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The hydrogen plasma is studied at temperaturesT;1042106 K using the free energy minimization
method. A simple analytic free energy model is proposed which is accurate at densitiesr&1 g
cm23 and yields the convergent internal partition function of atoms. The occupation probability
formalism is modified for solving the ionization equilibrium problem. The ionization degree and
equation of state are calculated and compared with the results of other models. ©1996 American
Institute of Physics.@S1070-664X~96!01910-6#

I. INTRODUCTION

Thermodynamic properties of astrophysical plasmas
have been studied extensively in recent years.1 The theoreti-
cal models are based either on the physical picture or on the
chemical picture of the plasma.2 In this paper we consider
the latter. Our study is motivated by considerable disagree-
ment among the existing models in the domain of partial
ionization.

We consider the simplest case of pure hydrogen plasma
which shows in relief all specific features of the problem.
This particular case is also important for calculating atmo-
spheric opacities of degenerate stars. It is generally assumed
that, due to the gravitational stratification,3 outer spectra-
forming layers of atmospheres of these stars consist of light
elements. Observations4 confirm that DA white dwarfs have
virtually pure hydrogen atmospheres at temperatures up to
40 000 K.

It is worthwhile to mention two widely used theories for
the hydrogen plasma. The first one has been elaborated by
Hummer and Mihalas5 ~HM!, and Mihalas, Da¨ppen, and
Hummer6,7 ~MDH!. The authors presented a detailed discus-
sion of previous work and formulated an equation of state
~EOS!, using an occupation probability formalism to obtain a
finite internal partition function~IPF! of atoms. The occupa-
tion probabilities were derived from the plasma microfield
distribution. The second theory has been proposed by Sau-
mon and Chabrier8–10 ~SC! ~see also Ref. 11!. These authors
have developed a free energy model based on effective pair
potentials in the system of hydrogen atoms, molecules, pro-
tons, and electrons. The theory describes successfully either
a completely ionized plasma8 or neutral gas9 but suffers from
difficulties in treating the partial ionization. The free energy
models originally adopted by HM5 and SC9 did not ensure
reasonable convergence of IPF at high temperature and pres-
sure ionization at high density. This compelled the authors to
introducead hocmodifications6,10which affected the ioniza-
tion equilibrium. The ionization curves obtained in Refs. 6
and 10 atT.104 K are strikingly different.

In this paper we study hydrogen plasma at
T;1042106 K when a considerable fraction of atoms can
exist in excited states, and the IPF convergence becomes
crucial. In Sec. II we outline the free energy minimization

method. In Sec. III we develop an analytic free energy model
for weakly coupled and weakly degenerate plasma. In Sec.
IV we revise the occupation probability formalism, and in
Sec. V we calculate the EOS and ionization equilibrium,
making a comparison with the results of other models.

II. CHEMICAL PICTURE AND FREE ENERGY
MINIMIZATION METHOD

In the chemical picture of plasmas, bound objects~at-
oms, molecules, ions! are treated as elementary members of
the thermodynamic ensemble, along with free electrons and
nuclei. In the physical picture, nuclei and electrons~free and
bound! are the only constituents of the ensemble.

Both pictures can be thermodynamically self-consistent,
but the chemical picture has limited microscopic consis-
tency. For instance, it does not provide a proper treatment of
such cluster configurations as ‘‘an atom1 a close alien ion’’
~a pseudomolecular ion!. With increasing density, the ioniza-
tion of an electron bound to a particular nucleus proceeds
through a progressive delocalization involving cluster
~‘‘hopping’’ ! states.12 These states are negligible in nearly
ideal gases, but important at higher densities. However, their
inclusion as new members of the thermodynamic ensemble
would complicate the free energy model. Therefore one usu-
ally considers basic chemical species which dominate at low
density.

On the other hand, the physical picture is commonly
based on diagrammatic expansions which converge only at
low densities. Thus one has to resort to additional assump-
tions in the frames of either picture, in order to progress on
higher density. The chemical picture, combined with thefree
energy minimization method, represents a reasonable com-
promise between the rigorous treatment and the practical ap-
plication.

The central assumption of the free energy minimization
method13 is the factorization of the many-body partition
function into translational, configurational, and internal fac-
tors, and corresponding separation of the Helmholtz free en-
ergyF:

F~V,T,$Na%!5Ftrans1Fcon f1Fint . ~1!

HereV is the volume,T the temperature, and$Na% the set of
particle numbers. The internal structure of a composite par-
ticle is generally affected by the surrounding, hence the sepa-
ration ~1! is approximate.a!Electronic mail: palex@astro.ioffe.rssi.ru
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At givenV andT, the equilibrium state is determined by
minimizing F with respect to the numbers$Na%, subject to
the stoichiometric constraints. Then the pressureP, the en-
tropyS, and related quantities are obtained fromF using the
well known thermodynamic relations.14

III. FREE ENERGY MODEL

A. Plasma parameters

Consider a plasma of electrons, protons, and hydrogen
atoms. We do not include molecules and molecular ions,
assuming that the temperature is high enough for their dis-
sociation~roughly, T.104 K; possible departure from this
assumption will be discussed in Sec. V!.

The charged component of the plasma is described by
the coupling parameterG and degeneracy parameteru,

G5be2/ae , u5T/TF , ~2!

where b5(kBT)
21, kB is the Boltzmann constant,ae

5~43pne)
21/3 is the mean inter-electron distance,ne5Ne /V

is the electron number density, andTF is the Fermi tempera-
ture (TF'912 Kn20

2/3 and G'@12 500 K/T#n20
1/3 where

n20[ne/10
20 cm23). We consider weakly coupled and

weakly degenerate plasma. The generalization to higher de-
generacy (u,1) is straightforward.14 The strong Coulomb
coupling (G.1) can be taken into account using the models
developed in Refs. 8 and 15.

B. Translational free energy

The free energy of the ideal plasmaFid5Ftrans1Fint is
the sum of three terms produced by electrons (e), protons
(p), and H atoms. For the atoms and protons,

bFid
~p!/Np5bFtrans

~p! /Np5 ln~nplp
3!21, ~3!

bFtrans
~H ! /NH5 ln~nHlH

3 !21, ~4!

wherena5Na /V is the number density of speciesa, and
la5(2pb\2/ma)

1/2 is the thermal de Broglie wavelength.
We neglect the proton spin weight since it would yield an
insignificant constant in the free energy. For the electrons,
we include the spin weight and the low-density correction for
the degeneracy:14

bFid
~e!/Ne5 ln~nele

3/2!211nele
3/27/2. ~5!

C. Internal free energy

There are different ways to define the internal free en-
ergy of atomsFint

(H) We calculate it in the ideal gas approxi-
mation, neglecting interactions of atoms with surrounding
particles. From the first principles,14 the ideal-gas part of the
free energy is

bFid
~H !5(

k
NkF lnS nklH

3

gk
D 212bxkG , ~6!

wherek enumerates quantum states with statistical weights
gk and non-perturbedbinding energiesxk . It has been
shown16 that the binding energies of an atom in a plasma

practically do not shift with increasing density until they
merge into the continuum. Comparing Eqs.~6! and ~4!, we
obtain

bFint
~H !5(

k
Nk lnF Nk

NHgke
bxkG . ~7!

Now all non-ideality effects should be included in the con-
figurational termFcon f . However, Fcon f does affect the
equilibrium valueof Fint

(H) through the distribution of the oc-
cupation numbers$Nk%, which is not assumed to obey the
ideal-gas Boltzmann law.

D. Configurational free energy

It is common practice to separate Coulomb interactions
of charged particles from interactions involving neutral at-
oms and to describe the first ones by the free energy of a
pure Coulomb plasma. At low density, the excess free energy
of the charged component is given by the Debye–Hu¨ckel
theory with a two-component plasma quantum correction:17

bFC52
2e3

3
Apb3

V
~Ne1Np!

3/2S 12
3Ap

27/2
g D , ~8!

where g5 1
4(gee12gep), gee and gep being the electron-

electron and electron-proton quantum diffraction parameters,
gep'gee/A252\beAp(ne1np)/me. Our g differs from
the one-component plasma parameterge employed in the SC
model8 by multiplier 0.854.

The quantum corrections in Eqs.~5! and~8! allow us to
extend the analytic free energy model from the low density
region of G!1 and u@1 to the moderate density, where
G&1, u*1. We have checked~see also Fig. 12 of Ref. 8!
that the account of these corrections extends the validity
range of the model by more than an order of magnitude
toward higher density or lower temperature.

The neutral component produces additional configura-
tional terms, which describe interactions of neutral species
with neutral and charged particles. For atoms and ions, these
interactions are described by pair potentials, while the elec-
trons are assumed to adjust to any configuration of the heavy
particles. A free energy model based on this approach has
been elaborated by SC9,10 and extended recently to helium
plasma.18 Our modified version of the pair potential free en-
ergy modelFpair is given in the Appendix. However, the
contribution to the free energy, which comes from unbound-
ing of atoms in the course of their interactions with other
particles, is not fully gripped at this approach. Namely, the
effective hard sphere diameters of atoms, derived from effec-
tive binary potentials, appear to be too small to enforce ion-
ization in high-T and high-r domain. Below we consider the
problem in more detail.

E. Pressure destruction of atoms

The central problem of calculating the occupation num-
bers $Na% is to achieve the self-consistent convergence of
IPF, that is most difficult in the case of partial ionization.
There have been many attempts to solve the problem; some
of them are discussed in Ref. 5.
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Clearly, a bound state cannot be populated, if the corre-
sponding ‘‘size’’ of the electronic ‘‘orbit’’ ~the electron
cloud! is too large. In other words, the electron cannot be
bound if there is not enough free space, or if it suffers from
strong perturbations. The problem is how to include the un-
bounding into the chemical picture in a self-consistent man-
ner.

The simplest way to obtain the convergence is to trun-
cate the IPF at an appropriate ‘‘critical’’ quantum number
k* , for example, corresponding to a quantum-mechanical
size of an atoml k* comparable with the mean interparticle
distance.19 However, sincek* depends on the physical con-
ditions ~particularly, on density!, the abrupt cutoff produces
unrealistic discontinuities in the free energy. Continuous
truncation procedures imply introduction ofoccupation
probabilities wk into the IPF, which suppress higher states
and ensure the convergence. However, as has been shown by
Fermi20 and emphasized by HM,5 the introduction ofwk re-
quires a modification of the free energy. Thereforewk should
be consistent with the adopted form ofFcon f .

In the free energy modelFpair ~the Appendix!, the re-
pulsive interparticle interactions are simulated by repulsion
of hard spheres~HS! with appropriate diametersd. However,
for a high T or for a high atomic level,d becomes much
smaller than the atomic sizel k , so that other plasma par-
ticles can penetrate the atom. If this happens, then the elec-
tronic orbit gets embedded into the plasma, which screens
the attraction to the nucleus and makes the electron unbound.
Then the atomic constituents should be extracted from the
neutral component and treated as independent participants in
the charged component. Similar situation~known aspressure
ionization! occurs even for ground state atoms, if the density
is high enough.

To allow for the plasma screening of the intra-atomic
Coulomb interactions, the static screened Coulomb potential
~SSCP! has been widely used~e.g., Ref. 21!. However this
approach has been strongly criticized.5 More consistent is the
dynamical screening recently investigated in the framework
of the thermodynamic Green function method.16 However,
the practical need~e.g., in astrophysics! for large arrays of
thermodynamic data necessitates looking for a simplified ap-
proach.

A convenient model has been described by HM. The
configurational term given by Eq.~4.72! of Ref. 5 for the
hydrogen plasma may be represented as

Fcon f
~HM !5kBT(

k
Nk~nHṽ1k1npṽpk!, ~9!

whereṽ1k and ṽpk are characteristic volumes associated, re-
spectively, with the atom-atom and atom-ion interactions.
The first term includes the interaction of an atom in a state
k with the ground state atom only. This is the ‘‘low excita-
tion approximation’’ proposed by HM to makeFcon f linear
in Nk , which was essentially employed in deriving the oc-
cupation probabilities~despite the fact that even at this ap-
proximation the linearity obviously breaks down for the
ground state atoms!. For purely neutral gas (np50), Eq.~9!
reproduces the free energy derived by Fermi.20 The atom-ion
interaction volumeṽpk in this approach is due to microfield

perturbations; it depends on the principal quantum number in
a complicated way, but it is always 1–2 orders of magnitude
larger thanṽ1k . For example, for the ground-state hydrogen,
Eq. ~4.70! of Ref. 5 yieldsṽp15128 (4p/3)aB

3 whereaB is
the Bohr radius.

It was found6 that this model does not provide pressure
ionization at high density, which is not surprising. Indeed,
since ṽpk@ ṽ1k , Fcon f

(HM ) may increase more rapidly with
growing np than withnH , shifting the equilibrium towards
lower ionization degree athigher densities. In order to en-
sure the desired ionization, MDH introduced an artificial
‘‘pressure ionization term’’F5 into the free energy, which
rapidly increased whenever the density of neutral fraction
exceeded 1022 g cm23. It can be shown that it is this term
~and not the inaccurate HS treatment, as supposed in Ref. 11!
that produces an unrealistically stiff EOS atr.1022 g
cm23.

As argued in Refs. 19, 20, and 5, the quantum-
mechanical atomic sizel k @Eq. ~A9!# should not exceed the
mean interparticle distance. This is not a problem at low
temperature, when the effective HS diametersdkk8 are larger
than l k . At high T, however,dkk8 become small, allowing
configurations with strongly overlapping wavefunctions of
neutral atoms. SC escaped this difficulty by introducing an
additional hard core@Eq. ~14! of Ref. 10# in the effective
potentials. However, a large hard core inside the atom seems
to be unrealistic. We propose a modification of the free en-
ergy, which has another interpretation.

An electron can be treated as bound to a particular
nucleus, if only its wave function does not overlap strongly
with wave functions of other electrons, either free or bound
to neighboring atoms. From the classical point of view, the
atomic electron becomes unbound when another electron
falls inside its orbit and shields the attraction to the nucleus.
This resembles the plasma screening of the nucleus in the
SSCP model but does not imply the collective nature of the
screening.

For a given statek, the probability that such unbounding
doesnot occur can be estimated at low density from the
Poisson distribution, pk5 exp@2ncvk#, where
nc5(ne1nH) is the total number of randomly distributed
electronic clouds~including those which are bound to nu-
clei!, andvk5 4

3p l k
3 The unbounding requires us to exclude

the overlapping configurations from the total partition func-
tion, thus reducing the volume of the phase space available
to the system. Equivalently, the existence of an atom in the
statek corresponds to an event with probabilitypk and thus
diminishes the entropy. The total negentropy corresponding
to a set of occupation numbers$Nk% is 2(kNk ln pk , which
gives the free energy contribution

Fub5kBTNcnHv̄H , ~10!

wherev̄H5(kNkvk /NH is the average atomic volume.
A similar term has been introduced by HM who, how-

ever, considered the destruction of atoms by microfields fluc-
tuating due to the motions of surrounding heavy particles~as
discussed in Sec. IVb~ii ! of Ref. 5!. Although we readily
agree that nearby passages of positive ions can ionize a par-
ticular atom, this process does not affect the occupation
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numbers at the thermodynamic equilibrium, since it is com-
pensated by the inverse~neglected! process, owing to the
principle of detailed balance. The net effect of both processes
is not given in advance but itself should be determined from
the thermodynamic equilibrium conditions. In contrast, the
unbounding by an excessive negative charge occurring inside
an electron orbit has no balancing counterpart. Moreover, it
seems inconsistent to include any dynamical process depen-
dent on particle momenta intoFcon f after separating the
translational termFtrans , because the separation~1! implies
that the other terms may depend only on particle configura-
tion coordinates. For this reason we do not consider atomic
collisions with ions5 and free electrons.22

Additional arguments in favor of the modification~10!
of the excess free energy~9! will be given in Sec. IV B.

Finally, the total free energy

F5Fid1FC1Fpair1Fub , ~11!

is given by Eqs.~3!, ~5!, ~6!, ~8!, ~10!, and~A21!.
Other chemical species can be easily included in our

analytic model. For example, H2 molecules can be taken into
account by adding van der Waals and HS terms with appro-
priate effective diameters in Eqs.~A11!, ~A16!, and ~A19!.
The generalization of the unbounding term is

Fub5kBTNc~nHv̄H1nH2v̄H2!, ~12!

wherenc5ne1nH1nH2 , and v̄H2 is the average molecular
volume.

IV. OCCUPATION PROBABILITY FORMALISM

A. Generalized Saha equation

The internal free energy~7! can be rewritten in a more
familiar form. Let us replace the Boltzmann distribution,
Nk } gk exp(bxk) ~which yields the divergent ideal IPF! by
any real distribution,

Nk5NHwkgk exp~bxk!/Zw , ~13!

where the generalized IPF,

Zw5(
k

gkwke
bxk, ~14!

plays role of a normalization constant. Then

bFint
~H !5(

k
Nk ln wk2NH ln Zw . ~15!

Note thatwk andZw in Eqs.~13!–~15! can be multiplied by
a common factor. It does not affect theNk /NH distribution,
but should be chosen consistent with the ionization equilib-
rium conditions.

Although the first sum in Eq.~15! is naturally derived
from the rigorous Eq.~6!, it was often omitted in the internal
free energy9 or regarded as a part ofFcon f .

5 Meanwhile, it
has a clear physical meaning:2Nk ln wk is a contribution to
the ideal-gas part of the entropy due to the correctionwk to
the probability thatkth state is occupied. The factorswk are
traditionally called occupation probabilities, although they
do not always have direct probability meaning.

The minimum of the Helmholtz free energy under the
stoichiometric constraints requires

]F

]Nk
5

]F

]Np
1

]F

]Ne
. ~16!

Separation ofFid from Fcon f allows one to rewrite Eq.~16!
in the form of the Saha equation:

nk5npne~lple /lH!3wk~gk/2!exp@b~xk1Ldeg!#,
~17!

whereLdeg5nele
3/25/2 is the correction due to the partial

electron degeneracy, andwk is defined by

kBT ln wk5
]Fcon f

]Np
1

]Fcon f

]Ne
2

]Fcon f

]Nk
. ~18!

This definition is consistent with Eqs.~13!–~15!, and it fixes
the above mentioned common factor. These occupation
probabilities have the same meaning as those considered by
HM but take into account charged particles. Therefore, Eq.
~18! generalizesEq. ~2.18! of Ref. 5 to the case when
ionization-recombination processes are allowed in the sys-
tem.

Equivalently, one may adhere the traditional definition,
ln wa52b]Fconf/]Na , and replacewk in Eq. ~17! by
wk /(wewp). However, since the proton and the electron can-
not be destroyed by the external fields, we put their ‘‘occu-
pation probabilities’’ equal to unity, thus choosing the defi-
nition ~18! for the atomic occupation factorswk .

An equation equivalent to Eqs.~17! and ~18! was de-
rived by Fontaineet al.21 ~FGVH!, who however did not
introduce the occupation probabilities explicitly.

If all wk were known, then Eq.~17! would give a direct
solution to the problem. However, sinceFcon f depends on
the occupation numbers, Eqs.~17! and~18! are to be solved
together. Nevertheless, this reformulation of the problem is
useful, because the coupled equations can be solved itera-
tively. First, one chooses an initial value ofwk and calculates
the particle numbers$Na% from Eq. ~17!. Thenwk are re-
fined by substituting$Na% into Eq. ~18!. At low densities,
where many excited states are populated, this procedure ap-
pears to be more efficient than alternative schemes.6,13,21

Substituting Eqs.~11! and ~A21! into Eq. ~18! we de-
composewk into five factors,

wk5wk
~ub!w~c!wk

~HS!wk
~H !wk

~ in ! , ~19!

corresponding to the unbounding of atoms, the Coulomb in-
teractions of charged particles, the hard-sphere repulsion,
and the corrections due to atom-atom and atom-ion attrac-
tion. Equation~10! yields

wk
~ub!5 exp@2ncvk#. ~20!

ExpandingFC and Fpert in powers of particle numbers,
keeping quadratic terms, and using Eq.~18!, we obtain

ln w~c!52A4p~be2!3~ne1np!~12Ap/8g!, ~21!

ln wk
~H !52b(

k8
nk8akk8, ~22!
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ln wk
~ in !5bnpak2b(

k8
nk8ak8, ~23!

whereakk8 andak are the van der Waals constants defined in
the Appendix. Our calculations show that the factorsw( in)

andw(H) are close to unity, being, thus, unimportant. In con-
trast,w(C) is significantly less than unity at high densities,
even at a relatively low ionization.

For the HS repulsion, Eq.~A20! gives

ln wk
~HS!5

~ ln wk
~0!!~12h/2!25h213h3

~12h!3
, ~24!

whereh is the filling factor, and

ln wk
~0!52

4p

3 F(
k8

nk8~dkk8
3

2dk8
3

!1npdk
3G . ~25!

If h!1, thenw(HS)'w(0). In practice, the non-linear correc-
tions given by Eq.~24! may be important. We always have
w(HS),1, sincedk8,dkk8 in our model.

The formalism can be generalized, e.g., for the formation
of molecules. The dissociation–recombination equilibrium is
given by

nH25nH
2 ~lHA2!3Zw2 /Zw

2 , ~26!

whereZw2 is the internal molecular partition function, gen-
eralized through multiplying eachmth term by an occupation
probabilitywm

(H2) @e.g., Eq.~21! of Ref. 9#. From the equa-
tion of chemical equilibrium,

]F

]NH2
52S ]F

]Np
1

]F

]Ne
D , ~27!

we conclude that the molecular occupation probability can
be defined as

kBT ln w~H2!52S ]Fcon f

]Np
1

]Fcon f

]Ne
D2

]Fcon f

]NH2
. ~28!

Keeping the traditional definition ofw both for atoms and for
molecules would result in the same Eq.~26!.

For the perturbation and HS factors inw(H2), Eqs.~22!–
~25! remain valid if we use relevant scaling factors; the Cou-
lomb factorw(C) should be squared; and the unbounding
factor is derived from Eq.~12!:

ln wm
~H2,ub!52nH~vm2 v̄H!2nH2~vm2 v̄H2!2nevm .

~29!

As a test example~although marginal to the present discus-
sion!, we have implemented this approach to molecular for-
mation, utilizing a simplified treatment ofZw2.

23,24 In this
case, the unbounding factor~29! turned out to be unimpor-
tant, since the degree of dissociation is mainly determined by
relation between atomic and molecular effective HS diam-
eters.

The situation is very different for the ionization of at-
oms. The repulsion factorw(HS) becomes important at mod-
erater and lowT, butw(ub) strongly affects mostly excited
states at any density~the ground state at high density!, de-
creasing rapidly as the conditions for state survival become
violated. This leads to a physically reasonable convergence

of the IPF at low densities~thus radically improving the
ionization degree atT*104.5 K! and pressure ionization at
high densities.

B. Thermodynamic and optical occupation
probabilities

The occupation probability technique described above
allows one to calculate thermodynamic properties of partially
ionized hydrogen plasma. However, it is still insufficient for
describing optical properties of the plasma.

The free energy model presented in Sec. III and in the
Appendix allows for close configurations of atoms with pro-
tons, because the atom-ion repulsion diametersdk do not
exceed the quantum-mechanical sizes of atoms. As argued in
Sec. II, the close configurations simulate cluster states~ap-
proximately treated as interacting atoms and ions in the
frames of the chemical picture!. This approach yields physi-
cally plausible EOS. On the other hand, specific quantum-
mechanical properties~e.g., frequencies and oscillator
strengths of radiative transitions! of clusters most likely dif-
fer from those of isolated atoms. Formation of many differ-
ent close configurations should manifest itself in optics as
quasicontinuum.

Therefore, one should discriminate between thethermo-
dynamic continuum~the states which do not contribute to the
generalized IPF!, and the optical continuum ~the states
strongly perturbed by surrounding!. This dichotomy was first
realized by Rogers,25 who developed the concept of the op-
tical and plasma continua using the physical picture. A cor-
rect account of the quasicontinuum has been also taken in a
recent study of line shapes in hydrogen opacities.26

The optical continuum can be determined from consid-
eration of Stark merging of spectral lines of an atom affected
by plasma microfields.27 This leads to the atomic ‘‘survival’’
probabilitiesw̃k , generally different fromwk introduced in
thermodynamics. Let us callw̃k theoptical occupation prob-
ability, to avoid confusion withwk . The occupation prob-
abilities based on the plasma microfield distribution5–7 are in
fact the optical ones. Their implication in thermodynamics
leads to physically unrealistic EOS~cf. Ref. 11! due to the
incorrect treatment of close configurations in the free energy.
Ionization equilibrium would be equally implausible without
an ad hoc ‘‘pressure ionization’’ term.6 Indeed, substituting
the excess free energy~9! into Eq. ~16! we would arrive at
Eq. ~17! with wk replaced by

wk
~HM !5 expF2nHṽ1k2npṽpk1(

k8
nk8~ ṽpk82 ṽ1k8!G .

~30!

Since ṽpk@ ṽ1k , the last ~positive! term in Eq. ~30! may
dominate and yield the ‘‘occupation probabilities’’ which
grow exponentially withnH . Then one would get pressure
neutralization instead of pressure ionization at high
densities.28

In contrast, Eq.~10! leads to the occupation probabili-
ties, Eq.~20!, which decrease exponentially with density and
produce the desired pressure ionization.

4160 Phys. Plasmas, Vol. 3, No. 11, November 1996 Alexander Y. Potekhin

Downloaded¬08¬Jul¬2010¬to¬140.77.70.152.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://pop.aip.org/pop/copyright.jsp



The occupation probabilities given by Eq.~4.71! of Ref.
5 can be presented~for pure hydrogen plasma! in the form
~30! but without the last term. This form of wk cannot be
rigorously derived from Eq.~9!. Note, however, that the
leading factornpṽpk in the exponent occurs due to the
Inglis–Teller effect27 which is optical but not thermody-
namic. Accordingly, these results can be used for calculating
the fraction of atoms which are only slightly perturbed by
plasma microfields so that they are able to contribute to the
atomic opacities. For this purpose, we use an expression
similar to that in Ref. 5. However we take into account that
Fpair includes the HS term, which implies that the distance
between ions and atoms cannot be shorter thandk . Thus the
HS volume should be subtracted from the interaction volume
ṽ. The latter one has been estimated by several authors using
different ~not always justified! approximations, as discussed
by HM.5 A reasonable order-of-magnitude estimate reads as
ṽ5 4

3p(4l k)
3. For the 7 lowest states this estimate is inter-

mediate between more complicated Eqs.~4.69! and~4.70! of
Ref. 5, and for the ground state atom it fits the latter expo-
nential with an accuracy of 9%. Finally, we adopt

w̃k5 expF2
4p

3
np~~4l k!32dk

3~T!!G . ~31!

The above considerations emphasize thatw̃k determines
solely the optical properties of the plasma and they should
not be used in the construction of the IPF.

V. RESULTS AND DISCUSSION

A. Ionization equilibrium

The free energy model described in Sec. III has been
applied to the calculation of the thermodynamic properties of
plasma using the method of Sec. IV. The ionization iso-
therms are shown in Fig. 1. Light solid curves represent the
fraction of all H atoms,f H5nH /(nH1np), and dashed lines
display the fraction of ground state atoms. The results are in
general agreement with Ref. 10 but disagree with Ref. 6. If,

for example,r50.1 g cm23, Fig. 2 of Ref. 6 shows practi-
cally zero ionization atT<104.5 K, whereas according to
Ref. 10 there is a considerable amount~about 6% by mass!
of free protons atT522 000 K. Our result coincides with the
latter one. The pressure ionization in our Fig. 1 proceeds
smoothly at high densities, again in agreement with Ref. 10,
but contrary to the almost abrupt pressure ionization of
Ref. 6.

Thick solid and dashed lines in Fig. 1 are obtained using
Eq. ~31! and show the fraction of those atoms whose optical
properties are not destroyed by plasma microfields, and
which therefore should be used in the opacity calculations.
At r&1023 g cm23, these curves are in good agreement
with those in Ref. 6. This observation suggests a possible
explanation to a discrepancy in occupation numbers of ex-
cited states, recently recognized29 between OPAL and MDH
data: the former ones take into account all thermodynami-
cally significant while the latter ones only optically identifi-
able atomic states.

For comparison, long dashes show the solution of the
ideal-gas Saha equation including the ground state atoms
only. These curves reproduce accurately the number of
ground state atoms at low densities. However, atT*104.5 K
the total number densitynH can never be determined in this
way, since the excited states become populated and increase
the neutral fraction. Above 105 K, the onset of occupation of
the excited states produces typical ‘‘shoulders’’ on the solid
curves. Note that the highest populated excited states at low
densities are strongly affected by microfields and belong to
the optical quasicontinuum. This explains why the low-
density tails of the heavy lines lie significantly lower than the
light ones. This difference is noticeable not only in the pres-
sure ionization domainr*0.1 g cm23 ~where the present
model has a limited applicability!, but also at lower densities,
if the temperature is high enough for population of the ex-
cited states. On the other hand, when density increases, the
pressure ionization comes into effect, the neutral fraction be-
comes smaller and finally disappears atr*3 g cm23. There
is a considerable amount of bound species atr;0.121 g
cm23 ~important for thermodynamics! which can hardly con-
tribute to the atomic opacities. The optical properties of at-
oms are destroyed atr.1022 g cm23, as is seen from down-
ward bending of the heavy lines.

B. Equation of state

Relative importance of partial contributions to the free
energy can be estimated by examination of their influence on
EOS, as illustrated in Fig. 2 for two temperatures. At lower
temperature,T512 600 K, the ionization degree is small,
and the corrections due to the Coulomb non-ideality of the
charged component are practically unimportant. The most
important corrections are produced by the repulsion of atoms
~HS! and by the unbounding. The corresponding contribu-
tions to the pressure are nearly equal and become appreciable
at r*0.03 g cm23. At higher temperature,T523105 K, the
ionization is high, and the Coulomb non-ideality is signifi-
cant, while the HS contribution is nearly negligible. The un-

FIG. 1. Total neutral fraction (f H) and partial fractions: ground state atoms
( f H1), optically identifiable bound atoms (f opt), and optically identifiable
ground state atoms (f opt1), compared with the ideal gas~Saha! approxima-
tion.
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bounding, however, is important at this temperature also.
Note that the perturbation~van der Waals! terms are unim-
portant at anyT andr shown in Fig. 2.

In Fig. 3 we compare the present EOS~heavy solid
curves! with those known in the literature. Results of
FGVH21 are shown by dashes, MDH6 by dot-dashed lines,
SC11 by light solid lines, and OPAL30 by dots. The EOS of
SC is somewhat softer, while that of MDH much stiffer
~probably owing to the rapidly increasing ‘‘pressure ioniza-
tion’’ term introduced by the latter authors!. We have termi-
nated our curves at densities where the quantum correction in

Eq. ~8! reached 0.5. At higherr the non-ideality of the
charged component becomes too strong to be treated as a
perturbation. The lowest isotherm corresponds to
T512 600 K, which is below the critical temperature for the
plasma phase transition reported by SC10 ~the density discon-
tinuity seen on the corresponding curve!.

Our results have been obtained under the assumption
that the molecules are completely destroyed. All authors
agree that it is true atT.104.5 K, however there is a great
uncertainty concerning the degree of dissociation at
4.1& log10T&4.5. According to Ref. 6, the amount of mol-
ecules in this interval is quite insignificant at any density,
while SC10,11 and Reinholzet al.23 ~RRN! found similarly
strong but quantitatively different recombination at density
increasing from 1022 toward 1 g cm23. Quantum molecular
dynamics simulations31 show that there is a significant
amount of transient H2-like clusters atT51 eV andr;1 g
cm23, although their influence on thermodynamic and opti-
cal properties of plasma is not yet well understood. Figure 4
illustrates the effect of this uncertainty on the EOS. The pres-
sure isotherm (T515 000 K! corresponding to complete dis-
sociation~heavy solid line! is compared with two modified
isotherms, obtained through replacing in our model theideal
contribution toP by that corresponding to the dissociation
degree given either by SC~dot-dashed line! or by RRN
~dashed line!. A comparison with the isotherm of SC~drawn
by a light solid line! suggests that the difference between our
and SC EOS at log10T&4.5 is mainly caused by the forma-
tion of dimers, which we neglected. Our testing calculations
revealed, however, that the dissociation degree in the consid-
eredr2T domain depends crucially on the treatment of vari-
ous molecular excitations as well as on adopted HS diam-

FIG. 2. Partial pressures: ideal gas~id! and configurational parts due to the
Coulomb interactions of the ionized fraction~C!, unbounding of atoms~ub!,
strong repulsion at short distances~HS!, and long-distance attraction~pert!.
We showuPCu and uPpertu since these parts are negative.

FIG. 3. Comparison of present EOS with results from the literature.

FIG. 4. Influence of the uncertainty in the dissociation degree at high den-
sity on the EOS.
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eters. Thus the thorny problem of clustering hardly can get
an unambiguous solution within the chemical picture.

Figure 5 shows the adiabatic temperature gradient
¹ad5(] ln T/] ln P)S, a significant quantity sensitive to de-
tails of the free energy model. Thermal radiation starts to
dominate in thermodynamics for the hottest isotherm at low
density, causing the decrease of¹ad . Other depressions of
¹ad are explained by the increase of the specific heat in the
regions of partial ionization, where the internal energy is
affected by the stronglyT-dependent ionization degree. Our
data~heavy curves! are compared with the tables of FGVH21

~dashes!, SC11 ~dot-dashed lines, ‘‘table’’!, and OPAL30

~dots!. Light solid lines~‘‘formula’’ ! are obtained by substi-
tuting the SC tabulated quantitiesP, S, T,
a5(] logr/]logT)P and b5(] logS/]logT)P into the thermo-
dynamic identity¹ad52aPV/(bST). We have plotted only
the latter lines for the two highest isotherms, for which the
‘‘table’’ and ‘‘formula’’ values are in a good agreement. The
discrepancy between these values in the low-T high-r do-
main indicates the lack ofthermodynamic consistency11

caused by a high sensitivity of the complicated numerical
approach to accidental small errors in minimization and dif-
ferentiation procedures. Although our simplified analytic
model is less scrupulous in details, its advantage is that it is
free of such inconsistencies.

The most crucial test for the validity of our model may
be provided by a comparison with the advanced results based
on the physical picture and employed in the OPAL opacity

library.30 They do not cover the most interesting region
where other models reveal major discrepancies, but the avail-
able data are in satisfactory agreement with our model.

Sequences of shallow depressions in the isotherms
T>105 K at r.1022 g cm23 indicate successive pressure
destruction of excited atomic states. Their physical reality
remains an open question. Note that the SC results reveal
analogous oscillatory behavior~which is probably inherent to
the models of such a type!, which however is not observed in
the OPAL data.

VI. SUMMARY

We have developed an analytic free energy model for
partially ionized hydrogen plasma in the framework of the
chemical picture. The model describes thermodynamic prop-
erties of the plasma atT.104 K and r&0.121 g cm23. In
particular, it can be used in the studies of DA white dwarf
and neutron star atmospheres.

The occupation probability formalism, first introduced
by Fermi20 and further developed by Hummer and Mihalas,5

is generalized to take proper account of the effects of partial
ionization. Free energy minimization is obtained by a gener-
alized Saha equation which is solved by an iterative algo-
rithm involving the modified occupation probabilities. The
calculated ionization degree differs from that obtained previ-
ously in Ref. 6, but qualitatively agrees with the results of
Ref. 10. We argue that the relatively high neutral fraction
obtained in Ref. 10 and in our present work atr;0.121 g
cm23 cannot be pronounced in atomic opacities, since it
takes cumulative account of atomic and cluster states, the
latter ones contributing to the optical quasicontinuum~Sec.
IV B !. We introduce the optical occupation probabilities
which determine the neutral fraction visible in atomic lines.
The non-perturbed atomic fraction given by these probabili-
ties agrees with that of Ref. 6 at the densities available in the
laboratory.

The equation of state obtained from our model is com-
pared with the results of other authors. The best agreement is
achieved with the OPAL data30 ~in the r2T region where
they are available!. Since the equation of state employed in
OPAL is based on the physical picture of plasma, completely
different from our model, we regard this agreement as an
indirect confirmation of the validity of our approach. Its gen-
eralization to higher densities and higher atomic numbers is
being performed.
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APPENDIX: FREE ENERGY MODEL BASED ON
INTERPARTICLE PAIR POTENTIALS

Our model correction to the excess free energyFpair due
to binary interactions among atoms and protons is mainly
based on Refs. 9 and 10. Some modifications, however, are
introduced to improve the physical consistency of the model,
and analytic fits are presented.

The total excess free energy consists of the reference
partFHS , treated in the hard-sphere approximation, and per-
turbation partsFpert required to include the attractive~van
der Waals! interactions.

1. Atom-atom interactions

We treat interactions among neutral species using the
fluid perturbation theory of Weeks, Chandler, and
Andersen32 ~WCA!. An effective potentialf(r ) is separated
into the reference and perturbation parts,

f~r !5f re f~r !1fpert~r !, ~A1!

wheref re f is apurely repulsive finite-rangepotential which
acts at distancesr,r * , wherer * is the minimum point of
f(r ). Accordingly, the free energy splits into the reference
and perturbation parts. First we consider the ground state
atoms and adopt the interatomic potential,

fH~r !5fSC
~H !~r !1fcore

~H ! ~r !, ~A2!

wherefSC
(H)(r ) is given by Eq.~2! of Ref. 9, andfcore

(H) (r ) is
a correction which acts at short distancesr&1.5 Å. The cor-
rection is required to makef(r ) go to infinity atr→0. Un-
like SC10 who introduced HS cores with fixedad hocdiam-
eters, we use the scaled mean electric potential of the ground
state H atom:

fcore
~H ! ~r !5

e2

r S 11
r

aDe22r /a. ~A3!

This choice seems reasonable since it yields the Coulomb
repulsion at r→0. We use the effective He screening
length33 a5 16

27aB , where aB is the Bohr radius, for the
ground state atom.

The perturbation part of the free energy is

Fpert
~H !

NH
5
nH
2 E fpert~r !gre f~r !d3r , ~A4!

wheregre f(r ) is the pair correlation function of the reference
system. For the HS reference system at low densities,
gre f(r ) can be replaced by 0 atr,d, and 1 atr.d, where
d is the HS diameter. Then

Fpert
~H ! /NH52nHe0~2p/3!~R0

32d3!, ~A5!

where e0 /kB520.2 K andR058.6aB for the ground state
atom.

The diameterd can be determined from the WCA self-
consistency condition, which involves the radial distribution
function. However, according to Ref. 34, the WCA value of
d at low r is close to the Barker’s35 value,

dB5E
0

`

@12 exp~2bf re f~r !!#dr. ~A6!

We adoptd5dB atr!1 g cm23, and propose the expression
d5dB exp(2r/2 g cm23) atr&1 g cm23. The latter expres-
sion fits exact numerical results9 with an error of about 5%.

We have used the reference part of the potential~A2! in
Eq. ~A6! and fitted the result by the formula

dH5d0F11 ln~11c1At !1
t

11 ln~11c2t !
G21

, ~A7!

where d056aB , c154, c250.5, and t5T/(3.253104 K!
for the ground state atom.

We use simple scaling ofthe potentialsfor excited
states. For two atoms with principal quantum numbersn and
n8, we write

fn8n~r !5sn8n
21fH~r /sn8n!, ~A8!

wheresn8n5( l n1 l n8)/(2l 1) is the scaling factor, andl n is an
average atomic size. The scaling~A8! ensures the correct
Coulomb repulsion at short distances. We estimatel n

2 as the
quantum-mechanical expectation value ofr 2 36 averaged
over the quantum numbers (l ,m), which yields

l n5aBnA~7n215!/4. ~A9!

The scaling does not reduce to just multiplyingdH by s, but
implies simultaneous scaling of the temperature:

dnn8~T!5snn8dH~snn8T!. ~A10!

The perturbation terms for different states are additive:

Fpert
~H ! 52(

kk8
NkNk8akk8 /V, ~A11!

where the van der Waals constantsakk8 are determined by
the scaled Eq.~A5!,

akk852skk8
2 e0

2p

3
~R0

32dH
3 ~skk8T!!. ~A12!

2. Ion-atom interactions

Following SC,10 we describe the polarization interaction
outside the core by the screened dipolar potential:

fpol,n52
e2an

2 S 11r /r D
l n
21r 2 D 2e22r /rD, ~A13!

wherean is the average polarizability of an atom with the
principal quantum numbern, andr D is the screening length.
The rms sizel n in the denominator of Eq.~A13! is interme-
diate between two different values of the polarization radius
used in Ref. 10. Furthermore, the polarizability of the H
atom in the state (nlm) averaged over (lm) numbers36 can
be fitted, with an error of 2%, by

an50.85l n
3 . ~A14!

At short separations, the Coulomb repulsion should prevail.
Therefore, in analogy with Eqs.~A2!, we adopt the interac-
tion potential,

f in~r !5fpol~r !1fcore
~ in ! ~r !, ~A15!

wherefcore is given by Eq.~A3! with a5 1
2snaB and the

scaling factorsn5 l n / l 1.
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The potential~A15! is separated then into the reference
and perturbation parts, Eq.~A1!, according to the WCA pre-
scription. The perturbation free energy is calculated analo-
gously to Eq.~A4! ~with np instead of

1
2nH on the right-hand

side!. This gives

Fpert
~ in ! 52(

k
NpNkak /V, ~A16!

where

ak5e2l k
2Fv* S l kr DD2

4p

3
f* S l kr DDd*3 ~skT!G . ~A17!

Here e2l k
2v* is the integral of fpert

( in) (r ) over space,
(2e2/ l k)f* is the minimum of f in , and
dk(T)5 l kd* (skT) is the HS diameter determined by Eq.
~A6! ~nearly independent ofr D). We have obtained the fits

v* ~x!5
421.7x

111.7x
, f* ~x!5

0.15520.0212x2

110.34x2
; ~A18!

andd* (T) is given by Eq.~A7! with d050.615,c150.71,
c250.75, andt5T/(2.153105 K!.

3. Hard sphere contribution

The HS diameters depend on atomic states and differ for
interactions with atoms and ions. Thus we have anon-
additiveHS mixture. Such mixtures can be described by the
van der Waals one-fluid model, which is reasonably accurate
for effective filling factorsh,0.3.37 In the spirit of this
model, we define

h5
p

6NV(k
NkF(

k8
Nk8dkk8

3
12Npdk

3G , ~A19!

and use the Carnahan–Starling38 formula,

bFHS /N5~4h23h2!/~12h!2. ~A20!

Finally, the excess free energy associated with the pair po-
tentials is given by Eqs.~A20!, ~A11!, and~A16!:

Fpair5FHS1Fpert
~H ! 1Fpert

~ in ! . ~A21!
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