocalized charge approximation (QLCA), the
particle configuration considered is not necessarily periodic
[16,21,28,29]. The momentary potential landscape is assumed
to contain deep minima and to vary slowly on the time scales
of the collective oscillations. The particles then experience a
latticelike surrounding long enough to undergo a reasonable

number of oscillations before lattice site diffusion takes
place.

The generalization of the QLCA to magnetized three-
dimensional OCPs has been presented in Ref. [15]. One has

Mαβ(k) = kαkβ

k2
ω2

p + Dαβ, (5)

where the first term corresponds to the Vlasov part of the
excitation while the correlational effects enter via the QLCA
dynamical matrix

Dαβ(k) = V −1
∑

q

qαqβ

|q|2 ω2
p[h(|k − q|) − h(|q|)], (6)

where V is the total volume and h(k) is the Fourier
transform of the pair correlation function h(r) = g(r) − 1.
The pair correlation function provides information about
the relative arrangement of the particles and is an external
input to the QLCA, making the theory semianalytic. We
use pair correlation functions obtained from first-principles
molecular dynamics simulations to calculate the dispersion
relations.

The analytic form of the solutions to Eq. (3) has been given
in Ref. [15] for � = 0 and π/2. These are the plasmon, the
upper and lower shear modes (� = 0), the ordinary shear
mode, and the upper and lower hybrid modes (� = π/2).
Other (oblique) angles between B and k are not considered
here, but are the subject of another work [30].

C. Direct thermal effects

Both the AAHL model and the QLCA do not include
direct thermal effects, i.e., the Brownian motion of individual
particles [the QLCA includes indirect thermal effects via the
temperature dependence of g(r)]. The order of magnitude of
the direct thermal effects is �−1, so they can be safely neglected
close to the melting transition. For lower values of �, they grow
in importance and give rise, for example, to the Bohm-Gross
term in the longitudinal dispersion.

To include these effects in the QLCA, we follow the
prescription of Hou et al. [31] and replace ω2

p by ω2
p +

3k2v2
th = ω2

p[1 + (ka)2/�] in the dispersion relation for the
plasmon, where v2

th = kT /m is the square of the thermal
velocity. This simple extension of the QLCA has shown
remarkably good results in two-dimensional systems [31].
Here we test its suitability for a three-dimensional system.

IV. FIRST-PRINCIPLES SIMULATIONS

A. Molecular dynamics

Our simulation method is based on the exact simultaneous
numerical solution of Eq. (1) for N = 8196 particles by
molecular dynamics (MD) simulation. The advancement of
individual particle trajectories takes places according to a gen-
eralized velocity Verlet scheme [32,33], which incorporates
magnetic fields of arbitrary strength [9].

The particles are situated in a cubic simulation box with
periodic boundary conditions and are brought into equilibrium
during a thermostation phase in which the particles’ velocities
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FIG. 2. Selection of the dispersion curves from the HL model for the unmagnetized (top row) and magnetized (bottom row, β = 1) OCP
crystal for different directions of the wave vector with respect to the crystal geometry (gray lines). For the magnetized crystal, k is along
B. The black lines show angle-averaged dispersion relations. The left and the middle column depict the (quasitransverse) shear modes and
the rightmost column depicts the (quasilongitudinal) plasmon mode. Note that the mode shown in the bottom middle graph originates at
ω = ωc = ωp .

are rescaled continuously. During the data collection phase,
the system evolves microcanonically. The interparticle forces
are calculated according to the Ewald summation technique
[34] to take into account correctly the long-range nature of
the Coulomb potential. For each parameter set, we perform
simulations spanning a time of tωp = 64 000.

B. Calculation of wave spectra

The parameters of the collective modes, i.e., long-lived ther-
mally excited fluctuations, are obtained from the microscopic
phase-space information of the system, specifically, from the
Fourier analysis of the microscopic densities. For the current
one has [35,36]

j(k,t) =
N∑

j=1

vj (t) exp[ik · rj (t)]. (7)

One can also introduce longitudinal λ and transverse τ

components of the current, e.g.,

λ(k,t) =
N∑

j=1

vxj (t) exp[ikxj (t)], (8)

τ (k,t) =
N∑

j=1

vyj (t) exp[ikxj (t)], (9)

separating velocity components directed along and across the
wave vector, respectively. [In Eqs. (8) and (9), k is assumed to
be along the x axis.]

Introducing further the orientation of j with respect to the
magnetic field B, we consider the five principal (� = 0 and
π/2) currents

λ‖(k,t) =
N∑

j=1

vzj (t) exp[ikzj (t)], (10)

τ‖(k,t) =
N∑

j=1

vxj (t) exp[ikzj (t)], (11)

λ⊥(k,t) =
N∑

j=1

vxj (t) exp[ikxj (t)], (12)

τ⊥
⊥ (k,t) =

N∑

j=1

vyj (t) exp[ikxj (t)], (13)

τ ‖(k,t) =
N∑

j=1

vzj (t) exp[ikxj (t)], (14)

where we have assumed, without loss of generality, B = B êz

and omitted the implicit replacements {x,y} → {y,x}. The
superscript in these quantities specifies the orientation of the
particle velocity with respect to B and the subscript indicates
the orientation of the wave vector with respect to B (see Fig. 3).

From these currents we obtain the fluctuation spectra in a
standard manner via a temporal Fourier transform Ft ,

L = 1

2πN
lim
t→∞

1

t
|Ft {λ(k,t)}|2, (15)

T = 1

2πN
lim
t→∞

1

t
|Ft {τ (k,t)}|2, (16)
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FIG. 3. (Color online) Relative orientation of the magnetic field
[blue (dark) arrow], the wave vector [orange (light) arrow], and
the particle velocity [red (two-headed) arrow] for the five currents
(10)–(14).

which are furnished with the appropriate indices as above.
Since our simulations extend over long-time periods, the
frequency resolution is very high. We perform a suitable
averaging to coarse grain these data and improve statistics.
Permissible wave vectors are given by integer multiples of
|kmin| = 2π/L = 0.195/a, as dictated by our use of periodic
boundary conditions.

Collective excitations manifest themselves as peaks in the
fluctuation spectra, where the peak width carries information
about the longevity of the excitation. We extract the peak
position and its full width at half maximum (FWHM) by fitting
background-adjusted Gaussian functions to the simulation
data.

V. RESULTS

A. Magnetized OCP

1. � = 150

We begin by considering the magnetized OCP close to the
crystallization transition at � = 150 and β = 1 (Fig. 4). The
five spectra (10)–(14) are calculated and L⊥(k,ω) and T ⊥

⊥ (k,ω)
are summed to capture the mixed polarization of the upper and
lower hybrid modes [15,31].

In Fig. 4, the resulting four fluctuation spectra are shown as
density plots (blue), together with the numerical peak positions
(symbols) and theoretical predictions from the QLCA [black
(dark) solid lines] and the AAHL model [red (light) solid
lines]. The FWHM of the numerical peaks is indicated by
the horizontal black bars. Narrow peaks (small FWHM)
correspond to long-lived excitations and broad peaks (large
FWHM) indicate short-lived waves.

In the L⊥ + T ⊥
⊥ spectrum (top graph) the upper hybrid

mode (higher frequency) and the lower hybrid mode (lower
frequency) stand out clearly in the numerical data. The upper
hybrid mode originates at ω = (ω2

p + ω2
c )1/2 at ka = 0 [15]

with a very narrow peak structure indicating long-lived oscil-
lations. The frequency of the oscillations slightly decreases for
shorter wavelengths and the damping increases (larger width
of the peaks).

ω
/
ω

p
ω
/
ω

p
ω
/
ω

p
ω
/
ω

p

ka

0.0
0.4
0.8
1.2
1.6
2.0

10−2 10−1 100

L⊥ + T⊥
⊥

0.0
0.4
0.8
1.2
1.6

T

0.0
0.4
0.8
1.2
1.6

L

0.0
0.4
0.8
1.2
1.6

0 1 2 3 4 5 6 7

T⊥

FIG. 4. (Color online) Collective excitation spectra of the mag-
netized OCP at � = 150 and β = 1. The color scale corresponds to
simulation results, the black and gray symbols mark the simulation
peak maxima, and the black bars are their FWHM. The solid lines
indicate the QLCA [black (dark)] and AAHL model [red (light)]
dispersion relations.

Both the QLCA and the AAHL model agree up to ka ≈ 3
and correctly predict the course of the upper hybrid mode. For
higher values of ka, the QLCA deviates from the numerical
data and underestimates the involved frequencies. The AAHL
approach, in contrast, is in excellent agreement with the
simulations, a remarkable result showing the applicability of
our angle-averaging procedure.

The low-frequency lower shear mode is similarly perfectly
predicted by the AAHL model, even though the oscillations of
the lower shear mode are strongly damped and short lived. The
QLCA dispersion relation is in agreement with the numerical
data for long wavelengths, but overestimates the frequencies of
the lower shear mode for ka � 2. Such a decreased reliability
of the QLCA for low-frequency modes has been often noted
[15,21] and was commonly attributed to the diffusion and
dissolution of the potential cages, which are fundamental to
the theory, on these long-time scales. However, as the AAHL
model does not include any of these effects either, it seems
plausible that another inherent property of the QLCA limits its
applicability in the low-frequency regime.
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The ordinary shear mode (second graph of Fig. 4) originates
at zero frequency and rises to a maximum around ka = 4
with ω ≈ 0.6ωp. The QLCA correctly predicts the position
and height of this maximum and is in good agreement with
the positions of the broad numerical peaks. The AAHL model
prediction is equivalently good up to about ka = 3, after which
the amplitude of the maximum is underestimated.

In the third graph, the plasmon mode originating at ωp

exhibits the typical correlation-induced negative slope leading
to the so-called roton minimum and subsequent oscillations
[21,37,38]. Both the QLCA and AAHL model predictions are
in good agreement with the simulated spectrum.

The upper and lower shear modes (bottom graph) originate
at ω = ωc = ωp and ω = 0, respectively. It is again striking
how well the AAHL model describes both of these modes,
with a very close tracking of the numerical mode dispersion.
Deviations occur for the low-frequency mode for ka � 3. The
QLCA description is similarly good for the upper shear mode,
but is again less reliable at low frequencies.

Overall, the predictive power of the QLCA and especially
that of the AAHL model is very good and for the AAHL model
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FIG. 5. (Color online) Collective excitation spectra of the mag-
netized OCP at � = 100 and β = 1. The color scale corresponds to
simulation results, the black and gray symbols mark the simulation
peak maxima, and the black bars are their FWHM. The solid lines
indicate the QLCA [black (dark)] and AAHL model [red (light)]
dispersion relations.

it is much better than one might have expected. We hypothesize
that the reason for this lies in the reduced mobility of the
individual particles due to the magnetic field. It was recently
demonstrated that in strongly coupled plasmas the diffusion
both parallel and perpendicular to the magnetic field is greatly
reduced (as opposed to weakly coupled plasmas, in which only
the cross-field diffusion is affected by the magnetic field, as
noted in the Introduction) [9]. For � = 100, the field-parallel
diffusion coefficient is less than 40% and the cross-field
diffusion coefficient is less than 30% of the field-free diffusion
coefficient [9]. This reduced particle migration increases the
predictive powers of theories based on lattice or latticelike
structures.

2. � = 50 and 100

The applicability of the AAHL model and the QLCA to
less strongly coupled OCPs is investigated in Figs. 5 and 6
for � = 100 and 50 at β = 1. It is evident that even at
these values of the coupling parameter, the AAHL model and
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FIG. 6. (Color online) Collective excitation spectra of the mag-
netized OCP at � = 50 and β = 1. The color scale corresponds to
simulation results, the symbols mark the simulation peak maxima, and
the black bars are their FWHM. The solid lines indicate the QLCA
[black (dark)] and AAHL model [red (light)] dispersion relations.
The gray lines in L‖ show the Bohm-Gross dispersion (dashed) and
Bohm-Gross corrected QLCA results (solid) (Sec. III C).
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the QLCA provide excellent descriptions of the dispersion
relations. However, the gradual vanishing of the lower shear
mode [low-frequency mode in T ⊥

‖ (k,ω)] as � decreases is not
captured by the theories.

A notable exception of the predictive power of the theories
presents itself in the L‖ spectrum for � = 50, in which the
numerical peak position is at much higher frequencies for
large ka. This is a manifestation of direct thermal effects that
become relevant at small coupling values. According to the
approach of Sec. III C, direct thermal effects can be accounted
for approximately in the QLCA by including a Bohm-Gross
term in the dispersion relation. The gray lines in Fig. 6 indicate
the course of the Bohm-Gross term (dashed line) and the
extended QLCA approach (solid line). It is apparent that
the trend of the dispersion relation change is correct, but the
actual agreement with the numerical data is unsatisfactory,
in contrast to what has been reported for two-dimensional
systems [31].

We now consider the effect of a variation of the magnetic-
field strength. Figure 7 depicts the system at � = 150 and
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FIG. 7. (Color online) Collective excitation spectra of the mag-
netized OCP at � = 150 and β = 5. The color scale corresponds to
simulation results, the symbols mark the simulation peak maxima, and
the black bars are their FWHM. The solid lines indicate the QLCA
[black (dark)] and AAHL model [red (light)] dispersion relations.
Note the different ranges of the frequency axes and the 100-fold
magnification of two of the spectra.
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FIG. 8. (Color online) Collective excitation spectra of the mag-
netized OCP at � = 150 and β = 0.5. The color scale corresponds to
simulation results, the black and gray symbols mark the simulation
peak maxima, and the black bars are their FWHM. The solid lines
indicate the QLCA [black (dark)] and AAHL model [red (light)]
dispersion relations.

β = 5. Only two of the four previously considered spectra
are shown, but at two different frequency ranges (the two
omitted spectra show little difference from Fig. 4). For the
high-frequency modes, the QLCA and the AAHL model agree
practically perfectly with one another and with the numerical
data. The weakly excited low-frequency branches (note the
100-fold magnification) are well described by the AAHL
model.

At β = 0.5 (Fig. 8) the modes are less separated (we
plot the sum of L‖ and T ⊥

‖ to account for this fact). The
quantitative agreement between the theoretical approaches and
the numerical data is comparable to the case of β = 1, which
suggests that the AAHL model is a feasible approach in the
low-magnetic-field regime as well. To corroborate this, we
consider the unmagnetized OCP next.

B. Unmagnetized OCP

Although much research has focused on the theoretical
description of the unmagnetized OCP dispersion relations,
reliable numerical data are still sparse (see, e.g., Refs. [21,39]).
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FIG. 9. (Color online) Collective excitation spectra of the unmag-
netized OCP at � = 50. The color scale corresponds to simulation
results and the symbols mark the simulation peak maxima (both
figures contain the same MD data). The solid lines indicate the AAHL
model (top) and QLCA (bottom) dispersion relations.

In Figs. 9 and 10 we show the numerical fluctuation spectra
and peak positions together with the theoretical predictions of
the QLCA and the AAHL model.

Consider first the case of � = 50 (Fig. 9). The transverse
(acoustic) mode is not developed at this coupling, whereas
the longitudinal plasmon is clearly observable and exhibits
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FIG. 10. (Color online) Collective excitation spectra of the
unmagnetized OCP at � = 150. The color scale corresponds to
simulation results and the symbols mark the simulation peak maxima
(both figures contain the same MD data). The solid lines indicate the
AAHL model (top) and QLCA (bottom) dispersion relations.

the typical correlational modifications. The AAHL model (top
graph) turns out to be in quantitative agreement at small wave
vectors, but is not applicable beyond ka ≈ 2. Note that in many
situations of practical interest, these wavelengths actually play
the most important role. The QLCA description (bottom graph)
is more appropriate and is in qualitative agreement for almost
the entire range of the wavelengths, but the roton minimum
and the subsequent rise are underestimated [38].

At higher coupling and close to the crystallization � = 150
(Fig. 10), the transverse mode is fully developed and correctly
described by both the AAHL model and the QLCA at long
wavelengths ka � 2.5. Since the liquid cannot sustain shear
in the limit of k → 0, the transverse mode vanishes for very
long wavelengths in the numerical data but remains finite in
the QLCA and the AAHL model. At shorter wavelengths, the
AAHL model compares favorably to the numerical data for
ka � 5, although only two (not three) distinct modes can be
observed in the liquid phase. The QLCA is only in qualitative
agreement at ka � 2.5, overestimating the lower frequencies
and underestimating the higher frequencies.

VI. CONCLUSION

It has been long known that correlations between individual
particles in dense or cold plasmas give rise to fascinating
phenomena such as the emergence of new collective oscillation
modes. Strong magnetic fields often permeate plasmas and
significantly alter their dynamic properties. With this work
we have provided an extensive overview of the oscillation
spectra in plasmas in which both of these conditions, i.e.,
strong coupling and magnetization, coexist. We have focused
on the particularly interesting liquid regime, in which neither
perturbational nor lattice calculations are pertinent.

Two theoretical descriptions—the quasilocalized charge
approximation and the angle-averaged harmonic lattice
theory—have been tested against extensive molecular dy-
namics simulations of the one-component plasma. While the
QLCA is able to describe liquid structures in a semianalytic
calculation (external information about the structure is used in
the form of the pair distribution function), the AAHL model
rests on a purely analytical footing and does not account for
decay of correlations as � is lowered.

Nonetheless, we have found that in the magnetized OCP, the
AAHL model provides an excellent description of the actual
dispersion relations and can achieve similar or in some cases
better agreement with the simulation data than the QLCA.
This is likely due to the increased rigidity of magnetized
systems, which makes a lattice calculation more appropriate. It
is noted that this is an effect of the combined influence of strong
correlations and strong magnetic fields: The particle coupling
serves to isotropize the localizing effects of the magnetic field,
as indicated by the decay of the diffusivity along the field
lines [9].

We have also briefly tested the applicability of the QLCA
and the AAHL model to unmagnetized systems at different
couplings and have found that the range of validity of
the QLCA is larger than that of the AAHL model and
extends to considerably lower values of the coupling strength.
Close to the freezing transitions, the AAHL model becomes
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competitive again and provides a good description of the wave
dispersions.

Finally, we have considered the influence of the direct
thermal effects at smaller values of the coupling strength.
The modification of the QLCA dispersion relation with the
Bohm-Gross term [40] is a simple remedy for the increasing
discrepancy between the QLCA and the simulation results that,
however, fares somewhat worse in the three-dimensional OCP
than it has in the two-dimensional case [40]. Other work will
aim to provide a clearer description of these effects [39].
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