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Abstract. The discrete specmm of the hydrogen atom moving acmss a stmng magnetic field 
(E = 7 x 10"-7 x IO'* G) is studied by expanding wavefunctions over a complete onhogonal 
basis, whose single term pmvides a correct description of an mmic state at large pseudomomenta 
K of the h'ansverse motion. Wavefunctions, energies, atomic sires and oscillator strengths of 
radiative transitions a~ calculated and analysed in a wide range of K values. AU these quantities 
undergo radical changes when the atom moves acioss the field. The discrete s p e c "  remains 
infinite at arbitrary K. although the mean transverse velocity cannot exceed some maximum 
value for lhe bound states. Oscillator e n g t h s  change by orders of magnitude and some dipole 
selection rules are violated. 

1. Introduction 

Very strong magnetic fields B - 10'' G are typical in the vicinity of neutron stars. A study 
of atoms in these huge fields is of theoretical interest as well as of great importance for 
the interpretation of astrophysical observations (pavlov er al 1994). A neutron star accretes 
mostly hydrogen-rich interstellar matter. Therefore the simplest case of the hydrogen atom 
is also the most important one. 

The relative strength of the Lorentz forces with respect to the Coulomb ones is 
usually measured by the parameter y = fiog/(2 Ryd) = B/(2.35 x lo9 G), where 

= eB/(m,c) is the electron cyclotron frequency, B is the magnetic field strength 
and Ryd = e4m./(Z2) = 13.6 eV is the ionization potential of the field-free hydrogen 
atom. Many investigations have been devoted to the structure and radiative transitions of a 
hydrogen atom which is placed in a strong magnetic field ( y  2 1) but does not move across 
it. The Hamiltonian is axially symmetric in this case. In earlier studies (see, e.g., Garstang 
(1977) for a review), the adiabatic approximation was mostly employed. Simple variational 
ansatzes have also been used. In recent years a number of non-adiabatic studies have been 
carried out (Xi et a1 1992, Wunner and Ruder 1987, and references therein). Oscillator 
strengths of the hydrogen atom in various magnetic fields have been calculated with high 
accuracy by Forster er al (1984). 

The problem of an atom moving across a magnetic field is much more complicated, 
because it is essentially three dimensional. The first theoretical study of this problem was 
carried out by Gorkov and Dzyaloshinsky (1968) for an exiton. Avron etal (1978), Johnson 
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etal  (1983) and Baye and Vincke (1990) developed a general theoretical treatment of atoms 
and ions in magnetic fields. Burkova et al (1976) investigated so-called decentred states in 
the 6amework of the adiabatic approximation at very large pseudomomenta K of the motion 
across the field. In these states the electron is localized far fIom the nucleus. Baye er nl 
(1992) obtained similar results using the multipole expansion of the Coulomb term in the 
Hamiltonian. Ipatova et al (1984) estimated the validity of the adiabatic approximation 
at high transverse pseudomomenta, and of the perturbation approach at low K. The 
perturbation approach was used by Vincke and Baye (1988) who calculated the energies 
of the four lowest states of a slowly moving hydrogen atom, and by Pavlov and Mdszhos 
(1993) who considered various physical effects of atomic motion in the magnetic field. 
Finally, Vincke et al (1992) have calculated binding energies and wavefunctions of the 
hydrogen atom moving in strong magnetic fields with various transverse pseudomomenta. 
They used a non-orthogonal variational basis whose transverse part has been generated with 
the help of canonical transformations of the Hamiltonian. 

The main aims of this paper are.: (i) to present an alternative numerical technique based 
on an expansion of a wavefunction over some appropriate orthogonal basis which is more 
convenient in very strong magnetic fields; and (ii) to calculate the effects of transverse 
motion on atomic sizes and bound-bound oscillator strengths. In section 2 we recall the 
Hamiltonian and wavefunction transformations and describe the adiabatic, perturbation and 
multiconfiguration techniques which are used in further calculations. Numerical results are 
presented and discussed in section 3. Concluding remarks are given in section 4. 

2. Basic equations 

2. I .  Hamilronian transformations 

The Hamiltonian of a hydrogen atom moving in a homogeneous magnetic field B (directed 
along the z-axis) is the sum of proton and electron kinetic terms and the Coulomb potential, 

(1) H = a;/(2mp) + 4/ (2me)  + qcqp/lTc - rpI 

where 

(2) 

is the kinetic momentum operator of the ith particle (Johnson and Lippmann 1949), the 
subscript i = e or i = p indicates electron or proton, respectively; pi = -&Vi is the 
canonical momentum, mi is the mass, qp = -qe = e  is the charge, and A(r) is the vector 
potential of the field. The spin terms are omitted in (1) since we neglect relativistic effects 
and assume spin projections on the z-axis to be fixed. Components of the pseudomomentum 

41 7 ~ i  = mj+j = p i  - -A(rj) 
C 

(3) 

are single-particle constants of motion. The total pseudomomentum K = kc + k, is the 
atomic constant of motion which generates velocity boosts (Johnson er al 1983). Thus it 
may be used to describe the general motion of the atom in a magnetic field. The components 
( K x ,  Ky, K,) commute with each other owing to the zero net charge of the atom. We shall 

4i kj = 7 F j  + --B x rj 
C 
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consider states in which all the components have definite values. Eigenfunctions of K in 
the coordinate representation (Gorkov and Dzyaloshinsky 1968) are 

where R = ( m , / M ) r p  + ( m p / M ) r e  and T = re - T~ are the centre-of-mass and relative 
coordinates, and M = me + mp is the total mass. Henceforth we shall assume KL = 0, 
since the motion of an atom as a whole along the magnetic field does not affect its internal 
structure, thus it is of minor physical interest. Besides, we shall choose the y-axis directed 
along K. 

The Hamiltonian (1) can be represented in the form 

H = l12 / (2M) + n2/(2p)  - e2 / r  (5 ) 

where TI = M R  = ne + n, and ?r = p r  = (m, /M)n ,  - (m, /M)np  are the collective and 
relative kinetic momenta, and p = m,m,/M is the reduced mass. 

When the atom moves, the field tends to draw the electron apart from the proton in 
the x-direction, breaking the axial symmetry. Therefore the most appropriate choice of a 
coordinate system and the gauge of the vector potential to treat the problem is no longer 
evident. It is convenient to define some basic electron-proton separation Q in the x y  
plane and to regard the deviation from it, T' = T - TB = (P;, z ) ,  as an independent 
variable. It is also useful to consider the axial gauge A(P)  = ;E  x (T - T A )  centred at 
an arbitrary point TA in the x y  plane. Then, taking into account (4), one comes to the 
Hamiltonian of relative motion HA, which has been presented by Vincke e ta l  (1992). The 
accompanying transformation of the wavefunction includes the space shift to Q and the 
phase transformation (Landau and Lifshitz 1976) related to the gauge parameter P A .  

The general form of HE] contains terms which couple collective and relative canonical 
variables. Some of these terms are proportional to p-] and may lead to a strong perturbation, 
significantly complicating numerical treatment. To avoid this complication, the condition 

(6) 

should be imposed. Under this condition one obtains the set of Hamiltonians, depending 
on two real parameters (re,, rBy), which has been used by Vincke et nl (1992) to generate 
the variational basis of their calculations: 

(7) 

PA = [(mp - me)/MlQ 

HE] = K : / ( 2 M )  + p:/(2pL) t HA - e Z / I m  + r'l. 
The transverse kinetic part HL may be written as 

(8) 
e 

mFJ 
HL = (n')'/(Zp) - --B. (P' X p )  + HK 

where 

(9) 
e 
2c 

?r' =PI + -33 X T' 
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Note that T' coincides with ze1 except for the argument change. 
The term HK can be eliminated by the choice r g  = r c ,  where 

C 
Tc = -B x K eB2 

is the relative guiding centre. Then K' = 0, and one comes to the 'shifted' Hamiltonian (7, 
(8) with HK = 0, exploited by Gorkov and Dzyaloshinsky (19681, Burkova et al (1976), 
Herold et a! (1981) and Ipatova et al (1984). The conventional choice r g  = 0, in contrast, 
keeps HK non-zero (with K' = K )  but makes the potential in (7) symmetric. 

2.2. Basis set of wavefunctions 

The transverse p a  of a wavefunction of an isolated electron with a definite z-projection 
mh of the angular momentum in a magnetic field is a Landau function (Landau and Lifshitz 
1976) 

@"(rei) = (%)-'" e x p ( i m ( D ) a ~ ' l N - m , N ( p 2 / 2 a ~ )  (13) 

where p and (D are the polar coordinates of rd in the x y  plane, ZNN,(.$) is the Laguem 
function (Sokolov and Ternov 1968), N = 0, 1,2, . . . is the number of the Landau level 
(m  = N ,  N - 1,. . .), and U M  = fic/eB)'/' is the magnetic length. Functions (13) solve 
the Schrijdinger equation with a singleparticle transverse Hamiltonian &/(2m.), where 
re is defined by equation (2) with A(r) = 4 B x r. From equation (8) the remarkable fact 
that functions (13) with r; substituted for TQ are also the eigenfunctions of HL without 
HK follows. The quantum numbers N and N = N - m are then the Landau numbers of 
the electron and the proton in the absence of the Coulomb interaction, corresponding to the 
transverse energy 

The continuum boundary is E A  = Am(1 + me/mQ)/2. 
A wavefunction $!K(r'), which solves the equation 

$!r = E ,  Ib; (15) 

may be expanded over the complete set of the Landau functions in the x y  plane: 

This expansion is most convenient, if y 2 1. Then, if the influence of HK is not too 
great, one can select a leading (Nm)  term and ascribe to the atomic state three numbers 
K = ( N ,  m ,  U), where v = 0,1,2,  . . . consequently numerates longitudinal energy levels 

(17) II = ENmv - EAm 

starting from the deepest one. The z-parity of the wavefunction is (-1)". Since the energy 
distances between EAm grow with y ,  all the levels become metastable at y >> 1 ,  except for 
those with N = 0 and small (-m). 
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Substituting (16) into (15), multiplying by @N*,,,(P;) and integrating over T;, one 
arrives at the set of coupled equations 

(18) 

I' 1 [-z;iE? h2 d2 + VN,, , , , ,N#, , , (~)  + (N"m"tHKIN"m") + E;"," - E,, I - E,," gN"m";"&) 

= - C ' ( V N , , ~ , , . N , ~ , ( Z )  + (N"m"lHKIN'm'))gnr,m,:Nmv(z) 
where summing is over all the pairs (N',  m') except for (N",  m"), and 

vN++,N,,,(z) = (N"m"1 - e2/lrB + P'I (1% 

is the effective potential discussed in the appendix. 
The infinite system (18) is equivalent to the Schriidinger equation (15). Truncating the 

sum (16), one comes to thefinite system, which solves (15) approximately. Such a solution 
is consistent with the variational principle on the huncated basis. 

The potentials VN",",N~,<(Z) with m" # m' are equal to zero if Q = 0, whereas the 
terms (N"m"l H K I N ' ~ ' )  vanish at PB = rc. Thus for an atom at rest (rc = 0) the summing 
over m' drops out, and the system (18) splits into disconnected subsystems corresponding 
to separate values of m, which becomes a good quantum number. This particular case has 
been investigated by many authors (e.g. Wunner and Ruder (1987). and references therein). 
In section 3 we shall solve system (18) in the general case of a moving atom. 

2.3. Adiabatic approximation 

At y >> 1 the leading term in (16) may become large compared with side terms. Then the 
adiabatic approximation may be applied 

@."v(T') @Nm(Pi)g$mv(z) (20) 

and (18) acquires the form of a one-dimensional Schr6dinger equation with the potential 
VN,(Z) = VN~,N, (Z) .  The number U counts the nodes of g&,(z). The validity of this 
approximation depends significantly on the parameter TB used. Ipatova et al (1984) have 
shown that for the ground state the perturbation theory based on the conventional choice 
Q = 0 is valid for small K, whereas for large K the choice TB = rc is appropriate. The 
latter conclusion is also valid for excited states since the non-diagonal effective potentials 
VN",".N,,,(Z) (unlike (N"m"lHK1N'm')) vanish at PB + 00 (see the appendix). < rc. When an atom moves so that rc << aM, 
the effective potential VN,(Z) deviates from the one-dimensional Coulomb potential only 
near the origin. In this case the energies EL,, at y >> 1 are described by the Rydberg 
series with the effective quantum numbers [u/2 + O(ln y)-'] for U = 0,2,4,. . . and 
[ ( v +  1)/2+ O(y- ' ) ]  for U = 1.3,5,. . . (Hasegawa and Howard 1961, Haines and Roberts 
1969). The transverse atomic size is l~ - aM <<as (equation (24)). where as = h2/(m.eZ) 
is the Bohr radius, whereas the longitudinal size is determined by the binding energy, 

Generally, one may always choose 

Zz - 0.5h(melEl11)-1'2 if U = 0 1, - 0.8eZ/IE1'l if U = 1,2,3,  . . . . (21) 

In the opposite case rc >> a ~ ,  if TB = PC, one has VN,(Z) -eZ/@. In the 
limiting case rc/aB = K a e / ( y h )  >> 1, low-lying states are determined by the oscillator-like 
part of this potential at IzI << rc (Burkova et a1 1976). Then the energies are 
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and the root-mean-square (RMS) atomic z-size 1, = (NmulzZINmu)'/* grows as 

1z = ( v  + $1/Z(r&J1/4 a ( K / y ) 3 / 4 .  (23) 

This approximation is valid under the condition Iz <( rc, which requires U << G. 
Higher levels are again driven by the Coulomb tails. Therefore the number of levels 
remains infinite, regardless of K and y values. The levels with N > 1 or m < -1 are 
involved in the continuum at high y or K, but all (OOu) levels lie below E&, thus being 
really bound. 

Transverse RMS sizes of the +-coordinate distribution equal 

1, = 1; =aMJ2N - m +  1. (U) 

However, the electron density is shifted apart from the proton, so that the atomic x-size 
LX = ((x. - n,)*)'fl becomes I= = m. Owing to the large atomic sizes and 
small binding energies at large rc, atoms are easily destroyed by collisions. Therefore 
the decentred states can be observed either at very low densities or at very strong fields 
(Y >> 1). 

2.4. Perturbation approach 

Let us consider the Hamiltonian (7) with rB = 0. When K is small, one may treat HK as a 
perturbation, starting from the wavefunctions and energies of the fixed atom. This approach 
gives 

E , ( K )  = &(O) + K2/(2M:) (25) 

where the effective transverse mass M: depends on the field strength. 
Since the second-order perturbation cannot raise the ground level (Landau and Lifshitz 

1976). it is evident that M I  z M for the ground state. In fact, M I  is even much greater 
for excited states, since the magnetic field hampers the transverse motion of loosely bound 
charges. 

Vincke and Baye (1988) used a variational method for the zero-order computations. 
Alternatively, starting from the adiabatic solution for the fixed atom, one can easily express 
M i m v  in terms of the longitudinal overlap integrals ( g y m v l g ~ , m , u , ) ~ ,  and binding energies 
lE,$2!d(K = O)l, where N' = N i l ,  m' = mzk 1, u' = U, u f 2 ,  uf4,. . . are thequanmm 
numbers of levels admixed by the perturbation (with the common restrictions N' > 0, 
m' < N', U' > 0). For states with N = 0 this has been done by Pavlov and M ~ S Z ~ I O S  
(1993) who investigated kinematic, thermodynamic and spectroscopic effects of the motion 
of the hydrogen atom in strong magnetic fields. According to their estimates, limitations 
on the validity ranges of the perturbation approach are rather strong, especially for the 
hydrogen-like levels. 

2.5. Mdticonfguration approach 

Various methods have been applied to solving the set of equations (18) in the particular 
case of an atom at rest, when the double sum in (18) reduces to the single one. Simola 
and Virtamo (1978) developed a finite-difference iterative scheme, treating 'side' equations 
separately from the leading one. Friedrich (1982) used a variational expansion of g ~ , ~ ; , , ( z ) ,  
which led to a matrix eigenvalue problem. Wunner and Ruder (1982) and Rtisner et a1 
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(1984) adjusted the multiconfiguration Hartree-Fock (MCHF) method to this case (Froese 
Fischer 1977). 

We have employed an MCHF-like scheme for finding E, and gN'm'v';r(Z) from (18) 
in the general case of the moving atom. For each given state K = INmu), an initial 
approximation of the lading term was the adiabatic solution obtained in a way similar to 
the previously described one (F'otekhin and Pavlov 1993). Then a nested iterative procedure 
started. At each nth inner iteration: (i) the system (18) was solved with the results of the 
preceding iteration g$;!)(z) substituted into the right-hand-side sum; (ii) thus obtained 
longitudinal functions j $L , ( z )  were normalized so that [ I@,'$,,(z)l'dz = 1; and (iii) the 
mahix eigenvalue problem 

4- V,~J, , ,~ , ;NC~,(Z)  + (N"m"1HKIN'm') = EcNv,,,~ (26) 

was solved by the inverse iteration (Parlett 1980) with the shift E'""', using the LU 
factorization code of Fletcher (1988). As a result, the next (nth) approximation ggk,(..(z) = 
c$!~,&?,,,&) and E(") was obtained. At the outer iteration, one more Landau orbital was 
included, and the procedure repeated. The process was terminated when a convergence of 
both energy value E and coefficients C N ~ ~ ,  was achieved. Once a solution at some y ,  K 
and TB is obtained, it may be used as the starting approximation at a slightly different value 
of one of these parameters. Then the outer iteration is no longer necessary. 

In actual calculations we used the decentring parameter rB = VTC, 0 < tl < 1. Up to 
32 Landau orbitals were included in the expansion (16). The longitudinal equations (21) 
have been solved using the combined shooting-direct method (Froese Fischer 1977). The 
longitudinal mesh consisted of up to 10 uniform pieces, which counted equal (from 20 to 
80) number of points, the step h being doubled at the start of the next piece. The initial 
step h = a ~ / 2 0  at z = 0 ensured an accuracy level better than Ryd in energy and, 
typically, about 1% in oscillator strengths. 

3. Results and discussion 

3.1. Wavefunctions 

Wavefunctions of the moving atom can most easily be found in the limits of low and high 
transverse pseudomomenta. In the first case (rB < rc -+ 0) the effective potentials with 
m' # m vanish, while the terms with N' # N become small at y >> 1 due to the large 
energy differences - In the opposite case K -+ 00 the representation 'with 
full shift' TB = TC is appropriate, at which the non-diagonal effective potentials V N ~ , N ~ ~ * ( Z )  
decrease rapidly regardless of field strength. Therefore in both limits a small number of 
terms may he kept in (16). For low-lying tightly hound states some intermediate (mixing) 
range of K exists, in which many Landau orbitals are coupled together, so that a way to 
select a leading term of the expansion becomes unclear. However, at y 2 300 all energy 
levels can be traced diabatically either to low or to high K without any uncertainty, so that 
the numbering I K )  = INmv) remains unambiguous in the mixing range. 

The position of the critical K value around which the mixing takes place can be roughly 
estimated as Kc = m. At K > K, only the choice q = 1 remains practical for the 
treatment of the system (18), while choices # 1 lead to divergence. 



1080 A Y Potekhin 

The expansion coefficients CN", with N' > 1 remain very small, reaching the maximum 
value for the ground state at K = 0. Thus the approximation assuming N' = 0 in (16) 
is justified for a moving atom not worse than for an atom at rest. For all hydrogen-lie 
states (unlike tightly bound ones) a few terms of the expansion with q = 1 are sufficient at 
arbitrary K. 

! Figure 1. Square modulus of the wavefunction of 
the swte 10 - 30) (full c w e s )  compared with the 

-0.4 -0.3 -0.2 .-O.l 0 G 0 1 adiabatic appmximation (broken curves) in the full- 
stiff representation nt B = 2.35 x loL2 G. 

0.0 

.r (4 

Figure 1 shows the relative electron-proton probability density at y = z = 0 for 
y = IOOO, compared with the adiabatic results with q = 1. The shape of this function is 
asymmetric. At low K, when the decentring is small, its left side is higher because of the 
electric field induced in the comoving reference frame. At high K, in contrast, the whole 
function is leftward shifted, its right side being increased by the Coulomb attraction. In the 
mixing range additional details arise from the influence of neighbouring orbitals admixed. 
Nevertheless the adiabatic approximation gives a qualitatively correct impression of the real 
shape of the wavefunction. 

The mean electron-proton separation is generally less than rc. It depends on K, as 
shown in figure 2. These dependences are similar to those of 'optimal decentring' obtained 
by Vincke et al (1992) with the use of the adiabatic approximation. However, the quantity 
presented here has the clearer quantum-mechanical meaning of the average dipole moment 
divided by erc. We see that at small K this quantity is relatively small for the lowest states, 
while at large K all the curves approach unity. In the intermediate range the dependences 
for the excited tightly bound states reveal non-monotonic features due to the approximate 
admixing of neighbouring states. A decrease in the field strength leads to sharper features 
and to more abrupt sound-state decentring. 

Figure 3 presents the K dependences of the longitudinal atomic size I ,  at y = 1oM) 
compared with the approximations (21) and (23). In agreement with the discussion in 
section 2.3, the former approximation is relatively good at small K, whereas the latter one 
works at K > yvZfr/aB. 
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- - - -. ).=3000 
- y=1000 

Figure 2. Ratio of h e  mean electron-proton 
separation to the relative guiding centre distance 

50 100 150 200 250 300 against transverse pseudomomentum K af B = 
7.05 x 10l2 G, 2.35 x 1Ol1 0, and 7.05 x 1O1I G. x (O.".) 

10 100 1000 10000 
K (o.u.) 

Figure 3. Longitudinal atomic sizes I, = 
(full curves) compared with the approximations (21) 
(chain curves) and (23) (broken lines) at B = 
2.35 x G. 

3.2. Energy levels 

When a free atom moves, the total momentum conservation results in its stability regardless 
of the total energy increase. For the motion across a magnetic field, the conserving quantity 
is the pseudomomentum K, to which all values of the common continuum level E& 
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correspond. Hence all states with total energies above E& are metastable. Their accurate 
treatment would include a simultaneous calculation of the open-channel (with E;,,,,, < Et)  
and closed-channel (E$,m, > E,) terms in (16), (18). However, since the admixture of the 
former terms is relatively small, one may exclude them from (16) and treat these states 
as quasibound ones. Thus the discrete spectrum can be extended above the continuum 
boundary E&, as is illustrated in figure 4. At each K value a larger number of tightly 
bound states become really bound with the decrease in field strength. 

Since I E ~ , , J  decrease monotonically with increasing K, the tightly bound levels (“0) 
cross hydrogen-like ones (Nm’v), if m‘ z m. The exact crossings with the odd states cause 
no problems, since corresponding wavefunctions have different z-parities. In contrast to 
this, close to the anticrossing points with the even states one should exclude the orbitals 
Q“, and QN,,, from the expansions (16) for the states INmO) and INm’u), respectively, 
in order to avoid a numerical instability. Generally this reduction may lead to non-zero 
matrix elements (NmOlNm‘u) and (NmOlH,iINm’v), calculated with the solutions on the 
reduced bases. Therefore an approach similar to perturbation theory for degenerate states 
may be applied to resolve the approximate crossings. In most cases the above-mentioned 
matrix elements became zero within our numerical accuracy. At y = 1000 we have proved 
numerically that IOm0)/100u) energy gaps do not exceed 2 x Ryd. The only exception 
is the J002)/lO - 10) anticrossing with the binding energy E = 0.31 Ryd at K = 950 au, 
for which the gap between the lower and upper E against K curves reaches - 0.005 Ryd in 
the E-direction compared with - 15 au in the Kdirection, whereas for the 1002)/10 - 20) 
anticrossing (K = 452.8 au, E = 0.3807 Ryd) the gap is as small as lod4 Ryd compared 
with 0.1 au, respectively. Except for these narrow gaps, the diabatic curves are traced from 
low to high K without uncertainties. 

A qualitatively new feature which appears at lower field strength (figures 4(c) and (d))  
is that some hydrogen-like levels with m # 0 become really bound at low K. This results in 
anticrossings between hydrogen-like levels belonging to different m-manifolds. At y = 300 
these anticrossings are very narrow. The exception is 10 - 12)/1004), which reveals the 
energy gap between E = 0.160 Ryd to E = 0.182 Ryd at K = 33 au. By a further increase 
in K ,  the wavefunction of the state with the higher binding energy (initially 10 - 12)) 
acquires the properties of 1004) (larger longitudinal size and more nodes), and vice versa. 

The expectation value of the velocity of the transverse motion ( V )  = a E/aK is equal to 
K I M L  at small K, but decreases as e3B/ (cK2)  at large K. For each state some maximum 
velocity is reached when the second derivative a2E/aKZ turns to zero. 

In figure S(a) the numerically obtained energies are compared with the ( q  = 1)-adiabatic 
and perturbational ones. In agreement with the discussion in sections 2.3 and 2.4, the 
adiabatic curves rapidly approach the exact ones at K above the mixing range, where the 
perturbation method fails. The humps at the adiabatic curves at low K correspond to the 
behaviour (Al l )  of the effective potentials, which grow with rB, if rB < 1 and m # 0. In 
figure 5(b) the energies of the band m = 0 are compared with the harmonic approximation 
(22). 

The discrete spectrum is infinite at each K value. This is proved by the fact that the 
number of states is infinite in the adiabatic approximation (section 2.3), which may be 
regarded as a variational ansatz. Since the adiabatic wavefunctions with the same ( N ,  m )  
and different v are orthogonal to each other, and since the number of bound states obtained 
variationally under the orthogonality condition cannot be greater than the number of true 
bound states, we may conclude that the latter number is actually infinite for the moving 
hydrogen atom. The opposite conclusion has been inferred by Baye er a! (1992) from the 
parabolic approximation of the potential at large K. However, we have seen in section 2.3 



Hydrogen atom moving in a sdrong magneticfield 1083 

10-40) 

-5  - 
h 
E 
v 

4 8  
0 

( b )  y=lOOO 
-15  

Figure 4. Energy spectrum against transverse pseudomomentum K at B = 7.05 x 
2.35 x 

G (a), 
G (b), and 7.05 x 10'' G (e), (d ) .  

that this approximation fails if U is not small enough. Figure 5(b) confirms that the harmonic 
energies approach the exact ones at much higher K for higher v values. 
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Figure 5. Comparison of exact binding energies (full curves) (a) with che second-order 
parbation approximation (2%) (chain curves) and the full-shift adiabatic approximarion (broken 
curves), and (b) with the oscillator-Ue approximation (7.2) (chain curves) at B = 2.35 x IOLz 0. 

3.3. Radiative transitions 

Having obtained wavefunctions and energies of initial ]i) and final If) bound states, one 
can calculate oscillator strengths of radiative transitions 

where o is the circular frequency, a = 0, f l  is the polarization index of incident radiation, 
corresponding to the polarization orts eo = e,, e+] = (e,+iey)/& and D Y ~ , - ~  is the cyclic 
component of the dipole matrix element, which can be calculated either in the 'coordinate 
for" 

D;) = ( f l r l i )  (28) 

or in the 'velocity form' 

DE) = (io)-'(flrli), (2% 

Using the expansion (16) for the states l i) and I f ) ,  these matrix elements can be reduced 
to sums of one-dimensional (longitudinal) quadratures. 

In fact we employed both forms, and used the concordance between them as one of 
the tests for calculation accuracy. For an atom at rest it has already been argued that the 
'coordinate for" (28) is more relevant at y >> 1 for circular polarization (Potekhin and 
Pavlov 1993). For the moving atom this conclusion has been confirmed by the present 
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Figure 6. Oscillator suengfhs of radiative transitions from the ground state to the states marked 
neat the lines at B = 7.05 x 10" 0 (a) and 2.35 x 10" G (b) for right circular (full cwes),  
left circular (broken c w e s ) ,  and longitudinal (chain c m )  polarization. 

calculations, which required a significantly greater number of basis functions related to 
N' > 0 to be included in the expansion (16) for the numerical convergence of the matrix 
element (29), whereas a small number of such terms was enough for D;' convergence. 

In contrast to the case of a field-free atom, the oscillator strengths of an atom in a 
magnetic field do depend on its motion. Figure 6 presents such dependences for the 
radiative transitions from the ground state 1000) to some excited 'states marked near the 
curves. Because of the definite z-parity of each wavefunction, dipole transitions to the odd 
states are allowed only with the longitudinal polarization (a = 0). Transitions to the even 
states IOmO) and 1002) are allowed either with right (or = +1) or with left (a = -1) circular 
polarization. For a fixed atom ( K  = 0) an additional selection rule, mi - mf = or, results 
from the angular momentum conservation. In particular, transitions from the ground state 
under the effect of the left-polarized radiation 01 = -1 are possible only if the final state 
belongs to the continuum, since all states with m z 0 are involved in the continuum at 
y 2 0.15 (see Rosner et al 1984). This selection rule is broken by the motion. 

The strong resonance of the transition to lOOZ) with 01 = +1 is caused by the anticrossing 
with the state 10 - 10). Similarly, sharp dips on the IOm0) curves are due to anticrossings 
of these tightly bound states with hydrogen-like levels. 

At lower field strengths the variations in the oscillator strengths with varying K become 
more prominent, as figure 7 demonstrates for y = 300. Resonances at longitudinal 
polarization appear, caused by hydrogen-like level anticrossings discussed in section 3.2. 
Another unusual feature is that near K - 100 au the absorption of right-polarized radiation 
becomes stronger than that of longitudinally-polarized one. 

Oscillator strength limits of the allowed transitions at K + 0 in figures 6 and 7 
correspond to the values presented by Forster etal (1984). Limits at large K can be found 
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Figure 7. Oscillator strengths of radiative transi- 
tions from the gmund state to odd hydmgen4ike 
states at B = 7.05 x 10" G for longirudinal polar- 
ization. compared with the transition to IO- 10) for 
right circular polarization. 

from the adiabatic approximation, which provides the explicit form of the transverse matrix 
elements (Potekhh and Pavlov 1993). Since effective potentials V h ( z )  tend to each other 
at K -+ 00, the longitudinal matrix elements approach a,,, for the circular polarization. 
Thin gives 

ffi.+ I = 2mfSim,i.imil+i &,, (me/mp) (30) 

at K >> Kc. To find longitudinal manix elements for a = 0, one may employ the oscillator- 
like approximation (section 2.3). Then one obtains 

f.i.0 = v/&n/m,&/,u,+1 (31) 

at K >> yu;R/aB. The calculated oscillator strengths in figures 6 and 7 behave in accordance 
with these estimates. 

4. Conclusions 

The expansion of wavefunctions over the complete orthogonal basis of the Landau states 
[Nm) is the conventional tool for studying atoms at rest in strong magnetic fields ( y  = 
8/(2.35 x IO9 G) 2 1). In the present paper we have shown that an analogous expansion 
(16) remains convenient for hydrogen atoms moving in the field y >> 1. The advantage 
of this expansion is that the non-diagonal effective potentials vanish for both small and 
large transverse pseudomomenta K, if the shift parameter T-B = rc is used. Therefore the 
leading expansion term has the correct asymptotic properties. Besides, the orthogonality of 
the basis simplifies calculations of the matrix elements. A small number of terms provide 
satisfactory accuracy in the cases of small and large K ,  as well as for the hydrogen-like 
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states. The reduced expansion over the basis of the states related to the ground Landau 
level N = 0 yields a good approximation for atomic energies, sizes and oscillator strengths 
of those radiative transitions which remain allowed at K = 0, although the basis functions 
with N > 0 should be included for other transitions. Wavefunctions, energies and radiative 
transitions in the discrete spectrum have been studied using the suggested approach. 

Atoms with large K acquire large dipole moments. The electron density becomes shifted 
akide !?om the proton, although its shape remains close to cylindrical at all K, and the shifted 
adiabatic approximation gives a qualitatively correct impression of it. The energy spectrum 
is divided into different m-bands. The states with m # 0 become metastable at large K, 
while the band m = 0 includes the infinite number of really bound states at arbitrary K. 
The mean velocity of the transverse motion is proportional to K for small K, and it is 
inversely proportional to K 2  for large K. For each state, the velocity cannot exceed some 
maximum value. 

The atomic energies, sizes and wavefunctions, obtained in this paper, are used 
elsewhere for computation of photoionization cross sections of the moving hydrogen 
atom (Bezchastnov and Potekhin 1993), and for calculations of ionization equilibrium of 
hydrogenic plasma in neutron star atmospheres (Pavlov et a l  1993). 

The oscillator strengths of the bound-bound radiative transitions undergo radical changes 
when the atom moves across the field. Some of them vary by several orders of magnitude. 
Moreover, since the z-projection of the angular momentum of the moving atom does not 
conserve formerly forbidden dipole transitions with mi - mf # CY become allowed. Thus, 
the motion breaks some dipole selection d e s  and causes drastic changes in transition rates, 
confirming the predictions of Pavlov and MCszhos (1993). 
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Appendix. Effective potentials 

The effective potentials in (18) consist of two terms. The constant term (N"m"lHKIN'm'), 
which admixes neighbouring states N" = N'f 1, m" = m ' f  1, is easily calculated with the 
help of well known expressions for the effect of operators IQI and r+l on the basis states 
(Nm) (Hasegawa and Howard 1961). The result is 
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In the particular case, when & = vrc, one has wg*j = up,*] = +iK(l - v)/(hf&), 
and the effective potential (Al) becomes real. 

Let us turn to the effective Coulomb potential (19), assuming that rB is directed along 
rc (the general case of an arbitrary direction is easily recovered by a change of variables). 
With the aid of equation (13) we have 

where 

x ( r 2 + P Z + t - 2 P ~ C O S ~ ) - 1 i z  

does not depend on y .  Since u ~ ~ , N ~ ~ ~  = we may assum m-m' = 
loss of generality. Using the Gauss decomposition of the last multiplier in 
one can transform (A4) into 

uNm.N'm'@, <) = - j m d t  l m b  IN-m,N(e)IN,-m,(t) 
f i 0  

x & ( h Z P &  exp[-x2(P + P* + 01 

644) 

0 without 
e integrand, 

where Iq (y )  is the modified Bessel function. A direct integration in (A5) is rather time- 
consuming. To simplify it, let us make use of the explicit form of the Laguerre functions, 

(-V'-"IN-.~,N(~) = I ~ + I ~ I . ~ ( ~ )  = 6 lm'/ze-e/z aknlm/ (-e )k  (A6) 
n 

k = O  

where n = N - (m + Iml)/Z is the radial quantum number, and 

urn,? = [(n+s)!n!]'/*[k!(n - k ) ! ( s + k ) ! ] - ' .  (A7) 

Therefore each potential U N ~ , N , , , , ,  is equal to a finite sum of potentials related to the ground 
Landau level: 

u N ~ , N , ~ ~ ( ~ ,  = C(-I)~-~+"-~'+' a x n l m i a ~ . n , i m , i ~ u ~ ~ , @ ~  F) (A8) 

where s = (Iml - m + lm'l + m')/2 + 1, s' = ([mi + m + Im'l - m')/2 + 1, and 
u,,,(p, 5 )  U ~ , - , ~ , ~ . - ~ , ( P ,  c). The latter potential can be further simplified with the aid 
of the relation (Gradstein and Rydzhik 1965) 

"+a' 

k 0  k+k'=l 

where L$(y) is an adjoint Laguerre polynomial. Substituting (AS) with X = 1 + x z  into 
(A5), after simple transformations one obtains 
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This expression is feasible for numerical treatment using Gauss-Chebyshev quadratures 
(Abramowitz and Stegun 1972). 

Finally let us consider the asymptotic behaviour of the potentials. It follows from (As) 
that U N ~ , N P ~ , ( ~ ,  c )  - p4 at p + 0. In particular, from (AlO) one finds 

In order to derive asymptotics of the effective potentials in the case Cz >> 1 and C z  >> pz, 
the generating function (Kaminker and Yakovlev 1981) is convenient: 

Substituting Am!@) and into (As) instead of the Laguerre functions, integrating over 
5 with the aid of (A9), where X = l+x*+t / ( l  -t)+t'/(l -t '),  expanding the result in the 
power series over t and f', and taking into account the first relation (A6), one can express 
IJN~,N~,,,.(~+ 5 )  as a finite sum of one-dimensional quadratures of the type of (A10) with 
some combinatorial coefficients. Equation (A10) presents the particular case N = N' = 0. 
Another particular case, corresponding to p = 0, has been presented by Friedrich and Chu 
(1983). If p is finite, only one of the terms of the sum survives at -+ 00, yielding the 
as ymptotics 

where 

r = N - N' + q 

r = q 

C = CoI(N' - N)!q!]-' if N < N' 

C = CO(-I)~-"N![N'!(N - N')!(N' - N +q)!]-' 
(A 14) 

if N - 4  < N I <  N 

r = N - N '  C = C ; ' ( - l ) * [ ( N - N ' - q ) ! q ! ] - '  if N ' + q < N  

and CO = [n'!(n'+ Im'l)!]1/2[n!(n + Iml)!]-'/'. 
In the case when p tends to infinity along with C, so that F / p  = constant, the potentials 

decrease as ((z+p2)-('+'/z) with the same power indices r as in (A14). but with coefficients 
depending on the ratio ( / p .  

References 

Abramowitz M and S l e w  I A (eds) 1972 Hmdbook of Marhematicat Functioionr (New York Dover) 
Avmn 1 E, Herbs1 I W and Simon B 1978 Ann. Phys., NY 114 431-51 
Baye D and Vhcke M 1990 Phys. Rev. A 42 391-6 
Baye D, Clerbaux Nand Vincke M 1992 Phys. Ldf. 166A 135-9 
Bezchastnov V G and Potelthin A Y 1993 J ,  Phys. B: Ai. Mol. Opt. Phys. submitted 
Burkovn L A, Dzyaloshinsky I E, Drukarev G P and Monozon B S 1976 SOP. Phyr-3ETP 44 276-8 
Fletcher C A  J 1988 Compuraflond Techniquesfor FluidDynnmics 1 (Berlin: Springer) 
Forster H, Stsupat W, R6sner W, Wunner G, Ruder H and Herold H 1984 3. Phys. B: Af. Mol. Pkys. 17 1301-19 



1090 A Y Potekhin 

Friedrich H 1982 Phys. Rev. A 26 I82738 
Friedrich H and Chu M 1983 Phys. Rev. A 28 1423-8 
Froese Fischer C 1977 The Hartree-Fock Method for  Atoms: A Numerical Approach (New York: Wiley) 
G m m g  R H 1977 Rep. Pmg. Phys. 40 105-54 
Gorkov L P and Dzyalosbsky I E 1968 SOY. Phys.-IETP 26 449-58 
Gradstein I S and Rydzhik I M 1965 Tables of Integrals. Series, and Products 4th edn (New York: Academic) 
Haines L K and Roberts D H 1969 Am 1. Phys. 37 1145-54 
Hasegawa H and Howard R E 1961 J. Phys, Chem. Soli& 21 179-98 
Herold H. Ruder H and Wunner G 1981 J. Phys. E: AI. Mol. Phys. 14 7 5 1 4  
lpafova I P. Maslov A Y and Subashiev A V 1984 Sov. Phys.JETP 60 1037-9 
Johnwn B R, Hitschfelder J 0 and Yang K-H 1983 Rev. Mad. Phys. 55 109-53 
Johnson M H and Lippmann B A 1949 Phys. Rev. 76 828-32 
Kaminker A D  and YakovIev D G 1981 Teor. Mnrem Fiz. 49 241-53 
h d a u  L D and Liiihitz E M 1976 Quantum Mechanics (Oxford Pergamon) 
Parlen B N 1980 The Symmetric Eigenvalue Problem CEnglewood Cliffs, NI: Prentice-Hall) 
Pavlov G G and M&z(Uos P 1993 Asnophys. J. 416 752-61 
Pavlov G G. Potekhin A Y, Shibanov Y A and Zavlin V E 1993 NATO MI Lives ofNeutmn Stars ( K e m r ,  Turkey, 

Pavlov 0 G ,  Shibanov Y A, Zavlin V ‘2 and Meyer R D 1994 Lives OfNeurmn Stars ed 3 van Pamdijs and A 

Potekhin A Y and Pavlov G G 1993 krrrophys. 3.407 330-41 
RDsner W. Wunner G, HeroId H and Ruder H 1984 J.  Phys. B: At. Mol. Phys. 17 29-52 
Simola I and Virtamo 1 1978 J .  Phys. E :  AI. Mol. Phys. 11 3309-22 
Sokolov A A aod Temov I M 1968 Synchmtron Radiation (Berlin: Academic) 
Vincke M and Baye D 1988 1. P e s ,  B: AI. Mol. Opt. Pkys, 21 2407-24 
Vincke M, Le Doumeuf M and Baye D 1992 f, Phys. B: At. Mol. Opt. Phys, 25 2787407 
Wunner G and Ruder H 1982 1. Physique Call. 43 137-52 - 1987 Phys. Scr. 36 291-9 
Xi 3, Wu h He X and Li B 1992 Pl’ys. Rev. A 46 5806-11 

1993) 

Alpat (Dordrecht: Kluwer) 


