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Abstract. Transport properties of degenerate relativistic elec-
trons along quantizing magnetic fields in neutron star crusts are
considered. A kinetic equation is derived for the spin polariza-
tion density matrix of electrons. Its solution does not depend on
the choice of basic electron wave functions unlike previous solu-
tions of the traditional kinetic equation for the distribution func-
tion. The density matrix formalism shows that one can always
reach high accuracy with the traditional method by a proper
choice of the basic functions. Electron Coulomb scattering on
ions is considered in liquid matter, and on high-temperature
phonons or on charged impurities in solid matter. In the solid
regime, the Debye — Waller reduction of phonon scattering can
strongly enhance the longitudinal thermal or electric conductiv-
ity. An efficient numerical method is proposed for calculating
the transport properties of electron gas at any magnetic field of
practical interest.
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1. Introduction

Accurate transport coefficients in neutron star crusts are impor-
tant for analysing the thermal evolution of neutron stars and
evolution of their magnetic fields. In outer crusts of cooling
magnetized neutron stars, the heat is mainly transported along
the magnetic fields. There exist several competing heat transport
mechanisms across the field, but the longitudinal currents are
carried mostly by electrons through their scattering on phonons
or charged impurities in the solid phase and on ions in the liquid
phase. As a rule, the electrons in the crust are strongly degen-
erate and may be relativistic; the magnetic field can be easily
quantizing. Transport properties of the crusts have been studied
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in a number of papers (e.g., Yakovlev & Kaminker 1994, and
references therein).

In the present work, the most important problem of longitu-
dinal electron transport in quantizing magnetic fields is studied
with the use of the quantum density matrix formalism, instead
of the traditional kinetic equation for the electron distribution
function employed in previous studies. The main advantage of
the present approach is that it is independent of the choice of
the basis of electron states (basis states are not unique due to
the electron spin degeneracy).

We consider three main electron scattering mechanisms.
The first one is the Coulomb scattering on ions in the liquid
or gaseous phase. The second one is the scattering on high-
temperature phonons in the solid phase. In the latter case, we
take into account the Debye — Waller factor whose importance
has been emphasized and proved by Itoh et al. (1984b, 1993)
for the non-magnetic case. We show that the effect of this factor
is much stronger in quantizing magnetic fields. The third mech-
anism is the Coulomb scattering on charged impurities in the
solid phase, important much below the melting temperature.

The paper is composed as follows. In Sect. 2 we describe
the physical conditions of interest, electron scattering potentials,
transport coefficients and their expressions in the non-magnetic
case. In Sect. 3 we derive a linearized kinetic equation for the
density matrix and compare its numerical solutions with the tra-
ditional solutions employed in all previous works. Mathematical
properties of the new equation are discussed in Appendix A.The
effect of the Debye — Waller factor in quantizing magnetic fields
is studied in Sect. 4. The results are summarized in Sect. 5. In
Appendix B we present new expressions for some intermedi-
ate integrals. These expressions ensure efficient computation of
the transport properties for the case when many Landau orbitals
are occupied. Previous results (Yakovlev 1984, Hernquist 1984,
Schaaf 1988, Van Riper 1988) were restricted to 30 Landau or-
bitals at most.
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2. Basic equations
2.1. Physical conditions

Magnetic fields B in magnetized neutron star crusts are known
to range between 10'! and 10'* G. For temperatures T' ~
(10% — 108) K and densities S 10® g cm™3 of interest, the Lan-
dau quantization of electron motion in a magnetic field can be
very important (then the field is called quantizing). Consider not
too low densities (typically, 2 10° g cm™3 at B ~ 10'2 G, see,
e.g., Yakovlev 1984, Van Riper 1988) when the electron gas is
almost free and the ions are fully ionized. An electron energy is
then given by
2 2y1/2

€n(2) = ¢ ((Mec)* + 2hwpmen +p2) ',

¢

where p, is the electron momentum along the field, wp =
eB/(mec) is the electron cyclotron frequency, (—e) is the elec-
tron charge, m, is the electron mass, c is the speed of light, and
n=0,1,2,...is a Landau quantum number.

The electron number density can be expressed as

n—me‘”B/wd 3 folen(®:) )
e = anhe J_o Pz e o0lén(Dz)),
where s is a spin quantum number (s = —1 for n = 0, and
s=+1forn=1,2,...,see Sect. 3),

. —1
fo©) = [exp ( — ) + 1} ®

is the Fermi — Dirac distribution function, and y is the chemical
potential (including mec?). A fitting formula for calculation of
ne is given in Appendix C.

The state of ions is mainly determined by the ion coupling
parameter [' = (Ze)?/(aksT), where Ze is an ion charge, kg
is the Boltzmann constant, a = (47n; /3)~'/3 is the ion sphere
radius, and n; = ne/Z is the ion number density. If I' <« 1,
the ions constitute an ideal gas. For higher T', the gas gradually
transforms into a strongly coupled Coulomb liquid. The liquid
solidifies at the melting temperature T" = Tp, which corresponds
to I' = 172 (Nagara et al. 1987). The zero-point quantum vi-
brations of the Coulomb crystal become comparable with the
thermal vibrations at kgT" = fuwp, Where wp = /4w Z2e?n; /m;
is the ion plasma frequency, and m; is the ion mass. We will
not consider superstrong magnetic fields (discussed, e.g., by
Yakovlev 1984) which affect the properties of the ion plasma
component.

A more detailed description of the physical conditions is
given by Yakovlev (1984) and Van Riper (1988).

2.2. Scattering potentials

Consider three important cases when the electron scattering is
almost elastic. The first case is the Coulomb scattering on ions
in the liquid or gaseous phase (1" > T1,). The second case is the
scattering on high-temperature phonons (fiw, /kg S T < Tpy).
The third one is the Coulomb scattering on charged impurities
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in the lattice, which is important for kgT" < Fwy. The impuri-
ties represent ions of charge Zimp # Z immersed accidentally
in lattice sites. Thus our results will cover a wide range of tem-
peratures.

The electron-ion scattering potential V(r) in the liquid
or gaseous phase can approximately be taken as a screened
Coulomb potential (Yakovlev 1984). Its Fourier image U(q)
is given by
Uen(@* = [4nZ€? /(@ +77)], @)
where 7 is an effective screening length, 772 = 72 +7;°2. Here
r; and 7. are the screening lengths due to ions and electrons,
respectively. In the most important liquid regime (1 S I' <
172), according to Yakovlev (1984), the ion screening length is

ri =a+/e/6 = 0.67a

(Hernquist (1984) used a less accurate approximation for ;).
The electron screening length is determined as

®

Te = [4me? One /O] -2 (6)

When the temperature is low enough (kgT' <« hwp with wp =
wpmec?/ 1), we have

2/3
6 _ 2
(an/r)* = < (mehiwp) 13 ﬁglpzl] , %)
) 2« €
m/Te) = — 3 8
n/r = L e ®

where ay, = (fic/eB)'/? is the magnetic length, o = €2/ hcis the
fine-structure constant, and the energy and momentum variables
are assumed to be taken on the Fermi surface: € = €,(p,) = p.
At arbitrary temperature, the fitting formula of Appendix C can
be used to calculate ne and On./du for estimation of r; and 7
according to Egs. (5) and (6).

For scattering on high-temperature phonons in the solid
phase, one has

4z \* 2
Unn(@l” = (—"—q—e) L exp [-2W(q)]

9
where
3kgTu_y u_sa?
2 _ _
T = 4 Z2¢2 - T (10)

is the mean squared thermal displacement of ions, u_; is a
numerical factor determined by the phonon spectrum (u_, = 13
for the bece lattice), and e=2" is the Debye — Waller factor.
The latter factor is usually negligible for scattering in terrestrial
solids (e.g., Davydov 1976), but it is important in dense neutron
star matter (Itoh et al. 1984b, 1993). For the high-temperature
solids (kgT" R hwp) of interest, one has (e.g., Itoh et al. 1984a)

2W(q) ~ (rrq)*/3. (11)
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Note that Eq.(9) represents the familiar high-temperature
asymptote of the one-phonon scattering potential (Yakovlev &
Urpin 1980) multiplied by the Debye — Waller term (Itoh et al.
1984b) to include multiphonon processes.

Finally, the Coulomb scattering on impurities corresponds
to (e.g., Yakovlev & Urpin 1980)

Uinmp(@)* = [47(Zimp — 2)E2/(@ +757)]

In this case the screening length 7 is most likely determined
by the electrons: rs = .. The Coulomb scattering on impurities
is very similar to that on ions, and we do not consider them
separately in detail. The results for impurities can be obtained
from those for ions by replacing

(12)

Z — Zimp —Z, M — Nimp, (13)
where Nimp is the impurity number density.
Equations (4) and (9) can be conveniently written as

21 [2he/am |

Uion(@I* = = [—/_“’2] , (14)
nil | g2 +r;
r (2hc\® _

U@ = — (—) e W, (15)
nl \ g

where [ is a scale length (Yakovlev 1984):

| MmeChwp 3 he \ a6)

T 2 Z%e’ P A \ Zetrp )

For the scattering on impurities, Ujmp and liyp are obtained from
Ujon and [;on by using Eq. (13).

2.3. Transport coefficients

Let j and ¢ be the densities of the electric and thermal currents
induced by sufficiently weak electric field & and gradients of
temperature 7" and electron chemical potential y directed along
the magnetic field (along the z-axis). The currents are deter-
mined by three transport coefficients o, 8 and X,

. 1 0u or
N i dad
J ( e ) b 9z’
.1 op oT
= -pT{&E+-—=—)—-A—, 17
7 A ( e 82) 0z an
where ¢ is the longitudinal electric conductivity.
For practical use, Eq. (17) can be rewritten as
10 35 pBOT B,..
— = - = =—=Tj—a&— 1
g+eé)z o ooz 1T T%E (18)

where §/c and & = X\ — T?/o are the longitudinal ther-
mopower and thermal conductivity, respectively.
For nearly elastic electron scattering, the kinetic coefficients

o, B, and X may be expressed as
neT(€)c? <_ 9fo

ol 0o e?
o= |e—uyr : )de, (19
A mee? \ (€ — p)? /T ¢
where 7(¢) is the effective energy-dependent relaxation time for
the electrons.

1001

2.4. Non-magnetic electron relaxation times

In the absence of the magnetic field (or for non-quantizing
field), the inverse effective relaxation time (effective collision
frequency) of an electron with energy e can be presented as

771 (€) = nivou(e), (20)

where v is the electron velocity and oy (€) is the transport cross
section:

dQ , ,
oy(e) = v dQ'c(p — p’) (1 — cos ©). (03))
Here p and p/ are electron momenta before and after scattering,
respectively, dQ2 and d§’ are solid angle elements, © is the

scattering angle, and o(p — p’) is a differential scattering cross
section. In the Born approximation,

[U(q)*¢ | v_zssz
Am2htct c? 2)°

Consider the Coulomb scattering. Let us substitute the Fourier
image (4) into Eq. (22). Integrating in Eq. (21), we arrive at the
well known result (e.g., Yakovlev and Urpin 1980):

o(p - p) = 22)

o 2
ou(e) = 47 (Z—e> Ae). 23)
v
Here A(e) is the Coulomb logarithm (Yakovlev 1980):
Ade) = % [ln(l +w)—(1+ w_1)°1] -
2
— -2 In+w)+1+w)'], (24)

2¢2

and w = (2prs/h)%. The terms of order w™! are often neglected
in A(e) (e.g., Yakovlev and Urpin 1980, Yakovlev 1984). How-
ever these terms are very significant in Coulomb liquids of car-
bon and lighter elements.

Analogously, for the scattering on phonons, from Egs. (9)
and (11) we obtain

8 72 2 2
Oul(e) = —371 (—’{)—) r <R1<e) — Ry(e) 5%) : (25)
where
Ri=L(1-e™), R=2(1—e(+w), (@26)
1= w y 2 = ’U)2 )

and w = (4/3) (prr/h)?*. Generally, we have Ry < 1and R, <
1 due to the Debye — Waller factor. If w < 1, the Debye — Waller
factor is insignificant, Ry = R, = 1, and Eq. (25) reproduces
the result of Urpin and Yakovlev (1980).

Finally, one obtains

2
ion pv
N 2
7o 4rA(e)Z2%e*n;’ @7
3K w2\
ph _
To = m (Rl(ﬁ) — Ry(e) ‘2‘25) , (28)

for the Coulomb and phonon scattering, respectively.
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3. Density matrix
3.1. Kinetic equation

Transport properties of a degenerate relativistic electron gas in
quantizing magnetic fields were studied by Yakovlev (1984),
Hernquist (1984), Van Riper (1988), and Schaaf (1988) on the
basis of the linearized kinetic equations for the electron distri-
bution function. However, as noted by Yakovlev (1984), a self-
consistent description should be based on the quantum density
matrix formalism.

Let us consider a uniform magnetic field B along the z-
axis and use the Landau gauge of the vector potential: A =
(—By, 0,0). Quantum states of a free electron in the magnetic
field form a complete orthogonal basis. The basic states can
be labelled by the quantum numbers k = (py, pz, n, s), where
py determines the y-coordinate of the guiding center, yp =
Pz /(mewp). An explicit solution of the Dirac equation reads
(e.g., Sokolov & Ternov 1968)

expli(pez +p,2)/h]
(a/mL:::Lz)l/2

P(r) = (29)

Xns @z Y — YB),

where L, and L, are the normalization lengths, and X, s can be
chosen as

(E+1) yg’n—l(y/a’m)
0

—-1/2
Xn,l(pm y) = ﬁ_ﬁﬁ Pnn(E) t%n—l(y/am) ’
—v/2bn %n(y/am)
1/2 0
e | (B Iy am)
Xn,—l(pl’ y)— \/Z_E‘—(E:T)‘ —V 2bn y/gn_l(y/am) (30)
“Pnn(E) *%n(y/a’m)

Here b = Twpg/(mec?), E = €/(mec*) and P, (E) = n(E* —
1 —2bn)"/2 are, respectively, the magnetic field, the energy and
the longitudinal momentum in the relativistic units, 7 = sign p,,

exp(—£2/2)

Fbn(6) = YY)

Hy(9), (€2))
and H,(£) is a Hermite polynomial.

In the non-relativistic limit, the two lower components of
the bispinors (30) are negligible and this basis corresponds to
fixed spin projections (sfi/2) on the z-axis. However one can
use another basis:

Xns = XnsCOS® — 8 Xn,—sSiNG. 32)
It is sufficient to assume that 0 < ¢ < 7/2; ¢ may depend on
n and should vanish for n = 0. In particular, the choice

1/2
¢ = ¢, = arcsin (% [1 —(E* - 1)-1/2Pnn(E)]> (33)

yields the basis of states with fixed helicity used by Hernquist
(1984) and Schaaf (1988).
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Using the distribution function formalism, one generally
obtains different conductivities with different basic functions.
Yakovlev (1984) employed both ¢ = 0 and ¢ = ¢,, and interpo-
lated between corresponding results assuming that the former
choice is appropriate in the non-relativistic limit (E ~ 1) while
the latter one is adequate in the ultrarelativistic case (£ > 1).

The accuracy of the distribution function calculations can
be verified using the density matrix,

Pr'x = <¢n’|ﬁ|¢'€>?

where p is the statistical operator.

Let us consider elastic collisions and assume that the density
matrix is diagonal in energy: €’ = €. Furthermore, we assume the
diagonality in momenta. We shall show that the latter property
is not violated by collisions. The diagonalities in € and p, lead
to the diagonality in n. The diagonality of the density matrix
in p,, p, allows us to treat the dependence of p,/. on z, z
parametrically, without using the Wigner transformation. Thus,
we can write

(34

Pr'x = 6n’n 6pgp,,, 6p'zpz pns’s(x, zapz,pz), (35)
where 6y ., = (27h/L4) 6(p}, — pa)- Analysing the longitu-
dinal transport properties, we can assume that p is independent
of z. Let us introduce the spin-polarization density matrix,

L
p’nns’s(za €)= /pns’s(zapvaz) 2—7:’.1_ dps. (36)
Then we obtain the kinetic equation with the classical left-hand
side
0

(g +U,— —e&

a - dpnn5152
at 82 ) pnnslsz(z, 6) - l: . ) (37)

ap, dt

where & is a longitudinal electric field and v, is the velocity.
The density matrix depends on p, through € and 7. The right-
hand side of Eq. (37) is the collision integral to be determined
from microscopic considerations. Owing to the linearity of the
equations which govern the electron wave-function evolution
during a scattering event, the collision integral should be linear
in pyns;s,. Thus it can be presented as

[dp")nsl S2 ]
c

= -_>- Dn’n’s;sé;nnslsz pn’n's{s;- (38)

d n'n’s|s,
The equilibrium density matrix is p%, (€) = fo(€) 85,5,, and the
collision integral vanishes at the equilibrium.

Deviations from the equilibrium in the linear regime can be
treated as small perturbations. In the zero-order approximation,
the density matrix is equal to p©@; it depends on z parametri-
cally through u and T'. In the first-order approximation, it is
customary to write

0foe) | o Op
Prnsis,(2,€) = pg(f)sz(e)+nl e |:6(op+ $+

€—u oT
T 5;] (107777,8182(6)1

(39
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where [ is the scale length defined by Eq. (16). Keeping the zero-
order terms on the left-hand side of Eq. (37) we obtain the set
of algebraic equations for the non-equilibrium corrections ¢:

Z 77/D77 'n’ st symnsis; Pr'n’s|s) = 7763132' (40)

n 'n's|s;

A solution of these equations allows us to calculate the kinetic
coefficients o, 3, and X in the transport relations (17) and so
determine the longitudinal electric and thermal conductivities
and thermopower.

Using Eq. (39) we can write o, § and A in the form of
Eq. (19), with the effective relaxation time defined as

elmewp

T(e) = W (), “41)
B(e) = Z Z > Oumas(©). (42)
n—:l:l n=0 s==+1

Here n. = Int(v) specifies the highest Landau level populated
by electrons with energy ¢, and

€ — mec e+me
th

Equations (19) and (41) reproduce Eq. (24) of Yakovlev (1984).
However now Eq. (42) contains diagonal elements of the den-
sity matrix (to be determined from Eq. (40)) instead of the dis-
tribution function in the traditional approach. The factors D in
Eq. (40) are obtained in Sect. 3.2. They are found to be much
more complicated than analogous factors in the traditional equa-
tions.

V=

= (E* - 1)/(2b). (43)

2mec?

3.2. Collision integral

First let us derive the collision integral for the full density matrix
P’ After that the collision integral (38) is obtained by sum-
ming over those quantum numbers in which pj;; is diagonal.

In the “quasiclassical approach” for the density matrix (So-
belman et al. 1981), interaction of electrons with perturbers
(ions or phonons) is described by a scattering potential Vp(?).
A wave function of an interacting electron evolves as ¥(t) =
S'(t, to)¥(to), where S is the scattering operator. Substituting
this into Eq. (34) and averaging over collision parameters we
obtain

Prima®) = D (S, ()i, (D) pesg my (—00),

’
KRy

(44)

where S/ = (K'|8(t, —00)|k) is the scattering matrix, and the
brackets (. . .)pc denote space averaging over perturber centers ro
(i.e., space integration with the weight n;), while the brackets
without subscript denote the quantum-mechanical averaging.
The sum over &’ includes that over p’, and p,, which should be
performed according to the correspondence rule

>[5

Y

T,z

(45)

$Z

1003

Following the “adiabatic switch on” method (Landau & Lifshitz
1976), we put
Vo(t) = V(r — ro)e®, (46)

where € — 0 is the adiabatic parameter, and V' (r) is the actual
scattering potential. Now we obtain

dpr,r
I:_dtL—Z:I . = Z:, Dn{nénmz pn{n;, 47)
K'IK’Z
where
d
Dy = lim < =[S0 Sy ®) 0> . (48)
=0/ pe

The scattering matrix elements Sy, can be calculated in
the second-order perturbation theory (e.g., Landau & Lifshitz
1976). Let us substitute them into Egs. (48) and (47). Then the
terms linear in V" are canceled after averaging over ry, while the
quadratic terms give

Dﬁfﬂéyﬁmz = 2 Z [ K} 11y O (Wi nm )pc'i'
6n’n|6(wmc2)< Vmcg) ] -
2 2 s Vi Ve
|-
61{,{&1‘7 (V nm>pc +
KK
h2 <VI: HIVK£K2>PC (6("‘)11;5,) + 6(wn£n2)) +
S (VE e Vit e | 2 L ol (49)
FL nm KoK2/PpC | * wn{m wnén; )

where wy/,; = (¢/ — €)/h, and Vs is the matrix element of the
potential V. In deriving Eq. (49) we have taken into account the
well known relationship

=7mo(w) + i(‘?’é, (50)

lim -
e—0 € F 1w
where & denotes the Cauchy main part. An averaged binary
product in Eq. (49) is equal to

N 21y
(Vir e, Vieyma dpe = T.L.p

IU(Q)IZ s’ s,(n 7pyn17p]z’u)Ms sz(n 7pp n27p229u)1 (51)

0(qic — ©2)6(q12 — Q22) dqu

where q = (p’—p)/h, U(q) is the Fourier image of the potential,
and

Ms’s(n/>p;;nvpz;u) =

m N
/ oo WY — G2 /2D Xns (P + €02 /2Dy (52)
— 00

is the matrix element which actually depends on ¢ and g, only
through the variable u = (¢2 + qf/)arzn /2 (e.g., Kaminker &
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Yakovlev 1981). In Eq. (51) we have set p|, = pj,, p|, = P},
and n} = n), since the density matrix is diagonal in these argu-
ments. Due to the same diagonality, wy, = wx,, and the last
term in Eq. (49) vanishes.

Finally, let us sum Dyt s 1y OVEI 102, D1y P2 and p,, using
Eq. (45). Thus we arrive at the collision integral (38), where

v, |
Dn’n’sjsé;nns;sz = I

1ol —

[anns| s2,m'n’s|s;

*

1

'2‘ 67]’17671,’71 (Annsls’(ss;s’ 65352 + A"ms'sz 63(3; 63’31 )] (53)
Explicit expressions for the real coefficients a and complex co-
efficients A depend on the basis. In the basis (30), they are given
in Appendix A.

3.3. Algebraic equations for the density matrix

Transformation properties of the coefficients a and A with re-
spect to the reflection p, — —p, or p;, — —p, allow us to split
the system (40) into two independent subsystems for 7 = 1 and
1 = —1. Using the basis (30), we have

Pnnss = P-n,nss and Pyns,—s = —P—-nns,—s- 54
Thus it is sufficient to solve one of the subsystems:
1
b Z (Ansls’(Pns’:n + A;s/schnsls/) -
M
Z Yans sy, m'n’s's"” Pn's's" = 63]32» (55)

,,7/ n's's'

where v = 7’ for s’ = s”, and v = 1 otherwise. In Eq. (55) we
have set 7 = 1 in a, A, and .

Retaining diagonal elements of ¢ and setting s; = s; in
Eq. (55) werecover the algebraic equations derived by Yakovlev
(1984) in the distribution function formalism. However thus re-
duced system is not covariant with respect to the basis trans-
formations (32) (note that the coefficients a and A have been
obtained from the matrix elements (52), and they undergo the
transformations together with the density matrix elements). The
lack of covariance leads to the dependence of the electron trans-
port coefficients on the basis. For instance, Yakovlev (1984)
obtained the difference up to 20% using different basis sets for
some particular electron gas parameters. Our density matrix for-
malism makes the complete system (40) covariant with respect
to the basis transformations. The trace of the density matrix is
invariant, therefore changing the basis does no more affect ®(¢)
(Eq. (42)) and the kinetic coefficients.

3.4. Applicability range

Let us discuss briefly the validity of the assumptions which
led us to the algebraic system (55), for the neutron star crust
conditions. First, we have assumed diagonality of the density
matrix in p, and p,. This property is practically exact. Indeed,
the delta-functions 6(q1. — q2z) 6(q1z — g2.) in Eq. (51) enter
the right-hand side of Eq. (47) through Eq. (49). Since py:; is

A.Y. Potekhin: Electron conduction along quantizing magnetic fields in neutron star crusts. I

diagonal in p, and p), the right-hand side of Eq. (47) virtually
contains 6(p1z — P2z) 6(P1z — P2z). Thus the diagonality of the
density matrix in p, and p, is not affected by collisions. Note
that the delta-functions in Eq. (51) appeared due to the infinitely
large volume assumed in averaging over ry. If the volume were
finite, a non-diagonality in the momenta occurred in the band
Ap ~ h/L, in agreement with the uncertainty principle. An
actual value of L is restricted by the condition of spatial uni-
formity of the considered bulk of matter. The broadening Ap is
negligible compared with the typical momentum difference be-
tween adjacent Landau orbitals, provided that L > h/ (mecV/'b),
which condition is always satisfied in the magnetized neutron
star crust.

Another assumption is concerned with the diagonality in the
Landau numbers. The last term in Eq. (49) shows that this prop-
erty is not conserved in collisions. This effect can be estimated
with the aid of the uncertainty principle. The non-diagonality
should occur within the collisional band Ae ~ h/7, where T is
the effective relaxation time. The density matrix is diagonal inn
if Ae < hwy. The electron cyclotron energy hiwp ranges from
10? to 10* Ry (where Ry =13.6 ¢V is the Rydberg energy), for
magnetic fields from 10'! to 10'3 G. For estimating Ae, we can
use the non-magnetic relaxation times (27), (28) (cf. Yakovlev
1984). If Z ~ 26, T ~ 107 K, and the electrons are mildly
relativistic, we obtain fi/7 ~ Ae ~ 30 Ry < hwpg. This es-
timate relates to the collisional broadening. Other broadening
mechanisms, not treated here, are due to non-elasticity of scat-
tering and deviations from the Born approximation. Yakovlev
(1984) argued that the two latter types of broadening seem to
be unimportant under the considered physical conditions.

While considering the spin number s = 41, one may no-
tice that the spin-polarization density matrix p,y. s is reduced
compared to the general case of 4 x 4 matrix (Berestetskij et al.
1982). It is because we restrict the basis to the electron bispinors
Xns, thus neglecting an admixture of positron states. Of course,
this restriction is well justified at the non-relativistic tempera-
tures of interest.

Finally, the assumed degeneracy in the spin number is not
exact, owing to the quantum-electrodynamical corrections. The
corrections split each Landau level into two sublevels (e.g., Lan-
dau & Lifshitz 1982). According to the Schwinger formula, the
splitting energy is about (a/27m)hwp ~ (0.1 — 10) Ry < Ag,
for B = 10! — 10" G. Therefore the collisional width of the
sublevels exceeds their separation, and they can be considered
as degenerate.

Thus Eq. (55) is valid for the typical conditions in neutron
star crusts.

3.5. Numerical examples and discussion

We have computed the first-order correction n,s,(€) to the
density matrix and its trace ®(¢) for a wide range of magnetic
fields from 10'! to 10'* G. The coefficients in Eq. (55) have been
calculated using the formulae from Appendices A and B. The
system (55) has been solved using the LU factorization code by
Fletcher (1988). We have calculated the density matrix and also
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B! the electron distribution function in two representations, with
T ¢ =0and ¢ = ¢, (Eqgs. (30), (32), and (33)). The coefficients of
 the algebraic systems for the distribution functions have been
taken from Yakovlev (1984), and the integrals ; which enter
these coefficients have been calculated using the formulae of
Appendix B.

At relatively low field strengths, the density matrix formal-
ism gives practically the same results as the distribution func-
tion approach with the basis (30) (¢ = 0), in agreement with
anticipation of Yakovlev (1984). The inaccuracy of the latter ap-
proach is about 0.1% for B < 10'? G. The distribution function
results based on the alternative “fixed helicity” representation
(¢ = ¢n), employed by Hernquist (1984) and Schaaf (1988),
deviate from the exact results by several per cent. When n = 1,
the deviations reach 3% for the phonon scattering and 8% for
the Coulomb scattering. The deviations decrease at higher n..

The discrepancies between different representations are
larger for stronger fields. Figure 3.5 shows the results for the
iron crust (Z = 26) with magnetic fields B = 10" and 10'* G.
The upper panels display the function ®(¢) for the electron en-
ergies sufficient to occupy up to ten Landau levels. One can see
strong quantum oscillations of ®(e). Sharp dips at integer val-
ues of v are caused by singularities of the electron density of
states due to the magnetic quantization, when electrons start to
populate new Landau levels.

The lower panels show relative errors of the distribution
function approximation for two basis choices discussed above.
The discrepancies reach up to 20% at B = 10'* G for the
Coulomb scattering, in agreement with results of Yakovlev
(1984). However, the energy dependence of the relative errors
is non-monotonous, and a simple interpolation between the ap-
proximate results proposed by Yakovlev (1984) is not very ac-
curate. The basis (30) provides higher accuracy in most cases,
but the alternative basis (32), (33) becomes more appropriate at
relativistic energies for phonon scattering.

Generally, the discrepancies between different representa-
tions decrease with increasing energy. We have checked nu-
merically, that relative errors do not exceed 1% for v > 50
even at B = 10'* G. Calculations for such high v are facili-
tated by semiclassical formulae for the integrals ); derived in
Appendix B.

Our calculations show that one should use the density matrix
formalism for energies 1 < v < 5 and relativistic magnetic
fields b & 1, if one needs to keep an error within a few percent.
Otherwise the distribution function approach with the basis (30)
provides the desired accuracy.

For a better comparison with the results of Yakovlev (1984)
and Hernquist (1984), the examples in Fig. 3.5 have been cal-
culated with the scattering potentials used by these authors. In
particular, the screening length in the liquid regime has been
determined by Egs. (7) and (8). In the solid regime, we have
adopted the conditions when the Debye — Waller factor can be
neglected. Under these assumptions, ®(e) does not depend on
temperature. The effect of finite temperatures on ®(e) is gener-
ally small in the liquid regime. For the solid regime, the effect
is discussed in the next section.
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4. High-temperature conductivity enhancement in the solid
phase

As seen from Egs. (9) — (11), the Debye — Waller reduction of
electron-phonon scattering becomes important at sufficiently
high temperatures. Its influence on the electron transport in
dense non-magnetized stellar matter has been considered by
Itoh et al. (1984a, 1993). The effect is most pronounced near the
melting point. In this case it can be easily estimated. Let us put
p = po, where py = A(372ne)'/3 is the field-free Fermi momen-
tum. Taking into account Eq. (10), we can write w in Eq. (26)
as w = (4/3)u_»(97Z/4)*/3 /T, which gives w = 560/T for
u_y = 13, Z = 26. Near the melting point I' ~ 180, and w ~ 3.
Then the reduction factors are R; ~ 0.3 and R ~ 0.2. Accord-
ing to Eq. (28), this leads to the largest increase of the relaxation
time by a factor of 3.3 for non-relativistic electrons and 2.5 for
ultrarelativistic electrons, in qualitative agreement with numer-
ical results of Itoh et al. (1984a, 1993).

However the Debye — Waller factor has been neglected so
far while studying the electron transport in quantizing mag-
netic fields (Yakovlev 1984, Hernquist 1984, Schaaf 1988, Van
Riper 1988). In this case, contrary to the non-magnetic one,
the longitudinal momentum p, is quantized into the discrete
values men Py, (see Sect. 3.1), and only scattering events with
changing p, do contribute to the transport processes. Therefore
there exists a lowest collisional momentum transfer Apy;n(€).
According to Egs. (A11) and (A12) of Appendix A, the scat-
tering rate acquires an additional exponential reduction argu-
ment (€min = (7 APmin/h)?/3. The smallest momentum dif-
ference reaches Apmin ~ 2+/2mehwp just below the first Lan-
dau threshold, and Appin ~ mefiwp/po just before each next
threshold. Therefore the exponent argument is (€pin ~ w for
ne = 0, and (€min ~ w(mehwp/p3)? for high n.. In the lat-
ter case, the additional exponent argument becomes small and
unimportant. However, it is significant at low ..

Figure 4 shows the Debye — Waller enhancement of the elec-
tron relaxation time in quantizing magnetic fields. For each T,
B, and electron energy ¢ we have put u = € and calculated the
electron number density from Eq. (2) to determine the Debye
— Waller exponent argument. The fitting formulae presented in
Appendix C facilitate this calculation. Then the coefficients of
the algebraic system (55) were computed, using the formulae of
Appendices A, B, and the system was solved to obtain the func-
tion ®(¢), which is proportional to the effective relaxation time
7(€e), Eq. (42). Its ratio to the same function calculated without
the Debye — Waller factor is plotted against the Landau variable
vin Fig. 4. This ratio reveals quantum oscillations in phase with
oscillations of the function ®(e) itself, thus increasing the am-
plitude of the latter ones. For comparison, the non-magnetic en-
hancement factor (R; —(Ry/2)(v/c)*) ™! (cf. Eq. (28)) is shown
by dashes. As seen from Fig. 4, the quantizing field makes the
Debye — Waller enhancement much stronger. When the elec-
trons populate one or two Landau levels, the relaxation time is
enhanced by a factor of up to 30 (compared with the factor of
about 3 in the non-magnetic case).
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3 Fig. 1. Function ®(e) given by Eq. (42). Landau variable
v is defined by Eq. (43).

.1 Top panels: ®(¢) in the density matrix approach.

1 Bottom panels: Relative errors AD/® = (Dyppe/® — 1)
1 ofthe distribution function approximations ®ap,r (dotted
line: basis (30); dot-and-dashed line: basis (32), (33)).
Dashes show non-magnetic approximation, according to

5. Summary

We have presented the theory of transport properties of degen-
erate electrons along quantizing magnetic fields in neutron star
crusts. Our results are advanced, compared to the previously
known ones, in three respects.

First, a kinetic equation for the spin polarization density ma-
trix of electrons is derived. The solution of this equation pro-
vides a justification of the standard approach based on the kinetic
equation for the electron distribution function. The present re-
sults are compared with two versions of the standard approach
used previously by different authors.

For non-relativistic magnetic fields, B < 103 G, our re-
sults confirm the arguments of Yakovlev (1984) that the stan-
dard approach which employs basic functions with fixed spin
z-projection is the most appropriate in the non-relativistic limit.
The fixed-helicity basic functions used by other authors lead to
small inaccuracies which however seem to be insignificant in
astrophysical implications.

For stronger fields, B X 10'3 G, the inaccuracies of the tra-
ditional approach increase up to 20% when density is rather low

Eqgs. (27), (28), and (41).
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and the electrons occupy low-lying Landau levels. The density-
matrix results allow us to choose the most appropriate version
of the standard approach. If density is higher and the electrons
populate many Landau levels, the difference between various
approaches becomes negligible.

Secondly, we have taken into account the cumulative effect
of the Debye — Waller factor with the magnetic quantization. -
In the non-magnetic case, this factor can increase the thermal
and electric conductivities by a factor of 3 just below the melt-
ing temperature. We show that the magnetic quantization can
enhance the effect by an order of magnitude.

Thirdly, we have derived semiclassical expressions for some
intermediate integrals which enter the system of equations either
for the density matrix or for a distribution function. These ex-
pressions provide fast and accurate calculation of the relaxation
time for large number of occupied Landau levels.

In this paper we have calculated the kernel function ® which
should undergo further thermal averaging, Eq.(19), to deter-
mine the longitudinal electric and thermal conductivities and
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Fig. 2. Ratios of the effective relaxation times mpw(€)
to Thon—Dw(€) calculated, respectively, with and without
the Debye — Waller factor.

The temperature T = Ty x 107 K, with 75 = 0.2, 0.5, 1,
2, 5, and 10. Solid lines — numerical results (Egs. (41),

thermopower. We shall consider this averaging and astrophysi-
cal implications of the developed theory in the subsequent paper.
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(42)), dashed lines — non-magnetic case (Egs. (27), (28)).
The curves are plotted starting from the melting points.

Appendix A: coefficients in equations for the density matrix

While deriving Eq. (53), let us first reduce Eq. (47) to Eq. (38).
For this purpose, let us sum Eq. (47) over pyz, p2,, Ny and py,
taking into account Egs. (35), (36), (49) — (52). This yields

(Ks'31 ,8’8" Pnns'’ s, (p)+

dp"lnslsz _ m
[ a |, R Z

n/n/p; s’s!

Ks’s”,s’szpnnsls“(pz)) 6(“)) -
i

=3 Z (Ks’sl,s’s“,onns”sz(pz)—
h n/n’plz SISII

1
Ks’s“,s’sanns;s”(pz)) @; +
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2T ,
Eﬁ' Z Ks’sl,s”szpn’n’s’s”(pz) o(w), (Al)
n/n/plzslsll

where w = (¢ — €)/h and

KS S] s''sy — KS 81 s“s;(n 7pz7n pz) (2 )ZL /d‘thy X
U@ M, (0, D5 n, 0 WMy, (0, Dl m, pas ). (A2)

It is convenient to introduce new integration variable u = (g2 +
q2) a2, /2 and the dimensionless function

n;l 172
v(u, €)= (—;;) (ficam)™"|U(qQ)]- (A3)
For the Coulomb scattering,
v, &)=+, €=(q+r7Han/2, (A4)

where 75 is the screening length, and fig, = p), — p,. For the

scattering on phonons,
v, ) = (w+ ™%V, £=qlal/2.

The sum over p/, in Eq. (A1) can be converted into the sum over
1’ and the integral over ¢’. The delta-function 6(w) eliminates
the integration in the first and the last terms of Eq. (A1). Finally
we arrive at Eq. (53) with

(AS5)

Onnsisym'n'sisy = annslsz,n'n’s’s’(E E), (A6)
nn8132 = Z Annsysy,n'n’s's’y (AT)
n'n’'s’
1 ) ©  dJE'
ImAﬂnslsz =— Z % manns;Sz,n’n’s/s’(E» El)a
u n'n’s' E,. (A8)
where E,» = V1 +2bn/,
EE' oo
a Il gt //(E,El = ———/ duvz(u, )X
nns;82,Mm'n’'s’s ) IPPII 0 g
M, (0, plin, paswMsng,(n, plsn, pzsu),  (A9)

and P = P,,(E) is defined in Sect. 3.1. According to Egs. (52)
and (30), the matrix elements M, s contain the integrals

o o d
/ T (y/tm = 4z /2 Tbn(y/am + 42am/2) elqyy% -
[yt /n1] 2 &=/ 2um =m0 LE () = L (), (A10)

where I,,,,»(u) is a Laguerre function (Sokolov & Ternov 1968).
Therefore M s can be expressed in terms of the functions

> I fm, (u)

Qa(6, ', m) = /O Sl e g, (AL1)
Qs(€,n',n,m) = / " Lo (%IZ gl):w 1) ¢t gy a12)
0

and Q; = @Q(¢,n — 1,n—1,m). Here m = 1 and ¢ =
2r2./(3a2,) for the scattering on phonons; m = 2 and { = 0
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for the Coulomb scattering. The functions Q);, @2, and ()3 have
been introduced by Yakovlev (1984) for the particular case of
¢ = 0. The properties of these functions are analysed in Ap-
pendix B.

Using the basis (30), we obtain

S(s1, s2|8'8")

/
annslsz,nnssf(E E) 4(E+1)(E'+1)|PP'] (A13)
where
S(1,1|1,1) = ¢°Q1 + 4b*nn/ Qs + 4bgVnn' Qs, (A14)

S(—1,—1] = 1, —1) = g°Q, + 4b’nn'Q, + 4bgvV/nn'Qs,(A15)

S(1,1)—1,-1)=

2b(n' P2Q; + nP'*Q, — 2v/nn! PP'Qs), (A16)
S(-1,-1]1,1) =

2b(n'P*Q, +nP' Q) — 2v/nn’/ PP'Qy), (A17)
S(=1,1]1,1) = 81, —1|1,1) = —gv2bn P'Q; +

2bn'V2bnPQ, + v/2bn/ (9P — 2bnP)Qs, (A18)
S(1,1] = 1,1) = S(1, 1|1, —1) = —gv2bn’/ PQ; +

26nV2bn/ P'Qy + V2bn(gP' — 2bnP)Qs, (A19)
S(-1,1] = 1,=1)= 80, 1| = 1,-1) = gvV2bn P'Q, —

26n'V2bnPQ; — V2bn/(gP — 2bnP")Qs, (A20)
S(=1,-1| = 1,1) = 8(~1,—1]1, 1) = gv/2bn' PQ, —

2bnv2bn' P'Qy — V2bn(gP' — 2bnP)Qs, (A21)
S(-1,1| = 1,1) = 81, -1|]1, 1) =

2bgv/nn/ (Q1 + Qa) + (4b™nn/ + g*) Qs (A22)

S(—1,1]1,-1)=8(1,-1] -1, 1) =
2bv/nn! PP'(Qy + Q) — 2b(n'P* + nP' %)Qs, (A23)

andg=(E+1)(E'+1)+ PP

The first two pairs of coefficients (Egs. (A14), (A15), and
(A16), (A17)), are related to diagonal density matrix elements
for electron transitions without and with spin flip, respectively.
At E = E' they reproduce equations of Yakovlev (1984). The
remaining equations (A18) — (A23) present the coefficients at
off-diagonal elements of the correction ¢ to the density matrix
in the system (55).

Appendix B: integrals Q;(¢£,n’,n, m)

For an efficient computation of the coefficients (A6) — (A8)
in Egs. (55), let us consider the properties of the functions @;
(Egs. (Al1), (A12)). Since Qi(§,n',n,m) = Qi(§,n,n’,m),
we assume n' — n > 0 without loss of generality.

Using the polynomial representation for the Laguerre poly-
nomials, the integrals (); can be expressed as

Qa(&,n',n,m) = Z( 1>Jch mkCnim,j—k X

3=0
o —n+J)!Qz(§,n —n+j,0,m), (BI)
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2n—1

QS(&)” n,m) = ZO( 1y chnkcn’nj k\/—:

n' —n+])!Q2(§,n —n+73,0,m), (B2)
Q26,7',0,1) = (1+0)™™ " ef Epui(€ +€6), (B3)
Q2(€,1,0,2) = €t (En(€) — Ena(9)), (B4)

where E;(€) is an integral exponent which is easily calculated
(Abramowitz & Stegun 1972),

vn'ln!
kl(n — K)!(n' —n+k)!

Cnink = (B5)
are the coefficients of the polynomial expansion of a Laguerre
function I,,/,,(u), and summation index k runs from max(0, j —
n) to min(n, 7). However this method fails for n & 15 due to
the exponentially increasing round-off errors (Hernquist 1984,
Schaaf 1988). Direct integration (Hernquist 1984) is not very
efficient because of rapid oscillations of the Laguerre functions
at large n. The direct integration is especially undesirable for
the density matrix computation, since an outer integration over
E' is required in Eq. (A8).

To avoid the above difficulties, we propose to use the trans-
formation
(w+&™ ™= /oo L_] e~ Wz 4, (B6)

“Jo (m—=1)

in Egs. (A11), (A12), and change then the integration order. Let
us use the equalities (Gradshtein & Ryzhik 1965, Abramowitz
and Stegun 1972)

o0
/ w e MR L) L M (u) du =
0
' +n— )z y
(' —m)!(n — N n! (1 +z)+n—i+

F(-n+j,—n;—n —n+j1—1/3%) =

(B7)

! () (' = j)! z?k
(1 + gywn'=5+1 g (m—j—kIm —j—kIG+k! kI’

where F is a Gauss hypergeometric function. Then we obtain

n—j

/ ) - e — "
oy &',y m) = ; Kl(n—j — Rl —j — )

1 fe's} .’I:2k+j+m—]
(m— DG +k)! /C (1 + gy +n—3+1

The main advantage of the representation (B8) is that all terms
are positive monotonous functions of &.

Using Eq. (B8), we can easily derive various asymptotes.
In particular, if { = 0 and & — o0, then from the asymptotic
properties of the integral in Eq. (B8) we obtain

e ¢% dx. (B8)

n!(n')! ]'/2 G+m— 1!
(n = —H JHm = 1)!
—(n+n' —j+D@G+m)/E+..].

Q2+j(£a n/, n, m) =~

a/em (B9)
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The functions Q; are finite for n’ # n, and they diverge at
& —0forn' =n:

2n

1
QZ(g)nanal)— —1In 6-—’)/—"%:15 +
()2 <~ 2n — 2m)! 2m — 1)!
@n)! £ Z [(n—m)m! 2 +0(9), (B10)
2n—1 1
Q3(£)n7n71)= —ln{f—fy-— Z E +
m=1

n,(n_l)lz((Zn—Zm—l)'(Zm D! +0(),(B11)

@n -1t n —m)!(n —m — 1)! (m!)?

2n+1 1
— 1 L
@Q(&,m,n,2) =" +(2n+1) [1n5+§:m+7}+

m=2
n

(n!)2z(2n 2m+ 1)1 2m — 2)!

@n)! £ —mimp T2 (B12)
@3¢, n,n,2)=€""+2n [ln§+z—+7]
m=2
n!(n — !y 2n —2m)! 2m — 2)!
@n -1 Z (n—m)!(n—m —1)! (m!)? +0(©)-(B13)

However, collecting the terms with n' = n in Eq. (55), we see
that only the finite terms of Eqs.(B10)-(B13) do contribute
to the coefficients of the algebraic system, while contributions
from the divergent terms (¢! and In ¢) are mutually compen-
sated in the real parts of the coefficients (Egs. (A6), (A7)), as
well as in the integrals (A8) for the imaginary parts. Therefore
the coefficients of the density matrix equations are essentially
finite, except for the singularities at the Landau thresholds due to
the factor | P P’| in the denominators of Egs. (A9), (A13). These
remaining singularities stem from divergencies of the electron
density of states at the Landau thresholds, and they are responsi-
ble for the quantum oscillations of the relaxation time discussed
in Sect. 3.5.

Finally, consider the case n > 1. Let us make use of the
semiclassical approximation of a Laguerre function averaged
over oscillations (Kaminker & Yakovlev 1981):

-1

I2 (v~ [W\/(U —up)(u — uz)] )

(B14)

where u;, = (\/W F \/ﬁ)z. Using again the transformation
(B6), we express the integrals Q; as

dv

1 [ exp (—ZC\/n’n cos 19)
/ (B15)
0

,n',n,1)=—
Q2§ ) T n' +n+&+2vn'n cos

/
=—/ dre=oly [ 22V ) (Bi6)
(nl+n+£) {(n/+n+E) nl+n+§

4vn'n Q3(€a n/,n> 1) = (’I’I/ + nl) [QZ(gvnlvna 1)+
Q2(§7n/ n-— 1’ 1)] +£ [Q2(§7 nlan - la 1)+
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Q2(§7 n' — L,n, 1)] —exp (._C(n/ +n+ § - 1)) X

[Io <2C\/n’(n — 1)) A (2(«/(71' — 1)n)] , (B17)
Qi€ n',n,2) = —(8/9€) Qi(€,n',n, 1), (B18)

where I is a modified Bessel function. In deriving Eq. (B17),
we have used the relationship (Kaminker & Yakovlev 1981)

4V Inpr(u) In—1mr—1(u) = (n+ ') (I (w)+

2 wo@) —u (I @+ I3 w) . (B19)

The integral (B16) can be easily calculated using polynomial
approximations for Ip(z) (Abramowitz & Stegun 1972). At
2v/n'n/(n' + n + €) < 0.95, however, direct integration of
Eq. (B15) is more efficient, since only a few integration mesh
points are needed then. If ¢ = 0, the semiclassical approximation
allows us to express @; in elementary functions:

Qa(€, 'y, 1) = [(ug +€) (ug + 772, (B20)
Qa(&,n,1,2) = (E+n+n) [(w +&) (wa +O17%,  (B21)
4! Q3(€,n'\n, 1) =

(n+n") (@€, n,n, 1)+ Qa(€,n — L,n — 1, 1)) +

E(@E,n',n — 1,1+ Qa(€,n' — 1,n, 1) =2,  (B22)
W' Q3(€,n,n,2) = —((n+n")E +(n' —n)?) x

(@ n — 1,n, )+ Q3 n/,n—1,1)) +

m+n)( Q2,0 n,2)+Qa(€,n' —1,m —1,2)). (B23)

We have checked numerically that errors in calculating ®(¢) do
notexceed 3%, if we substitute the semiclassical formulae (B15)
—(B17) and (B20) — (B23) into Egs. (A14) — (A23) forn > 10.
The semiclassical approximation makes the computation much
faster.

Appendix C: a fitting formula to electron density

Equation (2) can be represented as

— mewpksT ZF (N —€n  €n )

e = Torhye ksT k—ﬁ) ’

where €, = €,(0) is defined by Eq. (1) with p, = 0, and

o et——z
F(z,y) = /0 m A1t +2y)dt. (C2)
Evidently,
One  mewp (= €n  €n
= —= C3
dp  2(mh)ie Z F ( kT ' kT /)’ €3

n,s

where F'(z,y) = 0F(z,y)/0x.

In the non-relativistic limit we have y > l and z < ¥y
(or z < 0). Then F(z,y) reduces to \/y/2.9,,(x), where
F_1/2(z) is a Fermi integral, for which some useful approxi-
mations have been presented by Antia (1993). In the opposite
case of y <« 1 we have F(z,y) = In(1 +¢”).
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In the general case of arbitrary y, the following approxima-
tion is proposed:

l+y+&+cyal) vE+2y
1+&+c(y)b(©) '

where £ = In(1 + explz — zo(y)]),

zo(y) = (1 + ey,

c(y) = c3y™,

a(€) = VT [2+ (a1 + a2€®) VE,

b(€) = 1+ a3v/€ + as€ + arf’,

with the numerical parameters ¢; = 0.623, ¢; = 1.6031,

c3 =0.9422, ¢4 = 1.7262, a1 = 0.103, a; = 0.043, a3 = 0.0802,

and a4 = 0.2944. Aty > 1, the right-hand side of Eq. (B4) sim-

plifies to £ /€ + 2y a(€)/b(£), with £ = In(1 + %), and depends

essentially only on the four constants a;. An error of the approx-

imation (B4) reaches maximum of 0.57% at x = 2.9, y =5.9.

We have checked additionally, that the z-derivative of this ap-

proximation fits the function F’(z,vy), which enters Eq. (B3),

with a maximum relative error of 2% .

F(z,y)=In(1+¢€%)

(C4)
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