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ABSTRACT

Some X-ray dim isolated neutron stars (XDINS) and central compact objects in supernova remnants (CCO) contain absorption features
in their thermal soft X-ray spectra. It has been hypothesized that this absorption may relate to periodic peaks in free-free absorption
opacities, caused by either Landau quantization of electron motion in magnetic fields B <∼ 1011 G or analogous quantization of ion
motion in magnetic fields B > 1013 G. Here, I review the physics behind cyclotron quantum harmonics in free-free photoabsorption,
discuss different approximations for their calculation, and explain why the ion cyclotron harmonics (beyond the fundamental) cannot
be observed.
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1. Introduction

Thermal radiation from neutron stars can provide important
information about their physical properties. Among neutron
stars with thermal-like radiation spectra (see, e.g., reviews by
Kaspi et al. 2006; and Zavlin 2009), there are two classes of ob-
jects of particular interest: central compact objects (CCOs; see,
e.g., de Luca 2008) in supernova remnants and X-ray dim iso-
lated neutron stars (XDINSs, or the Magnificent Seven; see, e.g.,
review by Turolla 2009).

The CCOs are young, radio-quiet isolated neutron stars
with relatively weak magnetic fields B ∼ (1010−1011) G (e.g.,
Halpern & Gotthelf 2010, and references therein). The XDINSs
are older and are believed to have much stronger fields B >∼
(1012−1013) G (Haberl 2007; van Kerkwijk & Kaplan 2007;
Turolla 2009). For some CCOs and XDINSs, there are estimates
of B, and in some cases only upper limits to B are available.

In the past decade, broad absorption lines have been detected
in the thermal spectra of several isolated neutron stars (see, e.g.,
van Kerkwijk 2004; Haberl 2007; van Kerkwijk & Kaplan 2007,
and references therein). In all but one case, the energies E∞a of
the absorption are centered on the range 0.2–0.7 keV and the ef-
fective black-body temperatures are T∞eff,bb ≈ 0.1 keV. Here and
hereafter, the Boltzmann constant is suppressed, and the super-
script “∞” indicates a redshifted value. In particular, it has been
found that: (i) the spectrum of RX J1605.3+3249 with T∞eff,bb ≈
96 eV has a broad absorption at E∞a ≈ 0.4–0.5 keV and a pos-
sible second absorption at 0.55 keV (van Kerkwijk et al. 2004;
van Kerkwijk 2004); (ii) RX J0720.4-3125 exhibits an absorp-
tion feature at E∞a ≈ 0.27 keV (Haberl et al. 2004) and a possible
second absorption at 0.57 keV (Hambaryan et al. 2009), while
the effective black-body temperature varies over years across the
range T∞eff,bb ≈ 86–95 eV (Hohle et al. 2009); (iii) the spectrum of
RBS1223 (RX J1308.6+2127) was reproduced by a model with
T∞eff,bb ≈ 102 ± 2 eV and two absorption lines at E∞a ∼ 0.3 keV

and E∞a ∼ 0.6 keV (Schwope et al. 2007); and (iv) the spectrum
of RBS1774 (1RXS J214303.7+ 065419) with T∞eff,bb ≈ 102 eV
shows indications of a line at E∞a ≈ 0.3–0.4 keV and an ab-
sorption edge at 0.73–0.75 keV (Cropper et al. 2007; Kaplan
& van Kerkwijk 2009; Schwope et al. 2009). The first discov-
ered isolated neutron star with absorption lines, CCO 1E 1207.4-
5209, has two absorption features centered on E∞a ≈ 0.7 keV and
1.4 keV (Sanwal et al. 2002) and an effective black-body tem-
perature (which may be nonuniform) of T∞eff,bb ∼ 0.16–0.32 keV
(Zavlin et al. 1998; de Luca et al. 2004). For this object, two
more harmonically spaced absorption features (at E∞a ≈ 2.1 keV
and 2.8 keV) were tentatively detected (Bignami et al. 2003; de
Luca et al. 2004), but were later shown to be statistically in-
significant (Mori et al. 2005). We note that realistic values of the
effective temperature T∞eff, obtained using atmosphere models,
can differ from T∞eff,bb by a factor <∼2–3 (see, e.g., Zavlin 2009,
and references therein).

Many authors (e.g., Sanwal et al. 2002; Bignami et al. 2003;
de Luca et al. 2004) have considered the theoretical possibil-
ity that the absorption lines in the thermal spectra of the CCOs
and XDINSs may be produced by cyclotron harmonics, formed
because of quantum transitions between different Landau lev-
els of charged particles in strong magnetic fields. Zane et al.
(2001) discussed this possibility prior to the observational dis-
covery of these absorption features. The fundamental cyclotron
energy equals

�ωc = �eB/mc = 11.577 B12 keV (1)

for the electrons and �Ωc = �ZeB/Mc = 6.35 (Z/A)B12 eV for
the ions, where m and M are the electron and ion masses, re-
spectively, Z and A are the ion charge and mass numbers, and
B12 ≡ B/1012 G. In the following, we consider protons, whose
cyclotron energy is

�Ωc = �eB/Mc = 6.305 B12 eV. (2)
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Beginning with the pioneering work of Gnedin & Sunyaev
(1974), numerous papers have been devoted to the physics and
modeling of cyclotron lines in X-ray spectra of accreting neutron
stars (e.g., Daugherty & Ventura 1977; Pavlov et al. 1980; Wang
et al. 1993; Araya & Harding 1999; Araya-Góchez & Harding
2000; Nishimura 2005, 2008). These emission lines have been
observed in many works following their discovery by Trümper
et al. (1978). Cyclotron harmonics have been found in spec-
tra of several X-ray pulsars in binaries (e.g., Rodes-Roca et al.
2009; Enoto et al. 2008; Pottschmidt et al. 2004, and references
therein), and up to four harmonics were registered for one of
them (Santangelo et al. 1999).

In the photospheres of isolated neutron stars, unlike X-ray bi-
naries, the typical energies of charged particles are nonrelativis-
tic. In this case, first-order cyclotron transitions of free charged
particles are dipole-allowed only between neighboring equidis-
tant Landau levels and form a single cyclotron resonance with no
harmonics. Special relativity and non-dipole corrections at the
energies of interest can be estimated to be max(Teff, Ea)/mc2 ∼
10−3 for the electrons and max(Teff, Ea)/Mc2 < 10−6 for the
protons.

Beyond the first order in interactions, transitions between
distant Landau states are also allowed in the nonrelativistic
theory. They are, in particular, caused by Coulomb interac-
tions between plasma particles. Thus cyclotron harmonics ap-
pear in free-free (bremsstrahlung) cross-sections. To obtain
Ea ∼ 0.1–1 keV, one may assume either the electron cyclotron
harmonics at B ∼ 1010–1011 G, according to Eq. (1), or proton
cyclotron harmonics at B ∼ 1013–1014 G, according to Eq. (2).

Pavlov & Shibanov (1978) presented the calculations of
spectra for isolated neutron stars with prominent electron cy-
clotron harmonics due to the free-free absorption in the atmo-
sphere. Suleimanov et al. (2010b) performed a similar atmo-
sphere modeling and concluded, in agreement with Zane et al.
(2001), that electron cyclotron harmonics could be observed in
CCO spectra. Proton cyclotron harmonics cannot be calculated
based on the assumption of classical proton motion, used by
these authors.

In this paper, I review the physics of free-free photoabsorp-
tion in strong magnetic fields, discuss restrictions on different
published approximations for free-free opacities, and present nu-
merical results that demonstrate the relative strengths of the elec-
tron and proton cyclotron resonances under the conditions char-
acteristic of the atmospheres of isolated neutron stars with strong
magnetic fields. This gives a graphic explanation of the small-
ness of the ion cyclotron harmonics. I also demonstrate that the
contribution of bound-bound and bound-free transitions to the
opacities of neutron stars with B > 1013 G is much larger than
that of the proton cyclotron harmonics.

In Sect. 2, quantum mechanical integrals of motion and wave
functions of a charged particle in a magnetic field are recalled
for subsequent use. Section 3 is devoted to the properties of
an electron-proton system in a magnetic field that is quantiz-
ing for both particles: general equations for calculation of wave
functions are given, and the Born approximation is considered in
detail. In the same order, general expressions and Born approx-
imation are considered in Sect. 4 for photoabsorption matrix el-
ements and cross-sections. Section 5 gives numerical examples
of cyclotron harmonics in free-free photoabsorption with discus-
sion and comparison of various approximations. Consequences
for the CCOs and XDINSs are discussed in Sects. 6, and 7
presents our summary.

2. Charged particles in a magnetic field

Since special relativity effects are of minor importance in the at-
mospheres of isolated neutron stars, we use nonrelativistic quan-
tum mechanics.

We assume that the magnetic field vector B is along the z axis
and consider its vector potential the cylindrical gauge to be

A(r) =
1
2

B × (r − rA) (3)

with an arbitrary center rA in the xy plane.
We recall the description of a charged particle in a uni-

form magnetic field (e.g., Johnson & Lippmann 1949; Landau
& Lifshitz 1976; Johnson et al. 1983). The Hamiltonian equals
the kinetic energy operator

H(1) =
mṙ2

2
= H(1)

⊥ +
p2

z

2m
, H(1)

⊥ =
mṙ2⊥

2
, (4)

where m is the mass,

mṙ = p− (Q/c) A(r) (5)

is the kinetic momentum, Q is the charge, and p is the canonical
momentum conjugate to r. In Eq. (4) and hereafter, “⊥” denotes
the “transverse” part, related to the motion in the xy plane.

A classical particle moves along a spiral around the normal
to the xy plane at the guiding center rc. In quantum mechanics,
rc is an operator, related to the pseudomomentum operator

�k = mṙ + (Q/c) B × r, (6)

where rc = (c/QB2) �k × B. Its cartesian coordinates (xc, yc)
commute with H(1)

⊥ , but do not commute with each other:
[xc, yc] = −i�c/QB. Another important integral of motion is
the z-projection of the angular momentum �z = (QB/c) (r2

c/2 −
H(1)
⊥ /mω2

c), where ωc = |Q|B/mc is the cyclotron frequency.
The eigenvalues of H(1)

⊥ are given by E⊥n = (n+ 1
2 )�ωc, where

n = 0, 1, 2, . . . is the Landau quantum number. The simultaneous
eigenvalues of �z are (sign Q) �s with integer s ≥ −n, and eigen-
values of the squared guiding center r2

c equal to a2
m(2s+ 2n+ 1),

where am = (�c/|Q|B)1/2 is the so-called magnetic length.
In general, H(1)

⊥ should be supplemented by (−B · μ̂), where
μ̂ = gmag (e/2mc) Ŝ is the intrinsic magnetic moment of the
particle, Ŝ is the spin operator, and gmag is the spin g-factor
(gmag = −2.0023 and 5.5857 for the electron and the proton,
respectively). In most applications, one can choose the repre-
sentation where the electron and proton spins have definite z-
projections ±�/2 and set the electron g-factor to –2, thus regard-
ing the excited electron Landau levels as double degenerate.

The form of a wave function depends on a choice of
the gauge for A(r). We consider the cylindrical gauge given
by Eq. (3) centered on the coordinate origin (rA = 0). The eigen-
functions of H(1) and �z in the coordinate representation are

Ψn,s,kz (r) =
eikzz

L1/2
z

×
{
Φn,s(r⊥), if Q < 0
Φ∗n,s(r⊥), if Q > 0, (7)

where kz = pz/� is the particle wave number along the field, Lz

is the normalization length, r⊥ = (x, y) = (r⊥ cosφ, r⊥ sin φ),

Φn,s(r⊥) =
e−isφ

√
2π am

In+s,n(r2
⊥/2a2

m) (8)

is Landau function, the asterisk denoting a complex conjugate,
and In′n(u) is a Laguerre function (e.g., Sokolov & Ternov 1986).
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We define cyclic components of any vector a as a±1 =

(ax ± iay)/
√

2 and a0 = az. The transverse cyclic components
of the kinetic momentum operator given by Eq. (5) transform
one Landau state |n, s〉⊥, characterized by Φ(∗)

ns (r⊥), into another
Landau state

mṙα |n, s〉⊥ = �

iam

√
n + 1/2 + α̃/2 |n + α̃, s − α̃〉⊥, (9)

where α = ±1, α̃ = α if Q < 0, and α̃ = −α if Q > 0.

3. Electron-proton system in a magnetic field

The Hamiltonian of the electron-proton pair (i.e., of H atom) is

H = H(1)
e + H(1)

p − e2

rep
, (10)

where rep = re − rp. The kinetic part can be written as

H(1)
e + H(1)

p =
M ṙ2

p

2
+

mṙ2
e

2
=

mHṘ
2

2
+

m∗ ṙ2

2
, (11)

where m and M are the electron and ion masses, R =
(M/mH) rp + (m/mH) re is the center of mass, mH = m + M is
the total mass, and m∗ = mM/mH is the reduced mass.

Since the electron and the proton have opposite charges, their
orbiting in the transverse plane is accompanied by a drift across
the magnetic field lines with velocity udrift depending on the dis-
tance between their guiding centers or equivalently on the total
pseudomomentum K

rc = rc,e − rc,p =
c

eB2
B × K, K = P − e

2c
B × rep, (12)

where P is the canonical momentum conjugate to R.
In quantum mechanics, it is not only true that the pseudo-

momentum operator K = �ke + �kp commutes with H, but also
that its cartesian components (Kx,Ky,Kz) commute with each
other. Therefore, all components of rc can be determined si-
multaneously. Coordinate eigenfunctions of the pseudomomen-
tum operator with eigenvectors K are given by (Gor’kov &
Dzyaloshinskii 1968)

Ψ(re, rp) = exp

[
i
�

(
K +

e
c

B × rep

)
· R

]
ψK(rep). (13)

From the general Schrödinger equation HΨ = EΨ, one can de-
rive an equation for ψK(rep), which has the form

Hrel ψK = E ψK , (14)

where the effective Hamiltonian Hrel depends on K.

3.1. Exact solution

Solutions of Eq. (14) for arbitrary K in strong magnetic fields
in the cylindrical gauge represented by Eq. (3) were obtained by
Vincke et al. (1992) and Potekhin (1994) for bound states, and by
Potekhin & Pavlov (1997) for continuum states of the electron-
proton system. Potekhin (1994) used the variable r = rep − rB

as an independent argument of the wave function and found that
the most convenient parametrization in Eq. (3) is rA = [(M −
m)/mH] rB. Then

Hrel =
P2

z

2mH
+

p2
z

2m∗
+ H⊥ − e2

|r + rB| , (15)

where

H⊥ =
π2⊥

2m∗
− e

Mc
B · (r × p) + HK (16)

is the Hamiltonian of the harmonic motion in the xy plane, p is
the momentum conjugate to r,

π = p+
e

2c
B × r, (17)

HK =
K2

B

2mH
+

e
mHc

KB · (B × r), and KB = K +
e
c

B × rB. (18)

We note that HK = 0 when rB = rc.
The first term in Eq. (15) is the total kinetic energy along z,

uncoupled from the relative electron-proton motion, therefore
we set Pz = 0 without loss of generality.

The eigenvalues of H⊥ equal E⊥ns = E⊥n + E⊥N , where n ≥ 0
and N = n + s ≥ 0 are the electron and proton Landau num-
bers, respectively, and �s are eigenvalues of the relative angular
momentum projection operator (�z,p − �z,e).

We construct numerical solutions of Eq. (14) in the energy
representation for rB = η rc (η ∈ [0, 1]) in the form

ψ
(η)
κ (r) =

∑
n′ s′
Φn′s′(r⊥) g(η)

n′,s′; κ(z), (19)

where κ is the composite quantum number enumerating quan-
tum states. One retains in Eq. (19) as many terms (n =
0, 1, 2, . . . , nmax; s = −n,−n + 1,−n + 2, . . . , smax) as needed to
reach the desired accuracy. We choose a principal (“leading”)
term (n, s) and define “longitudinal” energy of the state |κ〉 as
E‖κ = Eκ − E⊥ns. The functions g(η)

n′,s′; κ(z) are computed from

⎛⎜⎜⎜⎜⎜⎝ − �
2

2m∗
d2

dz2
+ Vn′′s′′ ,n′′s′′ (rB, z) + 〈n′′s′′ |HK | n′′s′′〉⊥

+E⊥n′′ s′′ − E⊥ns − E‖κ

⎞⎟⎟⎟⎟⎟⎠ gn′′s′′; κ(z) =

−
∑′(

Vn′′ s′′,n′s′ (rB, z) + 〈n′′s′′ |HK | n′s′〉⊥
)
gn′s′; κ(z), (20)

where n′′ = 0, 1, 2, . . . , nmax, s′′ = −n′′,−n′′ + 1,−n′′ +
2, . . . , smax, Σ

′ denotes the sum over all pairs (n′, s′) except
(n′′, s′′), and

Vn′′ s′′ ,n′s′(rB, z) =
〈
n′′s′′

∣∣∣ − e2/|r + rB|
∣∣∣ n′s′〉⊥ (21)

are effective potentials (see Potekhin 1994 for calculation of
these potentials and matrix elements 〈n′′s′′ |HK | n′s′〉⊥).

3.1.1. Bound states

Bound states of the H atom can be numbered as |κ〉 = |nsνK〉,
where ν = 0, 1, 2, . . . enumerates energy levels for every fixed
pair (n, s) and controls the z-parity according to the relation
gn′ ,s′; κ(−z) = (−1)νgn′,s′; κ(z). The longitudinal energies E‖κ ≡
E‖nsν(K) are determined from the system of equations in Eq. (20)
together with the longitudinal wave functions gn′s′,κ(z).

The atomic states are qualitatively different for small and
large K⊥ values. For small K⊥, the electron remains mostly
around the proton, the energy dependence on K⊥ is nearly
quadratic, so that the transverse velocity vdrift = ∂Eκ/∂K⊥
is nearly proportional to K⊥, i.e., vdrift ≈ K⊥/m⊥H. The ef-
fective mass m⊥H exceeds mH and increases with increasing B
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(Vincke & Baye 1988). For large K⊥, the atomic state is de-
centered (Gor’kov & Dzyaloshinskii 1968): the electron finds
itself mostly around rc, rather than around the proton. In the lat-
ter case, vdrift decreases with increasing K⊥. The two families of
states are separated by the critical value of the pseudomomen-
tum, Kcr ≈ (2mH|E‖nsν(0)|)1/2, where the electron wave function
is mostly asymmetric, while the transverse velocity of the atom
reaches a maximum (Vincke et al. 1992; Potekhin 1994, 1998).

3.1.2. Continuum

Wave functions of the continuum are computed using the same
expansion, Eq. (19), and system of equations in Eq. (20), as for
the bound states, but for a given energy E for every z-parity. The
solution is based on a translation of the usual R-matrix formalism
(e.g., Seaton 1983) to the case of a strong magnetic field. Now
|κ〉 = |ns, E, K,±〉, where “±” reflects the symmetry condition
g(z) = ±g(−z). Numbers n and s mark a selected open channel,
defined for E‖κ ≡ E − E⊥ns > 0 by asymptotic conditions at z →
+∞
greal

no so; κ(z) ∼ δnonδso s sin[φns(z)] + Rno so; ns cos[φno so (z)], (22)

where the pairs (no, so), as well as (n, s), relate to the open chan-
nels (E > E⊥no,so

),

φns(z) = knsz + (m∗e2/�2kns) ln(knsz) (23)

is the z-dependent part of the phase of the wave function at
z → +∞, and kns =

√
2m∗(E − E⊥ns)/� is the wave num-

ber. For the closed channels, defined by the opposite inequality
E⊥nc ,sc

> E, one should select gnc sc; κ(z) → 0 at z → ∞. If Io is
the total number of open channels at given E, then the set of so-
lutions, defined by Eqs. (20) and (22), constitute a complete set
of Io independent real basis functions. The quantities Rn′o,s′o; no so

constitute the reactance matrix R, which has dimensions Io × Io.
If the wave functions are normalized according to the condition
∫

R2
dr⊥

∫ Lz/2

−Lz/2
dz |ψK(r⊥, z)|2 = 1, (24)

then the reactance matrix satisfies the relation

kn′ s′Rns; n′ s′ = knsRn′s′; ns, (25)

which differs from the usual symmetry relation (Seaton 1983).
The representation with η = 1 must be used for continuum

states, to ensure that the right-hand side (r.h.s.) of Eq. (20) van-
ishes at |z| → ∞, which is required by the asymptotic condition
of Eq. (22).

For a final state of a transition, one should use wave functions
describing outgoing waves. The basis of outgoing waves with
definite z-parity is defined by the asymptotic conditions

gout
no so; ns(z) ∼ δnonδso s eiφns(z) − S ∗no so; ns e−iφno so (z), (26)

where S no so;ns are the elements of the scattering matrix S =
(1 + iR)(1 − iR)−1. The matrix S is unitary, but (again unlike
conventional theory) asymmetrical. The basis of outgoing waves
is obtained from the real basis by transformation

gout
n′′ s′′; κ(z) = 2i

∑
n′ s′

[
(1 + iR)−1

]
ns; n′ s′

greal
n′′s′′; κ′(z). (27)

Here, pairs (n, s) and (n′, s′), being respective parts of the com-
posite quantum numbers κ and κ′, run over open channels, but

(n′′, s′′) run over all (open and closed) channels. From the uni-
tarity of the scattering matrix it follows that the wave func-
tions that satisfy the asymptotic condition given by Eq. (26)
should be multiplied by a common factor (2Lz)−1/2, to ensure
the normalization expressed by Eq. (24). As the initial state
of a transition, one should use the basis of incoming waves,
gin

n′′ s′′; κ(z) = [gout
n′′s′′; κ(z)]∗.

After the ortho-normalized outgoing waves have been con-
structed for each z-parity, with symmetric and antisymmetric
longitudinal coefficients gout

n′′s′′; nsKE±(z) = ±gout
n′′s′′; nsKE±(−z) in

expansion (19), solutions for electron waves propagating at z→
±∞ in a definite open channel (n, s) with a definite momentum
�k = (sign z) �kns are given by the expansion in Eq. (19) with
coefficients

gn′′ s′′; nsk(z) = (gout
n′′ s′′; nsE+(z) ± gout

n′′s′′; nsE−(z)/
√

2, (28)

where the sign + or − represents electron escape in the positive
or negative z direction, respectively, and we have suppressed K
in the subscripts. Waves incoming from z → ±∞ with a definite
momentum are given by the complex conjugate of Eq. (28).

3.2. Adiabatic approximation

In early works on the H atom in strong magnetic fields, a so-
called adiabatic approximation was widely used (e.g., Gor’kov
& Dzyaloshinskii 1968; Canuto & Ventura 1977, and references
therein), which neglects all terms but one in Eq. (19), i.e.,

ψκ(r) = Φns(r⊥) gκ(z). (29)

This approximation reduces the system (20) to the single equa-
tion with (n′′, s′′) = (n, s) and zero r.h.s.

The accuracy of the adiabatic approximation for bound states
can be assessed by comparing |E‖κ| with the distance between
the neighboring Landau levels that are coupled by the r.h.s. of
Eq. (20). For an atom at rest (K = 0), all the channel-coupling
terms become zero for s′′ � s. In this case, the relevant Landau
level distance is �ωc, while the longitudinal energies of the states
with ν = 0 (“tightly bound states”) are |E‖ns0(0)| ∼ 0.1–0.3 keV at
B ∼ 1011–1014 G , so that the adiabatic approximation is accurate
to within a few percent or better. It becomes still better for the
“hydrogenlike states” with ν > 0, which have |E‖κ| <∼ 0.01 keV.

From comparison of |E‖nsν(0)| with �Ωc, one can conclude
that the adiabatic approximation is generally inapplicable to a
moving atom. However, the accuracy remains good for suffi-
ciently slow atoms, that is when either K⊥ � Kcr or (provided
that η = 1) K⊥ � Kcr (Potekhin 1994, 1998). Otherwise, since
off-diagonal effective potentials Vn′′ s′′,n′s′ (rB, z) in Eq. (20) de-
crease at |z| → ∞ more rapidly than diagonal ones, this approx-
imation accurately reproduces wave functions tails at large |z|,
provided that η = 1.

For continuum states, the reactance and scattering matrices
are diagonal in the adiabatic approximation, with a separate scat-
tering coefficient S ns = S ns; ns for every open channel.

3.3. Born approximation

In the Born approximation, the potential V in a Hamiltonian
H = H0 + V , which acts on particles in the continuum states,
is treated as a small perturbation. We define ψ(0) to be the non-
perturbed function, which satisfies the equation H0ψ

(0) = Eψ(0).
Then from the Schrödinger equation Hψ = Eψ, one obtains the
continuum wave function in the first Born approximation in the
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form ψ = ψ(0) + ψ(1), where ψ(1) is determined by the equation
(H0 − E)ψ(1) = −Vψ(0).

Since we consider the continuum states corresponding to
definite Landau numbers (n,N) at |z| → ∞ (Sect. 3.1.2), the zero-
order wave function ψ(0) is given by the adiabatic approximation
with gκ(z) replaced by plane waves.

3.3.1. Two forms of solution

We now consider continuum states. We first choose the non-
perturbed wave function in the representation where the z-
projections of angular momentum operators, �z, have definite
values −�se for the electron and �sp for the proton. Then

ψ(0)
n,se,kze,N,sp,kzp

(re, rp) = Ψn,se,kze (re)ΨN,sp,kzp (rp), (30)

and ψ(1) is governed by the equation(
H(1)

e + H(1)
p − E

)
ψ(1)(re, rp) = (e2/rep) ψ(0)(re, rp). (31)

Using an expansion of ψ(1) over the complete set of
ψ(0)

n′ ,s′e,k′ze,N′ ,s′p,k′zp
, we obtain in the standard way

ψ(1)(re, rp) =
eikz(ze−zp)

L2
z

∑
n′ ,s′,N′ ,s′′,k′z

Wn′ s′N′ s′′
n,se,N,sp

(kz − k′z)

× Φn′s′ (r⊥e)Φ∗N′s′′ (r⊥p)

E⊥n′ + E⊥N′ + (�k′z)2/2m∗ − E
, (32)

where kz = (kzeM − kzpm)/mH = kze = −kzp (since Pz = 0) and

Wn′ s′N′ s′′
n,se,N,sp

(k) = e2
∫ ∞

−∞
dz eikz

∫
R2⊗R2

dr′⊥ dr⊥

×
Φ∗n′s′(r′⊥)ΦN′s′′ (r⊥)Φnse (r′⊥)Φ∗Nsp

(r⊥)(
|r′⊥ − r⊥|2 + z2

)1/2
· (33)

In the limit Lz → ∞, we replace
∑

kz
by (Lz/2π)

∫ ∞
−∞ dkz.

Potekhin & Chabrier (2003) obtained a simpler solution,
based on the representation of quantum states with definite K. In
this case, there are no separate quantum numbers se and sp. After
applying the transformation in Eq. (13), ψ(0) is given by Eq. (29)
with gκ(z) = e±ikzz/

√
Lz. Using Fourier transform

ψ̃(r⊥, k) =
1√
Lz

∫ Lz/2

−Lz/2
e−ikz ψ(r) dz, (34)

we obtain from Eq. (20) in the first Born approximation

ψ̃κ(r⊥, k) = ψ̃(0)
κ (r⊥, k) + ψ̃(1)

κ (r⊥, k) (35)

with

ψ̃(0)
κ (r⊥, k) =

sin((k − kz)Lz/2)
(k − kz)Lz/2

Φns(r⊥)

� (2π/Lz) δ(k − kz)Φns(r⊥) at Lz → ∞, (36)

ψ̃(1)
κ (r⊥, k) =

∑
n′s′

g̃(1)
n′s′; κ(k)Φn′s′(r⊥), (37)

g̃(1)
n′s′; κ(k) =

−L−1
z Ṽn′ s′

ns (rc, k − kz)

�
2(k2 − k2

z )/(2m∗) + E⊥n′ s′ − E⊥ns

, (38)

Ṽn′ s′
ns (rc, k) =

∫ ∞

−∞
e−ikz Vns,n′s′ (rc, z) dz, (39)

where Ṽn′ s′
ns can be presented as a single integral of a combination

of elementary functions (Appendix B of Potekhin & Chabrier
2003).

3.3.2. Approximation of infinite proton mass

The neglect of the proton motion is equivalent to the assump-
tion that M → ∞. In this approximation, ψ(0) depends only on
re in Eq. (30) without ΨN,sp,kzp(rp) on the r.h.s. Then Eq. (32)
simplifies to

ψ(1)(re) =
∑

n′ ,s′,k′z

eikzze

Lz

Φn′s′ (r⊥e)
E⊥n′ + (�k′z)2/2m − E

∫ Lz

−Lz

dz′
ei(kz−k′z)z′

Lz

×
∫

R2
dr′⊥Φ

∗
n′ s′(r′⊥)

e2√|r′|2 + (z′)2
Φnse (r′⊥). (40)

Taking into account the definition in Eq. (21), we see that this
solution is identical to the solution provided by Eqs. (37)–(39)
in the particular case where rc = 0, after the obvious replacement
of E⊥ns by E⊥n and m∗ by m. The zero value of rc naturally reflects
the condition vdrift = 0.

4. Electron-proton photoabsorption

4.1. General expressions

The general nonrelativistic formula for the differential cross-
section of absorption of radiation by a quantum-mechanical sys-
tem is (e.g., Armstrong & Nicholls 1972)

dσ =
4π2

ωc
|〈 f |e · jeff |i〉|2 δ(E f − Ei − �ω) dν f , (41)

where |i〉 and | f 〉 are the initial and final states of the system, dν f

is the density of final states, �ω is the photon energy, e is the
polarization vector, jeff = eiq·r j, j is the electric current operator,
and q is the photon wave number. In our case,

jeff = e (eiq·re ṙe − eiq·rp ṙp), (42)

where the velocity operators ṙe and ṙp are given by Eq. (5).
Equation (42) does not yet include either the photon inter-

action with electron and proton magnetic moments μ̂e or μ̂p.
For transitions without spin-flip, the latter interaction can be
taken into account by adding to the e · jeff operator the term
ĵspin = −i(q × e) · (μ̂e + μ̂p) (cf. Kopidakis et al. 1996), whereas
operators (q × e) × μ̂e,p are responsible for spin-flip transitions
(cf. Wunner et al. 1983).

We consider the representation where se and sp are definite
in the initial and final states. For an initial state with fixed ni, se,i,
Ni, sp,i, and kz = ki in Eq. (32), and for a final state with either
a fixed z-parity or a fixed sign of kz = k f , we have in Eq. (41)
dν f = (Lz/2π) (m∗/�2|k f |) dE f . Therefore, the cross-section of
photoabsorption for a pure initial quantum state |i〉 is

σi(ω) =
∑

nf ,se, f ,N f ,sp, f ,±

2πLzm∗
�2|k f |ω c

|〈 f |J|i〉|2 , (43)

where J ≡ e · jeff + ĵspin,

E⊥nf s f
+

�
2k2

f

2m∗
= E⊥ni si

+
�

2k2
i

2m∗
+ �ω, (44)

the sum is performed over those n f and Nf which are permitted
by Eq. (44), and “±” means the sum over the z-parity of the final
state (in the case where the parity is definite) or the sum over the
signs of k f (in the case where kz in the final state is definite).

In the alternative representation with definite cartesian
components of pseudomomentum K, using the transformation
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in Eq. (13), one can express the cross-section in terms of the
interaction matrix element between the initial and final internal
states of the electron-proton system (Bezchastnov & Potekhin
1994). The result has the same form as Eq. (41), but now dν f

is the density of final states at fixed K f = Ki + �q, initial and
final states are described by wave functions ψK , and the effective
current operator in the conventional representation with η = 0
(r = rep) is given by

jeff = e exp

(
i

M
mH

q · r
) (
π

m
+

K
�mH

+
�q
2m

)

+ e exp

(
−i

m
mH

q · r
) (
Π

M
− K

�mH
− �q

2M

)
, (45)

where operator π is defined by Eq. (17) andΠ = p−(e/2c) B× r.
The transverse cyclic components of operators π and Π act on
the Landau states as

π±1|n, s〉⊥ = ∓ i�
am

√
n± |n ± 1, s ∓ 1〉⊥, (46)

Π±1|n, s〉⊥ = ∓ i�
am

√
N∓ |n, s ∓ 1〉⊥, (47)

where n± ≡ n + 1
2 ± 1

2 and N∓ ≡ N + 1
2 ∓ 1

2 = n∓ + s.
Changes in rA and rB induce transformations of operator jeff ,

studied by Bezchastnov & Potekhin (1994). In the particular case
where for both initial and final states, the representation with
η = 1 (rB = rc, r = rep + rc) is used, their result reads

jeff

e
= exp

(
iq · r⊥ + rc

2
+

M
mH

iqzz

) (
π

m
+

�q
2m

)

+ exp

(
−iq · r⊥ + rc

2
− m

mH
iqzz

) (
Π

M
− �q

2M

)
· (48)

In this representation, instead of Eq. (43), we have

σi(ω) =
∑

nf ,s f ,±

2πLzm∗
�2|k f |ω c

|〈 f |J|i〉|2 , (49)

where the sum is performed over those n f and s f that are per-
mitted by Eq. (44). For the solution described in Sect. 3.1, the
matrix element in Eq. (49) becomes

〈 f |J|i〉 =
∑

n′ ,s′,n′′ ,s′′

∫ Lz

−Lz

[
gout

n′′s′′; κ f
(z)

]∗

×〈n′′s′′ | J | n′s′〉⊥ gin
n′ s′; κi

(z) dz. (50)

Using Eqs. (46) and (47), we can express the transverse ma-
trix elements 〈n′′s′′ | J | n′s′〉⊥ in terms of Laguerre functions.
Hence, Eq. (50) presents a sum of overlap integrals over z. For
instance, Eqs. (A7)–(A12) of Potekhin & Pavlov (1997) provide
an explicit expression in terms of this overlap integrals for the
matrix elements 〈 f | M̂ | i〉 of the operator M̂ = (�/e3)J in the
approximation where small terms ∼O((m/M) q) are neglected,
but separate terms ∼O(m/M) and ∼O(q) are retained.

4.2. Dipole and Born approximations

Hereafter, we use the dipole approximation (q → 0). Then ĵspin
vanishes, and the total effective current in Eq. (42) reduces to

jeff = e(ṙe − ṙp), (51)

while the transformed effective current in Eq. (48) becomes

jeff = e (π/m +Π/M) . (52)

By substituting Eqs. (46) and (47), the sum in Eq. (50) reduces
to

〈 f | J | i〉 =
+1∑
α=−1

∑
n′s′

e−α j̄(α)
n′ s′(κi, κ f ), (53)

where

j̄(+1)
n′ s′ = −

i�e
am

( √
n′ + 1
m

In′+1,N′
n′N′ +

√
N′

M
In′ ,N′−1

n′N′

)
, (54)

j̄(−1)
n′ s′ =

i�e
am

( √
n′

m
In′−1,N′

n′N′ +

√
N′ + 1
M

In′,N′+1
n′N′

)
, (55)

In′′ ,N′′
n′ ,N′ =

∫ Lz

−Lz

[
gout

n′′,s′′; κ f
(z)

]∗
gin

n′s′; κi
(z) dz, (56)

j̄(0)
n′ s′ = −i�e

∫ Lz

−Lz

[
gout

n′s′; κ f
(z)

]∗ d
dz
gin

n′s′; κi
(z) dz, (57)

and N ≡ n + s is the proton Landau number. In the first Born
approximation (Sect. 3.3),

〈 f | J | i〉 ≈
〈
ψ(1)

f | e · jeff |ψ(0)
i

〉
+

〈
ψ(0)

f | e · jeff |ψ(1)
i

〉
. (58)

In the representation where se and sp are definite, using Eq. (30)
forψ(0) and Eq. (32) forψ(1), and taking into account the relations
in Eq. (9), we can derive the explicit expression for the matrix
element in Eq. (43) of

〈 f | e ·
(
ṙe − ṙp

)
| i〉 =

+1∑
α=−1

e−α j̄(α)
nf ,se, f ,N f ,sp, f ; ni ,se,i,Ni ,sp,i

, (59)

where

j̄(0) = − e
Lz m∗ ω

Δk W
nf ,se, f ,N f ,sp, f

ni ,se,i ,Ni,sp,i
(Δk), (60)

j̄(±1) = ± ie
Lzam

{
1

m (ω ± ωc)

(√
n±f W

nf±1,se, f∓1,N f ,sp, f

ni,se,i ,Ni,sp,i
(Δk)

−
√

n∓i W
nf ,se, f ,N f ,sp, f

ni∓1,se,i±1,Ni,sp,i
(Δk)

)

+
1

M (ω ∓Ωc)

(√
N∓f W

nf ,se, f ,N f∓1,sp, f±1
ni ,se,i ,Ni,sp,i

(Δk)

−
√

N±i W
nf ,se, f ,N f ,sp, f

ni ,se,i ,Ni±1,sp,i∓1(Δk)

)}
, (61)

and Δk ≡ k f − ki.
In the representation where cartesian components of K have

definite values, using Eqs. (37)–(39), (46), and (47), one can de-
rive the matrix element in Eq. (49) in the form

〈 f | J | i〉 =
+1∑
α=−1

e−α j̄(α)
nf ,s f ; ni,si

, (62)

where

j̄(0) = − e
Lz μω

Δk Ṽ
nf s f
ni si

(rc,Δk), (63)

j̄(±1) =± ie
Lzam

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
n∓f Ṽ

n f∓1,s f±1
ni si

(rc,Δk) −√
n±i Ṽ

n f s f

ni±1,si∓1(rc,Δk)

m (ω ± ωc)

+

√
N±f Ṽ

n f ,s f±1
ni si

(rc,Δk) − √
N∓i Ṽ

n f s f

ni,si∓1(rc,Δk)

M (ω ∓Ωc)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ · (64)

Page 6 of 12



A. Y. Potekhin: Cyclotron harmonics in opacities of isolated neutron star atmospheres

Substituting Eqs. (62)–(64) into Eq. (49), assuming Maxwell
distribution of ki, and taking the average over the initial states,
we obtain (Potekhin & Chabrier 2003; Potekhin & Lai 2007)

σ(ω) =
+1∑

α=−1

|eα|2
∑
n,N

f e
n f p

N

∑
n′,N′

σ(α)
n,N; n′ ,N′ (ω), (65)

where f e
n and f p

N are the electron and proton number fractions at
the Landau levels n and N,

σ(α)
n,N; n′ ,N′(ω) =

4πe2

mc

ω2 ν(α)
n,N; n′ ,N′ (ω)

(ω + αωc)2 (ω − αΩc)2
(66)

is the partial cross-section for transitions between the specified
electron and proton Landau levels for polarization α,

ν(α)
n,N; n′,N′ (ω) =

4
3

√
2π
mT

ne e4

�ω
Λ

(α)
n,N; n′ ,N′ (β∗, ω/ω∗) (67)

is the effective partial collision frequency,

Λ
(α)
n,N; n′,N′ (β∗, ω/ω∗) =

3
2

∫ ∞

0

du
u′

e−β∗u
2/2 θ(u′2)

×
(
(u′ + u)2|α| w(α)

n,N; n′,N′ (u+) + (u′ − u)2|α| w(α)
n,N; n′ ,N′ (u−)

)
(68)

is a partial Coulomb logarithm, and

w(α)
n,N; n′,N′ (u±) =

1
2

∫ ∞

0

t |α| dt

(t + u2±/2)2
I2
n′ ,n(t) I2

N′ ,N(t), (69)

where β∗ = �ω∗/T = �eB/(m∗cT ), u± = |u ± u′|, θ(u′2) is the
Heaviside step function, and

u′2 = u2 +
2m∗
M

(N − N′) +
2m∗
m

(n − n′) +
2ω
ω∗
· (70)

Since Λ(+1) = Λ(−1), two different Coulomb logarithms Λ(0) and
Λ(±1) describe all three basic polarizations.

Terms that are proportional to eαe∗α′ with α � α′ are absent
in Eq. (65), because, for every pair of pure quantum states |i〉 and
| f 〉, only one of the three basic polarizations provides a non-zero
transition matrix element in the dipole approximation.

Potekhin & Lai (2007) mentioned that Debye screening
might be taken into account by using u± = [(u±u′)2+(amkD)2]1/2

as the arguments of w(α)
n,N; n′,N′ in Eq. (68), kD being the inverse

screening length. However, Sawyer (2007), following Bekefi
(1966), showed that scattering off a Debye potential is not a
valid description of the screening correction for photoabsorp-
tion; instead, the integrand in Eq. (69) should be multiplied by
(t + u2± + a2

mk2
De/2)/(t + u2± + a2

mk2
D), where k2

De is the electron
contribution to the squared Debye wave number k2

D.

4.3. Damping factor

Equation (66) gives divergent results at ω → ωc for α = −1
and at ω → Ωc for α = +1, because it ignores damping effects
due to the finite lifetimes of the initial and final states of the
transition. A conventional way of including these effects con-
sists of adding a damping factor to the denominator in Eq. (66),
which results in Lorentz profiles (e.g., Armstrong & Nicholls
1972). The damping factor can be traced back to the accurate
treatment of the complex dielectric tensor of the classical mag-
netized plasma (Ginzburg 1970). This treatment allows one to
express the complex dielectric tensor in terms of the effective

collision frequencies related to different types of collisions in
the plasma. Imaginary parts of the refraction indexes, calculated
from the complex dielectric tensor, provide complicated expres-
sions for the free-free photoabsorption cross sections σffα for the
basic polarizations α = 0,±1. Based on the assumption that the
effective collision frequencies are small compared toω, the latter
expressions greatly simplify and reduce to (Potekhin & Chabrier
2003)

σffα (ω) =
4πe2

mc

ω2 νffα(ω)

(ω + αωc)2 (ω − αΩc)2 + ω2 ν̃2
α(ω)

, (71)

where

ν̃α =
(
1 + α

ωc

ω

)
νp +

(
1 − α Ωc

ω

)
νe + ν

ff
α, (72)

νe and νp being the effective damping factors for protons and
electrons, respectively, not related to the electron-proton col-
lisions. In general, νe and νp may also depend on α and ω.
Ginzburg (1970) considers νe and νp for collisions of elec-
trons and protons with molecules, whereas Potekhin & Chabrier
(2003) take into account damping factors due to both the scat-
tering of light by free electrons and protons and proton-proton
collisions. The derivation of Eq. (72) from the complex dielec-
tric tensor of the plasma assumes that νe � ωc, ν̃α � ωc, and
νp � Ωc.

Although the general expressions given in Eqs. (71), (72) can
be established in frames of the classical theory, accurate values
of the effective frequencies are provided by quantum mechanics.
In our case,

νffα (ω) =
∑
n,N

f e
n f p

N

∑
n′,N′

ν(α)
n,N; n′ ,N′ (ω) =

4
3

√
2π
mT

ne e4

�ω
Λff‖,⊥, (73)

where ν(α)
n,N; n′ ,N′ (ω) is provided by Eqs. (67)–(70). In the second

equality, Λff‖ and Λff⊥ are, by definition, Coulomb logarithms for
α = 0 and α = ±1. Parallel and transverse Gaunt factors (e.g.,
Mészáros 1992) equal (

√
3/π)Λff‖ and (

√
3/π)Λff⊥, respectively.

Since different quantum transitions contribute to the cy-
clotron resonance at the same frequency (Ωc orωc, depending on
α), their quantum amplitudes are coherent. Therefore it is impor-
tant that the same damping factor ν̃α be used in all the transitions
(cf. the discussion of radiative cascades in quantum oscillator
by Cohen-Tannoudji et al. 1998). Moreover, the same ν̃α given
by Eq. (72) should be used for the absorption and scattering pro-
cesses. This ensures that the cyclotron cross-section, being in-
tegrated across the resonance, provides the correct value of the
cyclotron oscillator strength (e.g., Ventura 1979), otherwise the
equivalent width of the cyclotron line would be overestimated.

In the electron resonance region, where |ω − ωc| � ωc and
α = −1, one can neglect Ωc/ω, because it is much smaller
than 1, and the term that contains νp, because it is small com-
pared to the other terms. The result coincides with the conven-
tional expression for the electron free-free cross-section without
allowance for proton motion with ν̃−1 = ν

ff
−1 + νe. In the proton

resonance region, where |ω − Ωc| � Ωc and α = +1, the de-
nominator in Eq. (71) becomes (ω + ωc)2(ω − Ωc)2 + ω2ν̃2

α ≈
ω2

c [(ω − Ωc)2 + ν̃2
p], where ν̃p = (m/M) νffα(Ωc). In this approx-

imation, Eq. (71) becomes formally equivalent to a simple one-
particle cyclotron cross-section (cf. Eq. (14) of Pavlov et al.
1995, or Eq. (47) of Sawyer 2007), apart from a difference in
notations and the difference in Λff (the latter being discussed in
Sect. 5.2).
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The treatment that leads to Eq. (72) predicts a small shift in
the position of the resonance due to the damping. This shift is
unimportant for applications and therefore neglected in Eq. (71).

5. Cyclotron harmonics

In addition to the fundamental cyclotron resonances, the quan-
tum treatment of the free-free absorption identifies electron and
proton cyclotron harmonics at integer multiples of ωc and Ωc,
respectively. They appear because of the increase in the partial
Coulomb logarithms Λ(α)

n,N; n′,N′ (β∗, ω/ω∗) at ω → Ωc(N′ − N) +
ωc(n′ − n). Thus, lth electron cyclotron harmonics (in addition
to the fundamental at ω = ωc) arises at ω = (l + 1)ωc due to
the terms with n′ − n = l + 1, and each lth proton cyclotron har-
monics (additional to the fundamental at ω = Ωc) is formed by
the terms with N′ − N = l + 1 in Eq. (73). Unlike the classical
electron and proton cyclotron resonances, the quantum peaks of
Λff contribute to σα(ω) at any polarization and are the same for
α = +1 and −1.

The relative strengths of the harmonics depend on the distri-
bution numbers f e

n and f p
N . In this paper, we assume local ther-

modynamic equilibrium (LTE) and thus use the Boltzmann dis-
tributions, as in most of the previous papers (but see Nagel &
Ventura 1983 and Potekhin & Lai 2007 for non-LTE effects on
the electron and proton cyclotron radiation rates, respectively).

We calculate free-free cross-sections in magnetized neutron-
star atmospheres using Eqs. (65)–(73). Examples of opacities
and/or spectra calculated with the use of these cross-sections can
be found, e.g., in Potekhin & Chabrier (2003, 2004), Potekhin
et al. (2004), Ho et al. (2008), Suleimanov et al. (2009, 2010a).
In previous studies, various additional simplifications have been
made in addition to the nonrelativistic, dipole, first Born approx-
imations described above for the free-free cross-sections. Below
we assess the applicability ranges of these simplifications by
comparing with our more accurate results.

5.1. Electron and muon cyclotron harmonics

5.1.1. Fixed scattering potential

In early works (e.g., Mészáros 1992, and references therein),
free-free (or bremsstrahlung) processes were treated assuming
scattering off a fixed Coulomb center, which is equivalent to the
approximation of M → ∞, described in Sect. 3.3.2. In this ap-
proximation, one can set Ωc = 0 and explicitly perform the sum-
mation over N′ in Eq. (65) using the identity

∑∞
N′=0 I2

N′N(t) = 1.
Taking damping (Sect. 4.3) into account, we obtain

σα(ω) =
4πe2

mc

νffα(ω)

(ω + αωc)2 + (νe + νffα )2
, (74)

νffα =
4
3

√
2π
mT

ne e4

�ω
Λffα(βe, ω/ωc), (75)

Λffα(βe, ω/ωc) =
3
2

∑
n

f e
n

∑
n′

∫ ∞

0

du
u′

e−βeu2/2 θ(u′2)

×
(
(u′ + u)2|α| w(α)

n; n′ (u+) + (u′ − u)2|α| w(α)
n; n′ (u−)

)
, (76)

w(α)
n; n′ (u±) =

1
2

∫ ∞

0

t|α| dt

(t + u2±/2)2
I2
n′,n(t), (77)

where βe = �ωc/T and u′2 = u2 + 2 (n− n′) + 2ω/ωc. Assuming
Boltzmann distribution ( f e

n / f e
0 = 2e−nβe at n ≥ 1, where the fac-

tor 2 takes account of the electron spin degeneracy), one can

Fig. 1. Transverse Coulomb logarithm as a function ofω/ωc at �ωc/T =
5 for different approximations: the model of fixed Coulomb potential
(dotted line), approximate account of proton recoil (solid line), adia-
batic approximation (long-dashed line), and the first post-adiabatic ap-
proximation (short dash – long dash). The divergent peaks are trimmed
at |ω − (l + 1)ωc| = 10−3ωc (l = 0, 1, 2, . . .). For comparison, the non-
magnetic Coulomb logarithm (short dashes; in this case the horizontal
axis displays �ω/5T ) and the model with approximate account of pro-
ton recoil in the muonic atom μ−p (dot-dashed line) are shown.

reduce this result to Eq. (27) of Pavlov & Panov (1976) (as cor-
rected by Potekhin & Chabrier 2003).

This approximation was used in all models of the spectra of
strongly magnetized neutron stars until the beginning of the 21st
century (e.g., Pavlov et al. 1995; Zane et al. 2000, and references
therein). It is validated by the large value of the mass ratio M/m.
In addition, it requires that ω � Ωc, as seen directly from the
comparison of Eq. (74) with Eq. (71).

5.1.2. Approximate account of proton recoil

Pavlov & Panov (1976) proposed an approximate treatment of
proton recoil, which assumes that βe � M/m and does not
take into account Landau quantization of proton motion. In
Fig. 1, the dotted line shows the perpendicular Coulomb loga-
rithm Λff⊥ calculated according to Eqs. (74)–(77), while the solid
line takes the approximate account of proton recoil. As an exam-
ple, we show the case where βe = 5. The familiar nonmagnetic
Coulomb logarithm in the first Born approximation (e.g., Bethe
& Salpeter 1957) is shown by the short-dashed line, assuming
the same �ω/T along the horizontal axis as for the other curves
(�ω/T = βeω/ωc).

To enhance the difference caused by the recoil, we replace
the electron by the muon μ−. All the above formulae and discus-
sion remain unchanged, but now the mass ratio is M/m = 8.88.
The result of the approximate treatment of the recoil is shown by
the dot-dashed line.

In Fig. 2, the same approximations are shown for Λff‖ . In this
case, the lines related to the cyclotron harmonics are smoothed,
because the factors (u′ ± u)2 quench the near-threshold growth
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Fig. 2. The same as in Fig. 1 but for the longitudinal Coulomb loga-
rithm. In this case, lines with the approximate account of proton recoil
almost coincide with the line corresponding to the fixed-potential ap-
proximation.

of the integrand in Eq. (76). The same smoothing results in the
infinite proton mass approximation being even more applicable
(under the necessary condition ω � Ωc): the dotted, solid, and
dot-dashed lines almost coincide in Fig. 2.

5.1.3. Adiabatic and post-adiabatic approximations

Several authors (Virtamo & Jauho 1975; Nagel & Ventura
1983; Mészáros 1992) used the adiabatic approximation not
only for the unperturbed wave function ψ(0), but also for ψ(1).
This was done in addition to assuming the infinite proton mass
(Sect. 5.1.1). In other words, they kept only one (n, s) term in the
sum given by Eq. (40). The result is shown in Figs. 1 and 2 by
long-dashed lines. We see that this approximation works well at
ω � ωc, but becomes inaccurate at ω >∼ ωc.

Sawyer (2007) analyzed the photoabsorption problem by us-
ing the method of field theory. In the regionΩc � ω ≤ 1.5ωc, he
considered account two electron Landau levels n = 0 and 1 and
applied a perturbation theory assuming the parameter ε = e−βe/2

to be small. His result is identical to the results discussed in
Sect. 5.1.1 expanded in powers of ε, which we can write as

Λff⊥ =
3
4

e�ω/T
∫ ∞

0

dy
(1 + y)2

(
K0(x0)

+
2e−βe/2

1 + y

(
K0(x1) + K0(x−1)

) )
. (78)

Here and in the next equation, Kν(xn) are modified Bessel func-
tions, and xn ≡ |�ω/T + nβe|

√
0.25 + y/βe. Equation (78) differs

from Eq. (28) of Sawyer (2007) in two respects: first, we have
restored the factor 2 at e−βe/2, and second, we have dropped a
term proportional to e−βe , because it is of the same order ε2 as
the contribution from the level n = 2, and therefore should be
treated together with the latter contribution in the next order of
the perturbation theory.

Fig. 3. Transverse Coulomb logarithm as function of ω/ωc at �ωc/T =
5 in the model of fixed Coulomb potential (dotted line) and the approx-
imate account of proton recoil (dot-dashed line), compared to the non-
magnetic Coulomb logarithm (dashed line) and the accurate calculation
for the muonic atom μ−p (solid line).

In the same way, we obtain

Λff‖ =
3
4

e�ω/T
∫ ∞

0

dy
(1 + y) (βe/4 + y)

(
x0 K1(x0)

+
e−βe/2

1 + y

(
x1K1(x1) + x−1K1(x−1)

) )
. (79)

Equations (78) and (79) can be obtained by the first itera-
tion in the perturbation expansion, starting from the adiabatic
aproximation.

5.2. Proton cyclotron harmonics

Proton cyclotron harmonics in the photoabsorption coefficients
at ω = (l + 1)Ωc are superimposed on the peaks related to the
electron cyclotron harmonics. However, for the H atom the two
series of harmonics are separated because of the large value of
M/m = 1836.1. To observe the superimposition and the quali-
tative differences of various approximations, it is instructive to
consider, in place of the H atom, the muonic atom (the μ−p sys-
tem), which has a smaller mass ratio M/m = 8.88. The trans-
verse Coulomb logarithm Λff⊥ of photoabsorption by such sys-
tem is shown in Fig. 3. The solid line displays the result of a
calculation made according to Sect. 4. The other lines, as well as
in Fig. 1, show the results of different approximations: a fixed
Coulomb center (Sect. 5.1.1, dotted line), the approximate ac-
count of proton recoil (Sect. 5.1.2, dot-dashed line), and a non-
magnetic Coulomb logarithm (dashes).

The smaller peaks in the solid curve correspond to the proton
cyclotron harmonics. They are superimposed on the large-scale
oscillations, which correspond to the muon cyclotron harmonics.
Although the approximate recoil treatment (dot-dashed line) im-
proves the agreement with the exact calculation compared to the
infinite proton mass model (dotted line), both that approximate
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Fig. 4. Transverse Coulomb logarithm as function of ω/Ωc at �Ωc/T =
5. The accurate calculation (solid line) for the systems μ−p (lower
lines) and ep (upper lines) is compared to the approximation of a fixed
Coulomb potential for the electron or muon scattering (dashed lines)
or for the proton scattering (dotted line), and to the first post-adiabatic
approximation (short dash – long dash).

models that neglect proton Landau quantization differ signifi-
cantly from the precise result.

In Fig. 4, we compare the proton cyclotron harmonics for
different relative masses of the positive and negative particles.
Here the proton cyclotron parameter is fixed to βp = �Ωc/T = 5,
and the horizontal axis displays the ratio ω/Ωc. The solid lines
show the transverse Coulomb logarithm for the muonic atom
(the lower curve) and the H atom (the upper curve). The dashed
lines show Λff⊥ calculated for the same �ωc/T = βp M/m and
the same ω/ωc = (m/M)ω/Ωc as the solid curves, but for the
approximation of a fixed Coulomb potential in the electron or
muon scattering. By comparison, the dotted line shows Λff⊥ cal-
culated for proton scattering off a fixed Coulomb center, which
can be regarded as a model where M/m→ 0. We see that the ap-
proximate models are unable to reproduce the proton cyclotron
features correctly. It is also noteworthy that the larger the ratio
M/m, the smaller the proton cyclotron peaks. In addition, the
cyclotron resonance strength decreases with increasing harmon-
ics number l. These properties of the cyclotron harmonics allow
us to conclude that the solid lines in Figs. 1 and 2 are precise
(proton cyclotron harmonics are negligible on their scale).

In the early models of magnetized neutron star atmospheres
(e.g., Pavlov & Shibanov 1978; Shibanov et al. 1992; Shibanov
& Zavlin 1995), the authors considered moderate magnetic fields
B ∼ 1011–1012 G, where the proton Landau quantization is
unimportant. More recently, observational evidence has accu-
mulated that some of the isolated neutron stars are probably
magnetars, which have fields of B ∼ 1014 G (see, e.g., the re-
view by Mereghetti 2008 and references therein). According
to Eq. (2), the proton cyclotron lines of magnetars are in an
observationally accessible spectral range, which has encouraged
theoretical modeling of these features. In the absence of an accu-
rate quantum treatment, several authors (Zane et al. 2000, 2001;

Özel 2001; Ho & Lai 2001, 2003) employed the scaling pre-
viously suggested for this purpose by Pavlov et al. (1995), ac-
cording to which the free-free cross-section for protons equals
(m/M)2 σ−α(ωM/m), where σα(ω) is given by Eq. (74). The
latter equation differs remarkably from the correct expression
in Eq. (71). At photon frequencies ω < Ωc, the difference
roughly amounts to a factor of (ω/Ωc)2.

In addition, the Coulomb logarithm that determines νffα can-
not be obtained from this scaling. An example is shown in Fig. 4,
where the dotted line corresponding to the fixed-potential model
is compared with the accurate calculations displayed by the solid
lines. We see that the fixed-potential model strongly overesti-
mates the strength of the proton cyclotron harmonics. The origin
of the discrepancy is clear: while considering a collision of a
proton with an electron, one cannot assume the electron to be a
nonmoving particle.

Sawyer (2007) employed a representation with definite se
and sp and analyzed the first proton-cyclotron peak of Λff⊥, in a
way similar to his analysis of the first electron cyclotron peak
(see Sect. 5.1.3), by taking into account the ground electron
Landau level n = 0 and two proton Landau levels, N = 0 and 1.
The result (his Eq. (30)) is quite accurate close to the fundamen-
tal cyclotron frequency, as we illustrate wuth the lines of alter-
nating short and long dashes in Fig. 4. In the case of hydrogen
(higher M/m), it almost coincides with the accurate result (solid
line) at ω <∼ 1.5Ωc and with the result obtained by neglecting the
Landau quantization of protons (dashed line) at higher ω values.

6. Discussion

6.1. Corrections beyond Born approximation

The formulae presented in Sects. 3.1 and 4.1 in principle allow
one to perform an accurate calculation of photoabsorption rates
in the electron-proton system in an arbitrary magnetic field, tak-
ing into account the effects of Landau quantization of the elec-
tron and proton motion across the field and the transverse mo-
tion of the center of mass. For bound-free absorption, this cal-
culation was presented by Potekhin & Pavlov (1997). For free-
free processes, we apply the first Born approximation and the
dipole approximation. We plan to perform calculations of the
free-free opacities beyond Born approximation in future work.
An approximate estimate of the non-Born corrections can be ob-
tained (Potekhin & Lai 2007) by introducing correction factors
(1 + γ−1∗ u−2)−1/2(1 + γ−1∗ (u′)−2)−1/2 into the integral of Eq. (68),
where γ∗ = (m/m∗)2γ and γ = �

3B/(m2ce3) = 425.44 B12. The
accuracy of the approximation is ensured by the smallness of
γ−1/2
∗ ≈ 0.05 B−1/2

12 and the additional condition T � e4m∗/�2,
which is the usual applicability condition for a Born approxima-
tion without a magnetic field.

We have checked that these corrections are sufficiently small
for the electron cyclotron harmonics at B ∼ 1011 G (relevant
to CCOs) and negligible for the proton cyclotron harmonics at
B > 1013 G (relevant to XDINSs).

6.2. Importance of bound states

Free-free absorption contributes only a part of the total opaci-
ties in the atmospheres of neutron stars. A second constituent
is the familiar scattering, and a third the absorption by bound
species (see, e.g., Canuto & Ventura 1977; Pavlov et al. 1995).
It was realized long ago (Ruderman 1971) that in strong mag-
netic fields the increase in the binding energies of atoms and
molecules can lead to their non-negligible abundance even in
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Fig. 5. Opacities for the two normal electromagnetic waves propagat-
ing at the angle θB = 45◦ to the magnetic field direction in a hydrogen
atmosphere of a neutron star with B = 5 × 1013 G and T = 120 eV
at density ρ = 10 g cm−3 (which is in the middle of the photosphere at
these B and T ). The results are shown for fully ionized (dotted lines) and
partially ionized (solid and dot-dashed lines) plasma models. In the lat-
ter model, the nonionized atomic fraction equals 0.0066. The solid line
shows the opacity obtained with the accurate calculation of the free-free
Coulomb logarithm, and the dot-dashed line demonstrates the result of
the approximate treatment that corresponds to the dashed line in Fig. 4.

hot atmospheres. With increasing B, the binding energies and
abundances of bound species increase at any fixed density ρ and
temperature T (Potekhin et al. 1999; Lai 2001), so that even the
lightest of the atoms, hydrogen, provides a noticeable contribu-
tion to the opacities at the temperatures of interest, if the mag-
netic field is strong enough. Even a small neutral fraction can
be important, because the bound-bound and bound-free cross-
sections are large close to certain characteristic spectral energies.

For electron cyclotron harmonics to appear at �ω <∼ 1 keV,
we should ensure that B <∼ 1011 G according to Eq. (1). At these
relatively weak magnetic fields and the characteristic tempera-
ture T∞ >∼ 100 eV, the assumption of full ionization may be
acceptable. However, at B > 1013 G, which is required for ion
cyclotron harmonics, the situation is different. An illustration is
given in Fig. 5. The solid curves show true absorption opaci-
ties for two normal electromagnetic waves propagating at the
angle 45◦ to the magnetic field lines at B = 5 × 1013 G and
T = 120 eV. The upper and lower curves correspond to the
ordinary and extraordinary waves, respectively. The density in
this example is chosen to be ρ = 10 g cm−3, which is a typi-
cal atmosphere density at B = 5 × 1013 G and T∞eff = 100 eV
(at this density the thermodynamic temperature T approximately
equals the effective temperature Teff). According to our ioniza-
tion equilibrium model (Potekhin et al. 1999), at these B, T ,
and ρ values, 0.66% of protons in the plasma are comprised in
the ground-state H atoms that are not too strongly perturbed by
plasma microfields so that they contribute to the bound-bound
and bound-free opacities (the “optical” atomic fraction), and
only 0.1% of protons are in excited bound states. Even though

the ground-state atomic fraction is small, it is not negligible. In
Fig. 5, at �ω >∼ 0.4 keV, the opacities in two normal modes,
calculated with allowance for partial ionization (solid and dot-
dashed curves), are significantly higher and have more charac-
teristic features than the opacity calculated under the assumption
of complete ionization (dotted lines). In particular, the broad fea-
ture on the lower curve near 0.4 keV is produced by the princi-
pal bound-bound transition between the two lowest bound states
(si = 0 → s f = 1), and the increased value of the opacity at
higher energies �ω is due to the transitions to other bound and
free quantum states. The wavy shape of the lower solid curve
(for the extraordinary mode) at �ω >∼ 0.7 keV is explained by
bound-free transitions to different open channels, each having its
own threshold energy. All the bound-bound absorption features
and photoionization thresholds are strongly broadened by the ef-
fects of atomic motion across the magnetic field lines (“mag-
netic broadening”, see Potekhin & Pavlov 1997 and references
therein).

In the insets, we zoom in on the regions of the first and sec-
ond proton cyclotron harmonics. Both of them are visible, but
negligible compared to the effect of partial ionization on the
opacities.

6.3. Other possibilities for CCOs and XDINSs

Apart from the cyclotron harmonics, a number of alternative
explanations of the observed absorption features in CCOs and
XDINSs have been suggested in the literature.

Mori & Ho (2007) constructed models of strongly mag-
netized neutron star atmospheres with mid-Z elements and
compared them to the observed spectra of the neutron stars
1E 1207.4-5209 and RX J1605.3+3249. They demonstrated that
the positions and relative strengths of the strongest absorption
features in these neutron stars are in good agreement with a
model of a strongly ionized oxygen atmosphere with B = 1012 G
and B = 1013 G, respectively. This explanation seems promising,
but unsolved problems remain: the effects of motion across the
field have been treated approximately, based on the assumption
that they are small, and detailed fits to the observed spectra have
not yet been presented.

Among other hypotheses about the nature of the absorption
features, there was a suggestion that they could be due to bound-
bound transitions in exotic molecular ions (Turbiner & López
Vieyra 2006). However, our estimates show that the abundance
of these ions in a neutron star atmosphere would be negligible
compared with the abundance of H atoms. Suleimanov et al.
(2009) proposed a “sandwich” model atmosphere of finite depth,
composed of a helium slab above a condensed surface and be-
neath hydrogen, and demonstrated that this model can produce
two or three absorption features in the range of �ω ∼ 0.2–1 keV
at B ∼ 1014 G, although a detailed comparison with observed
spectra was not performed. One cannot also rule out that some
absorption lines originate in a cloud near a neutron star, rather
than in the atmosphere (see Hambaryan et al. 2009).

7. Summary

We have considered the basic methods for calculation of free-
free opacities of a magnetized hydrogen plasma. Our emphasis
has been on the case where not only electron, but also proton
motion across the magnetic field is quantized by the Landau
states. We have derived general formulae for the photoabsorp-
tion rates and considered in detail the dipole, first Born approxi-
mation. We have presented numerical examples, compared them
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with the results of previously used simplified models, and an-
alyzed the physical assumptions behind the different simplifica-
tions and conditions of their applicability. We have demonstrated
that the proton cyclotron harmonics at a given value of the pa-
rameter βp = �Ωc/T are much weaker than the respective elec-
tron cyclotron harmonics at the same value of βe = �ωc/T , and
explained this difference in terms the large (nonperturbative) ef-
fects of proton motion in the case of proton cyclotron harmonics,
in contrast to the case of the electron cyclotron harmonics.
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