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Abstract. The discrete spectrum of the hydrogen atom moving across a strong magnetic field
(B =7 x 10117 x 1072 G) is studied by expanding wavefunctions over a complete orthogonal
basis, whose single term provides a correct description of an atomic state at large pseudomomenta
K of the transverse motion. Wavefunctions, energies, atomic sizes and oscillator strengths of
radiative transitions are calculated and analysed in a wide range of K values. All these quantities
undergo radical changes when the atom moves acfoss the field. The discrete spectrum remains
infinite at arbitrary K, although the mean transverse velocity cannot exceed some maximum
value for the bound states. Oscillator strengths change by orders of magnitude and some dipole
selection rules are violated,

1. Introduction

Very strong magnetic fields B ~ 102 G are typical in the vicinity of neutron stars. A study
of atoms in these huge fields is of theoretical interest as well as of great importance for
the interpretation of astrophysical observations (Pavlov er @i 1994). A neutron star accretes
mostly hydrogen-rich interstellar matter. Therefore the simplest case of the hydrogen atom
is also the most important one.

The relative strength of the Lorentz forces with respect to the Coulomb ones is
usually measured by the parameter ¥ = hop/(2 Ryd) = B/(2.35 x 10° G), where
wp = eB/(mec) is the electron cyclotron frequency, B is the magnetic field strength
and Ryd = e*m./(2%?) = 13.6 eV is the ionization potential of the field-free hydrogen
atom. Many investigations have been devoted to the structure and radiative transitions of a
hydrogen atom which is placed in a strong magnetic field (¥ = 1) but does not move across
it. The Hamiltonian is axially symmetric in this case. In earlier studies (see, e.g., Garstang
(1977) for a review), the adiabatic approximation was mostly employed. Simple variational
ansatzes have also been used. In recent years a number of non-adiabatic studies have been
carried out (Xi et al 1992, Wunner and Ruder 1987, and references therein). Oscillator
strengths of the hydrogen atom in various magnetic fields have been calculated with high
accuracy by Forster et al (1984).

The problem of an atom moving across a magnetic field is much more complicated,
because it is essentially three dimensional. The first theoretical study of this problem was
carried out by Gorkov and Dzyaloshinsky (1968) for an exiton. Avron et al (1978), Johnson
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et al (1983) and Baye and Vincke (1990) developed a general theoretical treatment of atoms
and ions in magnetic fields. Burkova et al (1976) investigated so-called decentred states in
the framework of the adiabatic approximation at very large pseudomomenta X of the motion
across the field. In these states the electron is localized far from the nucleus. Baye et al
(1992) obtained similar results using the multipole expansion of the Coulomb term in the
Hamiltonian. Ipatova et al (1984) estimated the validity of the adiabatic approximation
at high transverse pseudomomenta, and of the perturbation approach at low X. The
perturbation approach was used by Vincke and Baye (1988) whe calculated the energies
of the four lowest states of a slowly moving hydrogen atom, and by Pavlov and Mészdros
(1993) who considered various physical effects of atomic motion in the magnetic field.
Finally, Vincke er al (1992) have calculated binding energies and wavefunctions of the
hydrogen atom moving in strong magnetic fields with various transverse pseudomomenta.
They used a non-orthogonal variational basis whose transverse part has been generated with
the help of canonical transformations of the Hamiltonian.

The main aims of this paper are: (i) to present an alternative numerical technique based
on an expansion of a wavefunction over some appropriate orthogonal basis which is more
convenient in very strong magnetic fields; and (ii) to calculate the effects of transverse
motion on atomic sizes and bound-bound oscillator strengths. In section 2 we recall the
Hamiltonian and wavefunction transformations and describe the adiabatic, perturbation and
multiconfiguration techniques which are used in further calculations, Numerical results are
presented and discussed in section 3. Concluding remarks are given in section 4.

2. Basic equations

2.1. Hamiltonian transformations

The Hamiltonian of a hydrogen atom moving in 2 homogeneous magnetic field B (directed
along the z-axis) is the sum of proton and electron kinetic terms and the Coulomb potential,

H = w2/ @my) -+ 72/ (2me) + gegp/ Ire ~ 1| (1
where
. di
™ =mit =P — ?A("'n‘) @

is the kinetic momentum operator of the ith particle (Johnson and Lippmann 1949), the
subscript { = e or i = p indicates electron or proton, respectively; »; = —ihV; is the
canonical momentum, m; is the mass, g, = —q. = € is the charge, and A(r} is the vector
potential of the field. The spin terms are omitted in (1) since we neglect relativistic effects
and assume spin projections on the z-axis to be fixed. Components of the pseudomomentum

kg=7"j+%BXT‘j 3

are single-particle constants of motion. The total pseudomomentum K = k. + k; is the
atomic constant of motion which generates velocity boosts (Johnson ez @/ 1983). Thus it
may be used to describe the general motion of the atom in a magnetic field. The components
(K, Ky, K;) commute with each other owing to the zero net charge of the atom. We shall
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consider states in which all the components have definite values. Eigenfunctions of KX in
the coordinate representation (Gorkov and Dzyaloshinsky 1968) are

W (e, ) = exp [% (K + EB x 'r') . R] w(r) @)

where R = (m./M)r, + (mp/M)r. and © = v, — 7, are the centre-of-mass and relative
coordinates, and M = m. + m, is the total mass. Henceforth we shall assume X, = 0,
since the motion of an atom as a whole along the magnetic field does not affect its internal
structure, thus it is of minor physical interest. Besides, we shall choose the y-axis directed
along K.

The Hamiltonian (1} can be represented in the form

H =T1%/@2M) + n?/Qu) — &/r (5)

where 1= MR = e+ my and 7 = ut = (my/ M)mw. — (m./ M), are the collective and
relative kinetic momenta, and & = mcmp/M is the reduced mass.

When the atom moves, the field tends to draw the electron apart from the proton in
the x-direction, breaking the axial symmetry. Therefore the most appropriate choice of a
coordinate system and the gauge of the vector potential to treat the problem is no longer
evident. It is convenient to define some basic electron—proton separation rg in the xy
plane and to regard the deviation from it, ¥ = » —rg = (v, z), as an independent
variable. It is also useful to consider the axial gauge A(r) = %B X (r — r4) centred at
an arbitrary point ra in the xy plane. Then, taking into account (4), one comes to the
Hamiltonian of relative motion H), which has been presented by Vincke et al (1992). The
accompanying transformation of the wavefunction includes the space shift to ry and the
phase transformation (Landau and Lifshitz 1976) related to the gauge parameter 4.

The general form of Hy, contains terms which couple collective and relative canonical
variables. Some of these terms are proportional to ¢ ~! and may lead to a strong perturbation,
significantly complicating numerical treatment. To avoid this complication, the condition

T4 = [(my — me)/ Mre (©)

should be imposed. Under this condition one obtains the set of Hamiltonians, depending
on two real parameters (rgz, ray), which has been used by Vincke et al (1992) to generate
the variational basis of their calculations:

He = K2/ QM)+ p/(2u) + Hy — €*/|re + 7. )
The transverse kinetic part H, may be written as
&
Hy = (x')?/(2u) — —B - (r' x p) + Hy (8)
mpc
where
! e ¢
= —B 9
w=p,+ % xr ®
&Y e, :
Hy = M +EK'(BXT‘) (]0)

K’=K+§er3. an
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Note that ' coincides with ., except for the argument change,
The term Hy can be eliminated by the choice rg = ¢, where

[
Te = mB x K (12)
is the relative guiding centre. Then K’ = 0, and one comes to the ‘shifted’ Hamiltonian (7),
(8) with Hy = 0, exploited by Gorkov and Dzyaloshinsky (1968}, Burkova ez al (1976),
Herold et al (1981) and Ipatova ef el (1984}, The conventional choice rg = 0, in contrast,
keeps Hy non-zero (with K’ = K) but makes the potential in (7) symmetric.

2.2. Basis set of wavefunctions

The transverse part of a wavefunction of an isolated electron with a definite z-projection
mh of the angular momentum in 2 magnetic field is a Landau function (Landau and Lifshitz
1976)

Pymlrer) = 27) 2 explimp)ag Iy-mn(0*/2a%) (13)

where p and ¢ are the polar coordinates of r.; in the xy plane, Iyn(£) is the Laguerre
function (Sokolov and Ternov 1968), N = 0,1, 2, ... is the number of the Landau level
(m=N,N—-1,..), and ay = (hc/eB)"/? is the magnetic length. Functions (13) solve
the Schrédinger equation with a single-pasticle transverse Hamiltonian 2, /(2m.), where
7, is defined by equation (2) with A(r} = % B x r. From equation (8) the remarkable fact
that functions (13) with v/, substituted for e, are also the eigenfunctions of H) without
Hy follows. The quantum numbers N and N = N — m are then the Landav numbers of
the electron and the proton in the absence of the Coulomb interaction, corresponding to the
transverse energy

m m M.
E¥p = —(N + Dhop — —mhwp = [N +i+—=(NV+ %)] haws. (14)

The continuum boundary is Eg, = hep(l + me/mp)/2.
A wavefunction ¥, ("), which solves the equation

HyeYre = Eethy {15)

may be expanded over the complete set of the Landau functions in the xy plane:

V@) =Y Owme (TG0 (2). (16)
N'm'

This expansion is most convenient, if ¥ 2 1. Then, if the influence of Hx is not too

great, one can select a leading {(Nm) term and ascribe to the atomic state three numbers

Kk ={N,m,v), where v =10, 1, 2, ... consequently numerates longitudinal energy levels
EII

Wy = Enmy — E#m (17
starting from the deepest one. The z-parity of the wavefunction is (—1)". Since the energy
distances between Ej;, grow with y, all the levels become metastable at y 3> 1, except for
those with N = 0 and small (—m).
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Substituting (16) into (15), multiplying by ®wwm+(r) and integrating over r/, one
arrives at the set of coupled equations

B d?
[“ﬂd_zz -+ Vfomff,N”mH(z) + (N”m”[HK[Nﬂm”) + EJ‘JV-”m” - ENm E}Lmu] N”m";va(z)
!
= = > (Vi ww(2) + (N"m" L Hg IN'm ) g i (2) (18)
where summing is over all the pairs (N/, m') except for (N¥, m"), and
Vi ot (2) = (N'm"| ~ & flrs + /| [N'm') | (19)

is the effective potential discussed in the appendix.

The infinite system (18) is equivalent to the Schrédinger equation (15). Truncating the
sum (16), one comes 1o the finite system, which solves (15) approximately. Such a solution
is consistent with the variational principle on the truncated basis.

The potentials Vyrpo ypr(z) with m” # m' are equal to zero if rp = 0, whereas the
terms {N"m"|Hy|N'm') vanish at rg = r¢. Thus for an atom at rest (rc = 0) the summing
over m’ drops out, and the system (18) splits into disconnected subsystems corresponding
to separate values of m, which becomes a good guantum number. This particular case has
been investigated by many authors (e.g. Wunner and Ruder (1987), and references therein).
In section 3 we shall solve system (18) in the general case of a moving atom.

2.3. Adiabatic approximation

At y >> 1 the leading term in (16) may become large compared with side terms. Then the
adiabatic approximation may be applied:

Unmo (1) X Yy (7)) = PN ()83 @) 20)

and (18) acquires the form of a one-dimensional Schridinger equation with the potential
Vum(z) = Vymwm(z). The number v counts the nodes of gi.dm(z). The validity of this
approximation depends significantly on the parameter rg used, Ipatova et al (1984) have
shown that for the ground state the perturbation theory based on the conventional choice
rg = (0 is valid for small X, whereas for large K the choice rg = r¢ is appropriate. The
latter conclusion is also valid for excited states since the non-diagonal effective potentials
Vv N (2) (unlike (N"m"{Hy |[N'm'}) vanish at 7 — oo (see the appendix).

Generally, one may always choose rg € ro. When an atom moves so that re € ay,
the effective potential Viy,{(z) deviates from the one-dimensional Coulomb potential only
near the origin. In this case the energies Eva at y >» 1 are described by the Rydberg
series with the effective quantum numbers [v/2 + O(In y)y 1] for v = 0,2,4,... and
[(w+1)/24+ 0] forv=1235,... (Hasegawa and Howard 1961, Haines and Roberts
1969). The transverse atomic size is {; ~ ay < as (equation (24)), where ag = 72/ (mee?)
is the Bohr radius, whereas the longitudinal size is determined by the binding energy,

I, ~ 0.5h(m.|E)~1/2 ifr=20 I, ~ 0.8¢%/|EY| ifv=12,3... (D

In the opposite case rc > am, if 75 = rc, one has Viyn(z) & —e2/,/rd +z2. In the
limiting case re/ap = Kag/(yh) 3> 1, low-lying states are determined by the oscillator-like
part of this potential at |z| < r¢ (Burkova et al 1976). Then the energies are

82
By = = (-1 Vaslrow + ) @
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and the root-mean-square (RMS) atomic z-size I, = {Nmv|z*|Nmv}!/2 grows as
lp = -+ DY (rdap) ™ o (K /y)**, (23)

This approximation is valid under the condition /, < rc, which requires v & /rc/as.
Higher levels are again driven by the Coulomb tails. Therefore the number of levels
remains infinite, regardless of X and y values. The levels with N > L or m € —1 are
involved in the continuum at high y or X, but all (00v) levels lie below Ex, thus being
really bound.

Transverse RMS sizes of the r/-coordinate distribution equal

Iy =1, = ayv2N —m + 1. (24)

However, the electron density is shifted apart from the proton, so that the atomic x-size
L = ((xe = xp)%)!/ becomes I, = ,/I'2+r2. Owing to the large atomic sizes and
small binding emergies at large re, atoms are easily destroyed by collisions. Therefore
the decentred states can be observed either at very low densities or at very strong fields
(r>»1).

2.4, Perturbation approach

Let us consider the Hamiltonian (7) with rg = 0. When K is small, one may treat Hy as a
perturbation, starting from the wavefunctions and energies of the fixed atom. This approach
gives

E(K) = E.) + K2/(2M2) (25)

where the effective transverse mass M7 depends on the field strength.

Since the second-order perturbation cannot raise the ground level (Landav and Lifshitz
1976), it is evident that M+ > M for the ground state. In fact, M. is even much greater
for excited states, since the magnetic field hampers the transverse motion of loosely bound
charges.

Vincke and Baye (1988) used a variational method for the zero-order computations.
Alternatively, starting from the adiabatic solution for the fixed atom, one can easily express
M3, in terms of the longitndinal overlap integrals (g3, 1% ,..); and binding energies
|E.E.S:$w(K =0)|, where N =Nxl,m'=mx1,v =v,vt2,vt4,... are the quantum
numbers of levels admixed by the perturbation (with the common restrictions N* = 0,
m' < N, v' > 0). For states with N = 0 this has been done by Pavlov and Mészéros
(1993) who investigated kinernatic, thermodynamic and spectroscopic effects of the motion
of the hydrogen atom in strong magnetic fields. According to their estimates, limitations
on the validity ranges of the perturbation approach are rather strong, especially for the
hydrogen-like levels.

2.5, Multiconfiguration approach

Various methods have been applied to solving the set of equations (18) in the particular
case of an atom at rest, when the double sum in (18) reduces to the single one. Simola
and Virtamo (1978) developed a finite-difference iterative scheme, treating ‘side’ equations
separately from the leading one. Friedrich (1982) used a variational expansion of gyim:.(2),
which led to a matrix eigenvalue problem. Wunner and Ruder (1982) and Résner et al
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(1984) adjusted the multiconfiguration Hartree-Fock (MCHF) method to this case (Froese
Fischer 1977).

We have employed an MCHF-like scheme for finding E, and gymyv(z) from (18)
in the general case of the moving atom. For each given state ¥ = |Nmv}, an initial
approximation of the leading term was the adiabatic solution obtained in a way similar to
the previously described one (Potekhin and Pavlov 1993). Then a nested iterative procedure
started. Af each nth inner iteration: (i) the system (18} was solved with the results of the
preceding iteration gf\;',,_np(z) substituted into the right-hand-side sum; (ii) thus obtained
longitudinal functions §g’?m,(z) were normalized so that [ |§R’,‘,)m,(z)[2 dz = 1; and (iii) the
matrix eigenvalue problem

> (B (1R (212 82 fd2® + Epjngys VonnSeurms
N'm!

+ Vo 2) + (N'm" [ Hg IN'm} | Evrme Yy Corme = ECNvmy (26)

was solved by the inverse iferation (Parlett 1980) with the shift E®~!, using the LU
factorization code of Fletcher (1988). As a result, the next (#th) approximation ggfL (z)=
¢ &% (z) and E®@ was obtained. At the outer iteration, one more Landau orbital was
included, and the procedure repeated. The process was terminated when a convergence of
both energy value E and coefficients ¢y, was achieved. Once a solution at some p, K
and ry is obtained, it may be used as the starting approximation at a slightly different value
of one of these parameters. Then the outer iteration is no longer necessary.

In actual calculations we used the decentring parameter g = pre, 0 < £ 1. Up to
32 Landau orbitals were included in the expansion (16). The longitudinal equations (21)
have been solved using the combined shooting-direct method (Froese Fischer 1977). The
longitudinal mesh consisted of up to 10 uniform pieces, which counted equal (from 20 to
80) number of points, the step 4 being doubled at the start of the next piece. The initial
step & = am/20 at z = 0 ensured an accuracy level better than 10~* Ryd in energy and,
typically, about 1% in oscillator strengths.

3. Results and discussion

3.1. Wavefunctions

Wavefunctions of the moving atom can most easily be found in the limits of low and high
transverse pseudomomenta. In the first case (rg € rc — 0) the effective potentials with
m' # m vanish, while the terms with N/ % N become small at ¥ 3> 1 due to the large
energy differences |Ex, — Eﬁml. In the opposite case K — oo the representation ‘with
full shift’ rg = r¢ is appropriate, at which the non-diagonal effective potentials Vi, yme(2)
decrease rapidly regardless of field strength, Therefore in both limits a small number of
terms may be kept in (16}. For low-lying tightly bound states some intermediate (mixing)
range of K exists, in which many Landau orbitals are coupled together, so that a way to
select a leading term of the expansion becomes unclear. However, at ¥ 2 300 all energy
levels can be traced diabatically either to low or to high X without any uncertainty, so that
the numbering |«) = |[Nmv) remains unambiguous in the mixing range.

The position of the critical K value around which the mixing takes place can be roughly
estimated as K; = /2M|[E!. At K > K, only the choice # = 1 remains practical for the
treatment of the system (18), while choices 5 # 1 lead to divergence.
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The expansion coefficients ¢y, with N’ 2> 1 remain very small, reaching the maximum
value for the ground state at X = Q. Thus the approximation assuming N' = 0 in (16)
is justified for a moving atom not worse than for an atom at rest. For all hydrogen-like
states (unlike tightly bound ones) a few terms of the expansion with n = 1 are sufficient at
arbitrary K.

I A = 30 a.u ]
e.5r ]
0.0 ]
L]
- L i
i 0 L 4
S osf :
e I 1
e L
t
s N i 7
B | h
0.0 . ]
- I -
. i
051 i »
1
I ] ]
- 3 -
L ]
L ; 2
3 ! h Figure 1. Square modulus of the wavefunction of
0.01 bl the state |0 — 30} (full curves) compared with the
-04 ~03 -G2 -0 00 01 adiabatic approximation (broken curves) in the full-

x {ag) shift representation at B = 2.35 x 1012 G,

Figure 1 shows the relative electron~proton probability density at y = z = 0 for
y = 1000, compared with the adiabatic results with n = 1. The shape of this function is
asymmetric. At low K, when the decentring is small, its left side is higher becaunse of the
electric field induced in the comoving reference frame. At high X, in contrast, the whole
function is leftward shifted, its right side being increased by the Coulomb attraction. In the
mixing range additional details arise from the influence of neighbouring orbitals admixed.
Nevertheless the adiabatic approximation gives a qualitatively correct impression of the real
shape of the wavefunction.

The mean electron—proton separation is generally less than r¢. It depends on X, as
shown in figure 2. These dependences are similar to those of ‘optimal decentring’ obtained
by Vincke et al (1992} with the use of the adiabatic approximation. However, the quantity
presented here has the clearer quantum-mechanical meaning of the average dipole moment
divided by erc. We see that at small K this quantity is relatively small for the lowest states,
while at large K all the curves approach unity, In the intermediate range the dependences
for the excited tightly bound states reveal non-monotonic features due to the approximate
admixing of neighbouring states. A decrease in the field strength leads to sharper features
and to more abrupt ground-state decentring.

Figure 3 presents the K dependences of the longitudinal atomic size [, at y = 1000
compared with the approximations (21) and (23). In agreement with the discussion in
section 2.3, the former approximation is relatively good at small X, whereas the latter one
works at K > yv*h/ag.
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3.2, Energy levels

When a free atom moves, the total momentum conservation results in its stability regardless
of the total energy increase. For the motion across a magpetic field, the conserving quantity
is the psendomomentum K, to which all values of the common continvum level Eg;
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correspond. Hence all states with total energies above Ep are metastable, Their accurate
treatment would include a simuitaneous calculation of the open-channel (with Ex,,, < E,)
and closed-channel (E#,m, > E,) terms in (16), (18). However, since the admixture of the
former terms is relatively small, one may exclude them from (16) and treat these states
as quasibound ones. Thus the discrete spectrum can be extended above the continuum
boundary Eg, as is illustrated in figure 4. At each K value a larger number of tightly
bound states become really bound with the decrease in field strength.

Since IEP\,mul decrease monotonically with increasing X, the tightly bound levels (Nm0)
cross hydrogen-like ones (Nm'v), if m" > m. The exact crossings with the odd states cause
no problems, since corresponding wavefunctions have different z-parities. In contrast to
this, close to the anticrossing points with the even states one should exclude the orbitals
®ypy and Dy, from the expansions (16) for the states |Nm0} and [Nm'v}, respectively,
in order to avoid a numerical instability. Generally this reduction may lead to non-zero
matrix clements {(NmONm'v) and {NmO|H| Nm'v), calculated with the solutions on the
reduced bases. Therefore an approach similar to perturbation theory for degenerate states
may be applied to resolve the approximate crossings. In most cases the above-mentioned
matrix elements became zero within our numerical accuracy. At ¥ = 1000 we have proved
numerically that |[0m0}/]00v) energy gaps do not exceed 2 x 10~* Ryd. The only exception
is the |002)/]0 — 10) anticrossing with the binding energy £ = 0.3]1 Ryd at X = 950 an,
for which the gap between the lower and upper E against K curves reaches ~ 0.005 Ryd in
the E-direction compared with ~ 15 au in the K -direction, whereas for the |002) /[0 — 20}
anticrossing (K = 452.8 au, E = 0.3807 Ryd) the gap is as small as 10~* Ryd compared
with 0.1 au, respectively. Except for these narrow gaps, the diabatic curves are traced from
low to high K without uncertainties.

A gualitatively new feature which appears at lower field strength (figures 4(c} and (d))
is that some hydrogen-like levels with m # 0 become really bound at lJow XK. This results in
anticrossings between hydrogen-like levels belonging to different m-manifolds. At y = 300
these anticrossings are very narrow. The exception is |0 — 12)/]004}, which reveals the
energy gap between E = 0,160 Ryd to E = 0.182 Ryd at K = 33 au. By a further increase
in K, the wavefunction of the state with the higher binding energy (initially |0 — 12})
acquires the properties of |004} (larger longitudinal size and more nodes), and vice versa.

The expectation value of the velocity of the transverse motion {V} = 3E/8K is equal to
K/M* at small X, but decreases as ¢>B/(cK?) at large K. For each state some maximum
velocity is reached when the second derivative 82E/3K? turns to zero.

In figure 5(z) the numerically obtained energies are compared with the (y = 1)-adiabatic
and pertorbational ones. In agreement with the discussion in sections 2.3 and 2.4, the
adiabatic curves rapidly approach the exact ones at X above the mixing range, where the
perturbation method fails. The humps at the adiabatic curves at low X correspond to the
behaviour (A11) of the effective potentials, which grow with rg, if rg € 1 and m # 0. In
figure 5(b) the energies of the band m = 0 are compared with the harmonic approximation
(22).

The discrete spectrum is infinite at each K value. This is proved by the fact that the
number of states is infinite in the adiabatic approximation (section 2.3), which may be
regarded as a variational ansatz. Since the adiabatic wavefunctions with the same (N, m)
and different v are orthogonal to each other, and since the number of bound states obtained
variationally under the orthogonality condition cannot be greater than the number of true
bound states, we may conclude that the latter number is actually infinite for the moving
hydrogen atom. The opposite conclusion has been inferred by Baye er af (1992) from the
parzabolic approximation of the potential at large K. However, we have seen in section 2.3
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Figure 4. Energy spectrum against transverse pseudomomentum X at B = 7.05 x 102 G ta),
2.35 x 10'2 G (&), and 7.05 x 101! G (¢), (d).

that this approximation fails if v is not small enough. Figure 5(b) confirms that the harmonic
energies approach the exact ones at much higher X for higher v values.
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Figure 5. Comparison of exact binding energies (full curves) (a) with the second-order
perturbation approximation (25} (chain curves) and the fuli-shift adiabatic approximation (broken
curves), and (b) with the oscillator-like approximation (22) (chain curves) at B = 2.35 x 102 G,

3.3. Radiative transitions

Having obtained wavefunctions and energies of initial |{) and final | f} bound states, one
can calculate oscillator strengths of radiative transitions

he
fria= -ﬁﬁmﬁ,w/asﬁ )

where e is the circular frequency, & = 0, £1 is the polarization index of incident radiation,
corresponding to the polarization orts ey = €y, ex; = (e Liey)/ V2, and Dy, is the cyclic
component of the dipole matrix element, which can be calculated either in the ‘coordinate
form’

DY = (fIrli) (28)
or in the “velocity form’
D = (i)™ {flw3). 29)

Using the expansion {16) for the states |i} and |f), these matrix elements can be reduced
to sums of one-dimensional (longitdinal) quadratures,

In fact we employed both forms, and used the concordance between them as one of
the tests for calculation accuracy. For an atom at rest it has already been argued that the
‘coordinate form’ (28) is more relevant at ¥ 3> 1 for circular polarization (Potekhin and
Pavlov 1993). For the moving atom this conclusion has been confinrmed by the present
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left circular (broken curves), and longitudinal {chain curves) polarization,

calculations, which required a significantly greater number of basis functions related to
N’ > 0 to be included in the expansion (16) for the numerical convergence of the matrix
element (29), whereas a small number of such terms was enough for D . convergence.

In contrast to the case of a field-free atom, the oscillator strengths of an atom in a
magnetic field do depend on its motion. Figure 6 presents such dependences for the
radiative transitions from the ground state |000) to some excited states marked near the
curves. Because of the definite z-parity of each wavefunction, dipole transitions to the odd
states are allowed only with the longitudinal polarization (&« = (). Transitions to the even
states {0m0} and |002) are allowed either with right (o = 4-1) or with left (¢ = —1) circular
polarization. For a fixed atom (K = 0) an additional selection rule, m; — my = o, results
from the angular momentum conservation. In particular, transitions from the ground state
under the effect of the left-polarized radiation & = —1 are possible only if the final state
belongs to the continuum, since all states with m > 0 are involved in the continuum at
v 2 {115 {see Risner et &/ 1984). This selection rule is broken by the motion.

The strong resonance of the transition to |002}) with &« = 41 is caused by the anticrossing
with the state |0 — 10}, Similarfy, sharp dips on the |0m0) curves are due to anticrossings
of these tightly bound states with hydrogen-like levels.

At Jower field strengths the variations in the oscillator strengths with varving K become
more prominent, as figure 7 demonstrates for y = 300. Resonances at longitudinal
polarization appear, caused by hydrogen-like level anticrossings discussed in section 3.2.
Another unusual feature is that near X ~ 100 au the absorption of right-polarized radiation
becomes stronger than that of longitudinally-polarized one.

Oscillator strength limits of the allowed transitions at £ — 0 in figures 6 and 7
correspond to the values presented by Forster et gl (1984). Limits at large K can be found
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from the adiabatic approximation, which provides the explicit form of the transverse matrix
elements (Potekhin and Pavlov 1993). Since effective potentials Vg,,{2) tend to each other
at K —» co, the longitudinal matrix elements approach d,,,, for the circular polarization.
This gives

Sriat = 2mp8n), im1+180,0, (Me/ Mp) (30

at K > K. To find longitudinal matrix elements for & = 0, one may employ the osciilator-
like approximation (section 2.3). Then one obtains

Frio = Vfam;m,avf.u. +i (31

ak >y v}h Jas. The calculated oscillator strengths in figures 6 and 7 behave in accordance
with these estimates.

4. Conclusions

The expansion of wavefunctions over the complete orthogonal basis of the Landau states
[Nm) is the conventional tool for studying atoms at rest in strong magnetic fields (y =
B/(2.35 x 10° G) 2 1). In the present paper we have shown that an analogous expansion
(16} remains convenient for hydrogen atoms moving in the field y 3 1. The advantage
of this expansion is that the non-diagonal effective potentials vanish for both small and
large transverse pseudomomenta K, if the shift parameter rg = r¢ is used. Therefore the
leading expansion term has the correct asymptotic properties. Besides, the orthogonality of
the basis simplifies calculations of the matrix elements. A small number of terms provide
satisfactory accuracy in the cases of small and large K, as well as for the hydrogen-like
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states, The reduced expansion over the basis of the states related to the ground Landau
level N = 0 yields a good approximation for atomic energies, sizes and oscillator strengths
of those radiative transitions which remain allowed at K = 0, although the basis functions
with N > 0 should be included for other transitions. Wavefunctions, energies and radiative
transitions in the discrete spectrum have been studied using the suggested approach.

Atoms with large K acquire large dipole moments. The electron density becomes shifted
aside from the proton, although its shape remains close to cylindrical at all X, and the shifted
adiabatic approximation gives a qualitatively correct impression of it. The energy spectrum
is divided into different m-bands. The states with m # 0 become metastable at large K,
while the band m = 0 includes the infinite number of really bound states at arbitrary K.
The mean velocity of the transverse motion is proportional to X for small X, and it is
inversely proportional to K2 for large K. For each state, the velocity cannot exceed some
maximum value.

The atomic energies, sizes and wavefunctions, obtained in this paper, are used
elsewhere for computation of photoionization cross sections of the moving hydrogen
atom (Bezchastnov and Potekhin 1993), and for calculations of ionization equilibrium of
hydrogenic plasma in neutron star atmospheres (Pavlov er af 1993),

The oscillator strengths of the bound-bound radiative transitions undergo radical changes
when the atom moves across the field. Some of them vary by several orders of magnitude.
Moreover, since the z-projection of the angular momentum of the moving atom does not
conserve formerly forbidden dipole transitions with m; — my # o become allowed. Thus,
the motion breaks some dipole selection rules and causes drastic changes in transition rates,
confirming the predictions of Pavlov and Mészédros (1993).
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Appendix. Effective potentials

The effective potentials in (18) consist of two terms. The constant term (N"m"|Hyx |[N'm'),
which admixes neighbouring states N = N+ 1, m" = m’ £ 1, is easily calculated with the
help of well known expressions for the effect of operators 7; and ry; on the basis states
{Nm)} (Hasegawa and Howard 1961). The result is

(N'm’|Hg|Nm) = (K'Y /M) NS
o+ /o) | (e B + VN =1+ oy ) Bomcs

= (et VN F T8ws1 + w1V N = 8 ) B | (A1)
where
we = K/M+ef/(2mec)B x (rg ~ T4)

(A2)
wy, = K/M+e/C2mpe)B % (rp +ra).
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In the particular case, when rg = nrc, one has we 4+ = wp 21 = iK1 — /(M V),
and the effective potential (A1) becomes real.

Let us turn to the effective Coulomb potential (19}, assuming that ry is directed along
rc (the general case of an arbitrary direction is easily recovered by a change of variables).
With the aid of equation (13) we have

2

VNm,N'm’(Z) ==

< ( s z ) (A3)
amﬁ W amﬁ'amﬁ

where
T dw .., =)

im0, 8) = [ S2 9 [ e 1y o)
0 0

X ({2 + o2 +E— Zp\/gcosqo)—m (A4)

does not depend on . Since Vym N'm = Un'm Nm, WE may assume m—m’' = g > ¢ without
loss of generality. Using the Gauss decomposition of the last multiplier in the integrand,
one can transform (Ad) into )

UNm N (05 8) = %j‘; de dx Iyepe v (E)yr—p (§)

x I, (2x2p/EY expl—x2(t? + p° + £)] (A5)

where I,(y) is the modified Bessel function. A direct integration in (A5) is rather time-
consuming. To simplify it, let us make use of the explicit form of the Laguerre functions,

DN Iy 8 (E) = Dy (8) = 22 " gy (—6)* (A6)
k=0

where n = N — (m -+ |m|)/2 is the radial quantum number, and
Qps = [0 + )RR — B s + 1)1 (AT)

Therefore each potential vy, nm 18 equal to a finite sum of potentials related to the ground
Landau level:

n+n'
Ui, N (0 y= E(_'I)N_n+N - Z Qn|m| Ak nt im' |V s1s e (0, £) (AB)
=0 ktk'=t
where s = (Jm| —m + W'} + w2 +1, 8 = (m| +m + |m'| — m)/2 +1, and
Usp (P, §) = vg,—50,-v (P, ¢). The latter potential can be further simplified with the aid
of the relation (Gradstein and Rydzhik 1963)

o0
f e~XegsHal2y, (Q.xzp\/E) db = sIX~@tD (e 2p)e AT LT (2t p¥/X) (A9)
1]

where LI(y) is an adjoint Laguerre polynomial, Substituting (A9) with X = 1 + x? into
(AS), after simple transformations one obtains

7 S 1
U piq(01 §) = % > asgp™ fo exp[—2%t/(1 = 1) = PPV ikl gy,
k=20

(A10)
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This expression is feasible for numerical treatment using Gauss—Chebyshev quadratures
(Abramowitz and Stegun 1972).

Finally let us consider the asymptotic behaviour of the potentials. It follows from (A3)
that Uy e (P, L) ~ p? at p = 0. In particular, from (A10) one finds

P(m+ HP(s + 3 2q+1 p*
Vieta (P, 0) = %ﬁ%qf)ﬂ (14 555 +ow 9)- (A11)

29 +22s -
In order to derive asymptotics of the effective potentials in the case £2 3> 1 and £2 3 p?,
the generating function (Kaminker and Yakovlev 1981) is convenient:

g5/ El+ds (n +s "
@)= WGXP[ 21— r] Z\/ Tpps (N (A12)

Substitating fj. (¢} and fi(t") into (AS5) instead of the Laguerre functions, integrating over
£ with the aid of (A9), where X = 1+4x2+1/(1 —¢#)+1'/(1—1"), expanding the result in the
power series over ¢ and ¢/, and taking into account the first refation (A6), one can express
U ame (0. £) as a finite sum of one-dimensional quadratures of the type of (A10) with
some combinatorial coefficients. Equation {A10) presents the particular case N = N' = 0.
Another particular case, corresponding to p = {, has been presented by Friedrich and Chu
(1983). If p is finite, only one of the terms of the sum survives at { -+ 00, yielding the
asymptotics

C i q
v (9, 8) ~ =T (r + ) g‘;ﬁ (A13)

where

r=N-N+4gq C = Co[(N' — M)lgi]™" NN

r=g C = Co(— 1"V NINIUN — NN =N + )1
fN-g<N KN

r=N-N C = CyH(=1)I[(N = N' — q)!q1]™"! ifN'+g<N

(Al4)

and Co = [n'{(n’ + |m')) 1] 2[nl(n + |m[)1])~1/2,

In the case when p tends to infinity along with ¢, so that ¢ /g = constant, the potentials
decrease as (£ 2+ p°)~¢+1/2) with the same power indices r as in (A14), but with coefficients
depending on the ratio {/p.
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