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Hydrogen atom moving across a strong magnetic field:
analytical approximations

A Y Potekhin†
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, St Petersburg 194021, Russia
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Abstract. Analytical approximations are constructed for binding energies, quantum-mechanical
sizes and oscillator strengths of main radiative transitions of hydrogen atoms arbitrarily moving
in magnetic fields∼ 1012–1013 G. Examples of using the obtained approximations for
determination of maximum transverse velocity of an atom and for the evaluation of absorption
spectra in magnetic neutron-star atmospheres are presented.

1. Introduction

An atom moving across a magnetic field is equivalent to an atom placed in perpendicular
magnetic and electric fields. We consider the hydrogen atom moving in a magnetic field
B, strong enough to significantly squeeze the electron wavefunction. Quantitatively, the
parameterγ = h̄ωc/(2 Ryd) = B/(2.35× 109 G) is assumed large. Here,ωc = eB/mec

is the electron cyclotron frequency and Ryd= mee
4/2h̄2 is the ground-state energy of the

field-free atom.
Although only small values ofγ are available in the laboratory, large values are not

uncommon in astrophysics. Spectra of some white-dwarf stars have been interpreted as
produced by hydrogen at field strengths between 106 and 109 G (Wunner and Ruder 1987,
Fassbinder and Schweizer 1996, and references therein). Neutron stars which are observed
as radio pulsars reveal field strengths in excess of 2×108 G, and over half of them possess
magnetic fields from 1012 to 2× 1013 G (Taylor et al 1993). Absorption of radiation by
strongly magnetized atomic hydrogen may have large effects on ultraviolet and x-ray spectra
of the neutron stars, which are measured with modern space telescopes (Pavlovet al 1995).

The physics of solid state presents another important field of application of quantum-
mechanical calculations of strongly magnetized hydrogen atoms. Excitons and shallow
impurities in semiconductors reveal hydrogen-like spectra with scaled values ofωc and
Ryd. Such scaling offers a possibility to reach the regimeγ > 1 in an experiment (e.g.
Elliott and Loudon 1960, Klaassenet al 1997).

The non-moving hydrogen atom in a strong magnetic field was thoroughly studied in
the past two decades (Ruderet al 1994, and references therein). Extensive tables of binding
energies have been presented by Rösneret al (1984) and supplemented by Wintgen and
Friedrich (1986), Ivanov (1988), Xiet al (1992) and Kravchenkoet al (1996). Tables of
oscillator strengths at various values ofγ have been published by Forsteret al (1984);
analytical fits to photoionization cross sections atγ � 1 have been proposed by Potekhin
and Pavlov (1993).
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The problem of a moving atom (or an atom in crossed fields) is much more complicated
because of the absence of axial symmetry. Much work has been done at low field strengths
(e.g. Melezhik 1993), where the second-order perturbation theory was applicable (e.g. Braun
and Solov’ev 1984, and references therein). The simplifying approximation of infinite proton
mass, exploited in this regime, breaks down in strong fields because of collective motion
effects studied in detail by Avronet al (1978), Baye and Vincke (1990) and Dippelet al
(1994). In particular, so-called decentred states (with the electron localized mostly in the
‘magnetic well’ aside from the Coulomb centre) are likely to be populated. These exotic
states have been predicted by Burkovaet al (1976) and studied by Ipatovaet al (1984),
Baye et al (1992), Dzyaloshinskii (1992) and Schmelcher (1993). As well as the usual
‘centred’ states, the decentred states have an infinite discrete energy spectrum (Potekhin
1994, hereafter paper I). Collective-motion effects on the centred states of the strongly
magnetized hydrogen atom have been considered by Vincke and Baye (1988) and Pavlov
and Mésźaros (1993) in frames of the theory of perturbation.

Completely non-perturbative results, covering both centred and decentred states as well
as the transition region, were first presented by Vinckeet al (1992) for binding energies and
wavefunctions. In paper I, additionally, oscillator strengths have been considered. Pavlov
and Potekhin (1995), hereafter paper II, studied spectral line shapes, and Potekhin and
Pavlov (1997) calculated photoionization cross sections. None of these numerical results,
however, has been published in an easy-to-use form of tables or analytical expressions. This
paper provides such expressions for the magnetic field strengths typical of neutron stars,
3006 γ 6 104. This range is physically distinguished, since at weaker fields the transition
region is strongly complicated by multiple narrow anticrossings (Vinckeet al 1992). The
relative simplicity of the spectrum atγ & 300 facilitates analytical description. The upper
bound,γ ∼ 104, corresponds to the onset of non-negligible relativistic effects (Chen and
Goldman 1992).

In the next section we recall the basic definitions and physical properties of a hydrogen
atom arbitrarily moving in a strong magnetic field. In section 3, we first present accurate
analytical fits to binding energies, depending on the state of motion, for a number of bound
states and various field strengths. Then we derive analytical approximations continuously
depending onγ . As a by-product, simple and accurate approximations are obtained for
binding energies of the non-moving atom at anyγ & 1. The obtained formulae are
applied to evaluation of the maximum transverse velocity of the strongly magnetized atom.
Section 4 is devoted to analytical approximations of quantum-mechanical sizes and main
oscillator strengths of the atom. In section 5, an example of using the obtained expressions
for calculation of absorption coefficients of strongly magnetized, hot hydrogen plasma is
presented.

2. Centred and decentred states: general description

Motion of the hydrogen atom in a magnetic field can be conveniently described by the
pseudomomentum (e.g. Johnsonet al 1983)

K = mpṙp+meṙe− e
c
B × (re− rp), (1)

where the subscripti = e or i = p indicates electron or proton, respectively,

ṙi = i

h̄
[Htot, ri ] = − ih̄

mi
∇i − qi

mic
A(ri ) (2)
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is the velocity operator,mi the mass,qp = −qe = e the charge,A(r) the vector potential of
the field, andHtot the two-particle Hamiltonian operator. Gorkov and Dzyaloshinskii (1968)
have shown that in the representation in which all three components ofK have definite
values the pseudoseparation of the centre-of-mass motion can be performed, that is, the
relative motion can be described in terms of a one-particle Hamiltonian which depends on
K. The expectation value of the velocity of the atom is∇KE, whereE is the expectation
value of the energy.

It is convenient to describe the centred states of the atom using the relative coordinate
r(0) = re − rp as independent variable and the axial gauge of the vector potential,
A(r) = 1

2B × r. For the decentred states, the ‘shifted’ representation (Gorkov and
Dzyaloshinskii 1968) is more convenient. In the latter representation, the independent
variable isr(1) = re− rp − rc and the gauge isA(r) = 1

2B × (r − [(mp − me)/mH]rc).
Here,rc = (c/eB2)B×K is the relative guiding centre andmH = mp+me is the mass of
the atom.

Let us assume thatB is directed along thez-axis. The z-component of the
pseudomomentum corresponding to the motion along the field separates exactly from the
Hamiltonian, giving the kinetic termK2

z /2mH, while the transverse componentsK⊥ produce
non-trivial effects. Therefore we assumeKz = 0 andK⊥ =K hereafter.

If there were no Coulomb attraction, then the electron Landau numbern = 0, 1, 2, . . .
and thez-projection s of the angular momentum of the relative motion would be exact
quantum numbers (sinceK is definite, the electron and proton do not possess definitez-
projections of the angular momenta separately from each other—see Johnsonet al 1983).
In this case the transverse part of the wavefunction could be described by a Landau function
8ns(r

(1)
⊥ ), wherer(1)⊥ is the projection ofr(1) in the(xy)-plane ands is defined in the shifted

reference frame (e.g. paper I). The energy of the transverse excitation (with the zero-point
and spin terms subtracted) is

E⊥ns = [n+ (me/mp)(n+ s)]h̄ωc. (3)

A wavefunctionψκ of an atomic state|κ〉 can be expanded over the complete set of the
Landau functions

ψ(η)
κ (r(η)) =

∑
ns

8ns(r
(η)

⊥ )g
(η)

n,s;κ(z), (4)

where η = 0 or 1 indicates the conventional or shifted representation, respectively (a
generalization to continuousη in paper I proved to be less useful). The adiabatic
approximation used in early works (Gorkov and Dzyaloshinskii 1968, Burkovaet al 1976)
corresponds to retaining only one term in this expansion.

A bound state can be numbered as|κ〉 = |nsνK〉, wheren and s relate to the leading
term of the expansion (4), andν enumerates longitudinal energy levels

E‖nsν(K) = Eκ − E⊥ns (5)

and controls thez-parity: g
(η)

n,s;κ(−z) = (−1)νg(η)n,s;κ(z). This way of numbering is
conventional for the non-moving atom atγ & 1. The statesν = 0 are tightly bound
in the Coulomb well, while the statesν > 1 are hydrogen-like, with binding energies below
1 Ryd. For a moving atom, this way of numbering remains unambiguous atγ & 300, in
spite of the fact that there may not exist an obvious leading term of (4) in this case (paper I).

The inequalityEκ < 0 determines truly bound states, as opposed to the ones subject to
autoionization. In particular, all states withn 6= 0 belong to continuum atγ & 0.2 and will
not be considered hereafter.
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Since the transverse factors8ns in (4) are known analytically, only the one-dimensional
longitudinal functionsg(η)ns;κ are to be found numerically. An algorithm which is most
efficient atγ � 1 has been described in paper I. At small pseudomomentaK, the states
ν = 0 remain tightly bound and centred, the average electron–proton displacementx̄ being
considerably smaller thanrc. For the hydrogen-like statesν > 1, however,x̄ is close torc
at anyK.

According to the second-order perturbation approximation at smallK, the absolute
expectation value of the velocityv = ∂Eκ/∂K in a bound state|κ〉 equalsK/M⊥nsν , where
M⊥nsν is the effective ‘transverse’ mass (Vincke and Baye 1988, Pavlov and Mésźaros 1993).
M⊥nsν always exceedsmH, and it is greater the stronger the field and the higher the considered
atomic level.

The largerK, the greater is the distortion of the wavefunction towardsrc, caused
by the motion-induced electric field in the co-moving reference frame. The perturbation
approximation becomes increasingly inaccurate, until near some critical valueKc a transition
to the decentred state occurs, and the character of the motion totally changes. With further
increasingK, the transverse velocity decreases and tends to zero, while the electron–proton
separation increases and tends torc. Thus, for the decentred states, the pseudomomentum
characterizes electron–proton separation rather than velocity.

The shifted (η = 1) adiabatic approximation becomes fairly good atK � Kc. At very
largeK the longitudinal functions become oscillator-like, corresponding to a wide, shallow
parabolic potential well of a depth' e2/rc (Burkovaet al 1976). For a fixedν, this limit
is reached atK � (ν + 1

2)
2h̄/aB, whereaB is the Bohr radius. Still at arbitrarily largeK

there remain an infinite number of bound states with high values ofν whose longitudinal
wavefunctions are goverened by the Coulomb tail rather than by the parabolic core of the
effective one-dimentional potential (paper I).

The decentred states of the atom atK > Kc ∼ 102 au have relatively low binding
energies and large quantum-mechanical sizes,l ∼ K/γ au; therefore they are expected to
be destroyed by collisions with surrounding particles in the laboratory and in the white-
dwarf atmospheres. In neutron-star atmospheres atγ & 103, however, the decentred states
may be significantly populated (paper II). This necessitates inclusion of the entire range of
K below and aboveKc in the consideration.

3. Binding energies

3.1. Dependence of the energies on the pseudomomentum at selected field strengths

We have calculated binding energies of the hydrogen atom moving across the strong
magnetic field atγ = 300, 600, 1000, 2000, 3000 and 10 000 for several lowest tightly
bound and hydrogen-like states, using the technique described in paper I. At each value of
γ and for each state, the calculations have been performed atK = 0 and at about 50–100
values ofK from K 6 10 to K > 104 au, approximately equidistant in logK but with
additional points near avoided crossings. The calculated energies have an accuracy of 3–5
digits.

In applications, however, one usually has to deal with a distribution of atoms over a
more or less broad band of values of the pseudomomentumK and calculate the observable
quantities by averaging overK. This makes it highly desirable to have an analytical
approximation of theK-dependence of the energies,E(K). Lai and Salpeter (1995) were
the first to present an analytical fit toE(K), which was rather accurate for the ground state
atK < Kc but could not be applied to excited or decentred states.
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We describe the longitudinal energy (5) by the formula

|E‖nsν(K)| =
E(1)nsν(K)

1+ (K/Kc)1/α
+ E(2)nsν(K)

1+ (Kc/K)1/α
. (6)

The two-term structure of (6) is dictated by the necessity to describe the two physically
distinct regions ofK below and aboveKc. The parameterα has the meaning of the width of
the transition region nearKc in logarithmic scale of pseudomomenta. As noted in paper I,
for the tightly bound statesKc is close to(2mHE

(0)
nsν)

1/2, whereE(0)nsν ≡ −E‖nsν(0). We write
Kc = q0(2mHE

(0)
nsν)

1/2 and treatq0 as a fitting parameter.
Intricate structure of the region of avoided crossings (see Vinckeet al 1992) complicates

its accurate analytical description. We have chosen to keep our formulae simple at the cost
of decreasing accuracy near these crossings.

For the tightly bound states, we parametrize the functionsE(j)(K) as follows:

E
(1)
0s0(K) = E(0)0s0−

K2

2meff + q1K2/E
(0)
0s0

, (7)

E
(2)
0s0(K) = 2[r2

∗ + r3/2
∗ + q2r∗]−1/2 Ryd, (8)

where r∗ = rc/aB = K/(γ au), q1 and q2 are dimensionless fitting parameters, andmeff

is the effective mass which is close to (but not necessarily coincident with) the transverse
effective massM⊥nsν obtained by the perturbation technique.

In the considered range ofγ , the parameterq1 can be approximated as

q1 =
{

lg(γ /300) if s = 0,

0.5 otherwise.

Optimal values of the other parameters are listed in table 1. The last column presents the
root-mean-square (rms) differenceσE between the computed and fitted energies. Maxmum
errors of the fit (. 3σE) occur near the avoided crossings.

Binding energies of the hydrogen-like states are approximated by the same formula (6)
but with slightly different expressions forE(1) andE(2). For these states,M⊥nsν exceedsmH

by orders of magnitude and the perturbation method fails even at small values ofK (Pavlov
and Mésźaros 1993), which renders the notion of transverse mass practically useless for
the fitting. Thus we considermeff as effectively infinite and putE(1)0sν = E

(0)
0sν (ν > 1).

Furthermore, the transition region is not well defined, thereforeKc andα lose their clear
meaning and become mere fitting parameters.

The functionE(2)(K) that describes the longitudinal energy at largeK is now

E
(2)
0sν(K) = {(2 Ryd)−1[r2

∗ + (2ν + 1)r3/2
∗ + q2r∗]1/2+ 1/E(0)0sν}−1, (9)

where r∗ andE(0) have the same meaning as before. The first and second terms in the
square brackets ensure the correct asymptotic behaviour (paper I). In this case,

q2 =
{
ν2− 1 (oddν)

ν2+ 2ν/2 lg(γ /300) (evenν).

Optimal values of the parametersq0 andα are listed in table 2. As well as in table 1, the
last column presents rms errors which are several times smaller than the maximum errors
near anticrossings.

In both tables 1 and 2, only truly bound (not autoionizing) states are considered. For
example, all states withs > 0, ν > 0 belong to continuum atγ > 673, therefore table 2
does not contain entries for them atγ = 1000 and higher.
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Table 1. Parameters of the analytical approximation (6)–(8) for the energies of tightly bound
states|0s0〉.
s γ E(0) (Ryd) lg(meff/mH) q0 α q2 σE (Ryd)

0 300 10.722 0.009 0.859 0.001 0.102 0.028
600 13.210 0.042 0.811 0.107 0.157 0.040

1 000 15.325 0.072 0.823 0.117 0.189 0.025
2 000 18.610 0.141 0.850 0.178 0.233 0.018
3 000 20.770 0.175 0.873 0.191 0.244 0.017

10 000 28.286 0.319 1.019 0.173 0.275 0.027

1 300 7.669 0.161 0.963 0.132 0.115 0.026
600 9.607 0.269 1.060 0.093 0.160 0.021

1 000 11.277 0.369 1.147 0.060 0.176 0.024
2 000 13.904 0.578 1.195 0.122 0.215 0.016
3 000 15.649 0.701 1.202 0.147 0.235 0.014

10 000 21.830 0.944 1.337 0.298 0.240 0.033

2 300 6.450 0.304 1.184 0.030 0.120 0.017
600 8.142 0.497 1.197 0.081 0.181 0.014

1 000 9.610 0.643 1.262 0.074 0.195 0.014
2 000 11.937 0.931 1.291 0.127 0.230 0.014
3 000 13.493 1.093 1.320 0.153 0.240 0.022

3 300 5.734 0.466 1.263 0.039 0.122 0.015
600 7.274 0.701 1.273 0.082 0.183 0.012

1 000 8.617 0.897 1.347 0.090 0.204 0.018
2 000 10.755 1.252 1.403 0.131 0.232 0.019
3 000 12.191 1.451 1.457 0.154 0.240 0.026

4 300 5.243 0.616 1.330 0.050 0.128 0.013
600 6.676 0.892 1.342 0.095 0.194 0.011

1 000 7.929 1.124 1.437 0.096 0.211 0.017
2 000 9.933 1.555 1.544 0.114 0.229 0.016

5 300 4.877 0.755 1.391 0.058 0.128 0.012
600 6.227 1.086 1.393 0.107 0.199 0.012

1 000 7.413 1.354 1.545 0.130 0.229 0.010

6 300 4.589 0.888 1.448 0.062 0.123 0.013
600 5.874 1.281 1.441 0.121 0.207 0.013

1 000 7.004 1.668 1.587 0.107 0.210 0.018

7 300 4.355 1.021 1.504 0.070 0.132 0.013
600 5.585 1.480 1.473 0.139 0.213 0.014

3.2. Two-dimensional approximations

Equations (6)–(9) help us to derive approximations of the binding energies as functions of
two continuous argumentsγ andK. For this purpose, we replace the numerical parameters
listed in tables 1 and 2 by analytical functions ofγ .

One of these parameters—the longitudinal energy of the atom at restE(0)—has an
independent significance. For this reason, we have constructed an accurate fit toE(0) in the
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Table 2. Parameters of the analytical approximation (6) and (9) for the energies of hydrogen-like
states|0sν〉, ν > 1.

s ν γ E
(0)
0sν (Ryd) q0 α σE (Ryd)

0 1 300 0.964 3 1.751 0.7081 0.001 3
600 0.978 1 3.019 0.7441 0.001 3

1 000 0.985 0 4.595 0.7604 0.001 8
2 000 0.991 2 8.467 0.7977 0.001 7
3 000 0.993 6 12.43 0.8095 0.001 2

10 000 0.997 6 39.65 0.8052 0.002 3

0 2 300 0.552 2 1.064 0.6186 0.000 6
600 0.575 5 1.463 0.6252 0.000 5

1 000 0.591 7 1.885 0.6322 0.001 8
2 000 0.612 5 2.632 0.6255 0.000 7
3 000 0.624 0 3.143 0.6406 0.003 7

10 000 0.655 4 4.810 0.6573 0.002 2

0 3 300 0.245 6 5.608 0.8501 0.000 5
600 0.247 3 10.68 0.8495 0.001 3

1 000 0.248 2 16.67 0.8617 0.000 3
2 000 0.248 9 31.35 0.8940 0.000 2
3 000 0.249 2 45.96 0.8966 0.000 2

10 000 0.249 8 150.1 0.8956 0.000 3
0 4 300 0.181 4 2.145 0.7140 0.002 5

600 0.185 8 2.868 0.6699 0.000 3
1 000 0.188 7 3.566 0.6609 0.000 2
2 000 0.192 4 4.963 0.6165 0.000 2
3 000 0.194 5 5.908 0.5970 0.000 3

10 000 0.199 9 8.965 0.5675 0.000 6

0 5 300 0.109 82 10.05 0.9245 0.000 14
600 0.110 32 18.58 0.9422 0.000 14

1 000 0.110 57 29.87 0.9404 0.000 10
2 000 0.110 79 56.85 0.9630 0.000 09
3 000 0.110 88 83.66 0.9619 0.000 09

10 000 0.111 04 273.3 0.9745 0.000 06

0 6 300 0.089 20 2.435 0.8688 0.000 54
600 0.090 68 4.328 0.7156 0.000 16

1 000 0.091 67 5.237 0.7205 0.000 18
2 000 0.092 94 7.419 0.6593 0.000 10
3 000 0.093 62 8.825 0.6237 0.000 16

10 000 0.095 42 13.43 0.5906 0.000 26

1 1 300 0.940 7 2.109 0.6794 0.001 0
600 0.964 0 3.553 0.7029 0.002 4

1 2 300 0.513 8 1.930 0.6417 0.003 8

2 1 300 0.922 3 2.421 0.6553 0.001 4

widest possible range ofγ values. For the tightly bound states, we have

E
(0)
0s0(γ )/Ryd= ln(exp[(1+ s)−2] + p1[ln(1+ p2

√
γ )]2)+ p3[ln(1+ p4γ

p5)]2. (10)

The parametersp1–p5 depend ons; they are presented in table 3. This fit is accurate to



56 A Y Potekhin

Table 3. Parameters of the analytical approximation (10) for the energies of tightly bound states
|0s0〉 at 10−1 6 γ 6 104.

s p1 p2 p3 p4 p5

0 15.55 0.378 2.727 0.3034 0.4380
1 0.5332 2.100 3.277 0.3092 0.3784
2 0.1707 4.150 3.838 0.2945 0.3472
3 0.07924 6.110 4.906 0.2748 0.3157
4 0.04696 7.640 5.787 0.2579 0.2977
5 0.03075 8.642 6.669 0.2431 0.2843
6 0.02142 9.286 7.421 0.2312 0.2750
7 0.01589 9.376 8.087 0.2209 0.2682

Table 4. Parameters of the analytical approximations (11)–(13) for the energies of hydrogen-like
states|00ν〉 at 16 γ 6 104.

ν 1 2 3 4 5 6

aν 0.785 0.578 0.901 0.631 0.970 0.660
bν 1.724 0.765 1.847 0.717 1.866 0.693

within 0.1–1% atγ = 10−1–104 and it also provides the correct limits atγ → 0.
For the hydrogen-like states, we use the asymptotic result (Haines and Roberts 1969)

E(0)nsν =
1 Ryd

(n+ δ)2 , where

{
n = (ν + 1)/2, δ ∼ γ−1 (odd ν)

n = ν/2, δ ∼ (ln γ )−1 (evenν).
(11)

We have obtained the following fits to the quantum defectδ: for odd ν,

δ(γ ) = (aν + bν√γ + 0.077γ )−1, (12)

whereaν ≈ 1 andbν ≈ 2; and for evenν,

δ(γ ) = [aν + 1.28 ln(1+ bνγ 1/3)]−1, (13)

where aν ≈ 2
3 and bν ≈ 2

3. Accurate values ofaν and bν are given in table 4. At
16 γ 6 104, rms errors of (12) lie within 3× 10−4, and those of (13) within 10−3.

The parametersmeff, α andq0 in (6)–(9) that determineK-dependences of the energies
can also be replaced by analytical functions ofγ . Let us start with the tightly bound states
(ν = 0). For the effective mass, we have

meff(γ ) = mH[1+ (γ /γ0)
c0], (14)

where the power indexc0 and the valueγ0 (roughly corresponding to the onset of strong
coupling between internal and centre-of-mass motions of the centred atom) depend on the
quantum numbers and are given by

c0 = 0.937+ 0.038s1.58 and γ0 = 6150(1+ 0.0389s3/2)[1+ 7.87s3/2]−1.

For the critical pseudomomentum, we write

q0 ≡ Kc/
√

2mHE(0) = c1+ ln(1+ γ /γ1). (15)

The parametersc1 and γ1 take on the valuesc1 = 0.81, 1.09, 1.18, 1.24 and γ1 =
(8.0, 3.25, 2.22, 1.25) × 104 for s = 0, 1, 2, 3, respectively. Fors > 4, we put c1 =
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Figure 1. Energy spectrum of the hydrogen atom moving across a strong magnetic field. Upper
panels: tightly-bound states (ν = 0); lower panels: hydrogen-like states of the manifolds = 0.
Numerical values (•) are compared with the analytical approximations of section 3.2 (——)
and of Lai and Salpeter (1995) (– – –, upper panels). Triangles (M) mark the limit of validity
of the perturbation formalism according to equation (3.8) of Lai and Salpeter; large circles (◦)
point the present analytical approximation for the critical pseudomomentumKc.

0.93 + 0.08s and γ1 = 6500. The remaining parameters can be replaced by simple
expressions,α = 0.053 ln(γ /150) andq2 = 0.158[ln((1+ 0.1s)γ /215)]2/5.

Now let us turn to the hydrogen-like states. For odd states, we have, approximately,
q0 = (ν5/4γ /170)0.9 and α = 0.66 + ν/20, whereas for even hydrogen-like states
q0 = ν

√
γ /1200 andα = 0.66.

These approximations are not so accurate as those provided by tables 1 and 2, but their
advantage is that they may be used at arbitraryγ in the range considered. In figure 1
they are compared with our numerical results and with the fitting formulae of Lai and
Salpeter (1995). The figure demonstrates that these approximations are valid at anyK from
0 to infinity. Noticeable discrepancies between our fitted and calculated data occur only in
narrow ranges ofK near anticrossings.

3.3. The largest transverse velocity

As an example of application of the above formulae for binding energies, let us estimate the
maximum velocity of the atom,vmax = max|∂E/∂K|. It can be alternatively interpreted
as the maximum transverse electric fieldEmov = vmaxB/c that could be applied to an atom
at rest. A stronger electric fieldE > Emov forces the atoms to move with velocities around
the drift velocity of free charges in crossed fields,vdrift = cE × B/B2, provided that
E < Ec = B = 137.036γ au (in conventional units,Ec = 2.998× 104[B/G] V m−1). Still
higher electric field,E > Ec, cannot be counterbalanced by motion, hence it causes Stark
ionization.
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Table 5. The largest transverse velocities (in au) in the lowest states|0s0〉: numerical values
vmax compared with the present analytical approximationvmax,appr and with the approximation
vmax,LS of Lai and Salpeter (1995).

s 0 0 0 0 1 2 3
γ 300 1000 3000 10 000 3000 3000 3000

vmax 0.0588 0.0479 0.0372 0.0253 0.0240 0.0198 0.0173
vmax,appr 0.0622 0.0467 0.0367 0.0279 0.0232 0.0187 0.0154
vmax,LS 0.0850 0.0637 0.0548 0.0585 0.0520 0.0571 0.0628

A numerical evaluation ofvmax requires multiple calculation of derivatives∂Eκ/∂K in
the most complicated regionK ∼ Kc. Thus the analytical approximations can be most
helpful here. A reasonable approximation is simplyvmax,appr= ∂|E|/∂K atK = Kc, where
E is given by (6) andKc by (15). Table 5 presentsvmax,appr obtained using this approximation
for the lowest tightly bound states along withvmax,LS given by equation (3.30) of Lai and
Salpeter (1995) and withvmax evaluated numerically. The values listed in table (in atomic
units of velocity, 1 au= 2188 km s−1) can be translated into those of the critical electric
field, Emov = γ vmax[au]× (5.14× 1011 V m−1).

4. Geometrical characteristics and radiative transitions

4.1. Atomic sizes and dipole moments

Geometrical characteristics of an atom play an important role in distribution of atoms over
quantum states in a plasma and in their contribution to the plasma absorption coefficients,
since a ‘size’ of an atom may be used to approximately evaluate effects of destruction
of atoms caused by random charge distribution in the plasma (e.g. Potekhin 1996). The
K-dependence of rms sizes is complicated and can be non-monotonous near anticrossings.
However, the sizes usually need not be known with high precision, that relieves the problem
of fitting. The accuracy level of the approximations presented in this section is typically
several percent.

At K = 0, the atom is axially symmetric, and its rms sizes along the Cartesian
coordinates can be approximated aslx0 = ly0 ≈ aB

√
(s + 1)/γ and

lz0 ≈ {1/
√

2+ 1/ ln[γ /(1+ s)]}(Ryd/E(0))1/2aB (ν = 0) (16)

lz0 ≈ (1.6 Ryd/E(0))aB (ν > 1). (17)

Let us consider an atom moving alongOy. Both transverse sizes of the electron ‘cloud’
remain approximately independent ofK: lx ≈ ly ≈ lx0. However, the atom acquires a
constant dipole momentd = e〈rp−re〉 proportional to the mean proton–electron separation
x̄ = |〈re−rp〉|. This separation is always smaller thanrc, and it approachesrc atK � Kc.
With an accuracy of up to 10%, atγ > 300,

x̄/rc ≈ 1− [1+ 0.015γ 2
√

1+ s(E(0))−4]−1[1+ (K/Kc)
1/α]−1

−[1+ 0.004γ 2 (E(2)(K))−4]−1[1+ (Kc/K)
1/α]−1, (18)

whereE(0), E(2), Kc andα are defined above.
The size of the electron cloud along the field is also affected by the motion. It can be
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Figure 2. Comparison of calculated geometrical sizes of the atom (•) with the analytical
approximations of section 4.1 (——).

described by the formulae

lz = lz0
[1+ (1−mH/meff)(K/Kc)

2]1/2

1+ (K/Kc)1/α
+ lz2

1+ (Kc/K)1/α
(ν = 0) (19)

lz = (l2z0+ l2z2)
1/2 (ν > 1). (20)

Here,lz0 is the value atK = 0 given by (16), (17), and

lz2 =
√
ν + 1

2[r3
∗ + (4.3+ 7ν2)r2

∗ ]
1/4

has the correct asymptotics atK →∞ (paper I).
In figure 2 the average size of the atom,l(K) = [x̄2+ l2x+ l2y+ l2z ]1/2, expressed through

the above formulae, is compared with values calculated numerically. On the left panel (at
γ = 600), the strong deviations of the numerical values from the fit for the states|003〉 and
|011〉 atK ∼ 102 au are caused by their anticrossing, which occurs shortly before the level
(011) enters continuum. Atγ = 2000 (right panel), this level belongs to the continuum at
arbitrarily smallK, so it does not (anti)cross truly bound levels.

4.2. Oscillator strengths

In this section we consider those oscillator strengthsf that dominate photoabsorption of
polarized radiation by ground-state hydrogen atoms at largeγ . The polarization is assumed
circular (right, for which we will use superscript ‘+’, or left, ‘−’) or linear, longitudinal
(‘‖’) with respect to the static magnetic field.

At K = 0, the left-polarized radiation cannot excite the ground-state atom (f − = 0),
while right and longitudinally polarized radiation is absorbed mainly via transitions to the
states|010〉 and |001〉, respectively. The corresponding oscillator strengths have been
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computed and tabulated by Forsteret al (1984). With an accuracy of 1–2%, at 06 γ 6 104,
they are reproduced by a single five-parameter formula

f αnsν(0) =
(

1− 0.584γ

1+ u1γ u2

)
1+ u3γ

1+ u4γ u5
. (21)

For f +010(0), the parameteresui take on the valuesu1 = 12, u2 = 1.43, u3 = 9.8× 10−5,
u4 = 1.585 andu5 = 0.713. Forf ‖001(0), we haveu1 = 2.64, u2 = 1.076,u3 = 6× 10−6,
u4 = 0.247 andu5 = 0.381.

For the moving atom, in the restricted range 3006 γ 6 104, we put

f +010(K) = f +010(0)
1− a(K/Kc)

b

1+ (K/Kc)1/α
′ +

2(me/mp)

1+ (Kc/K)1/α
′ , (22)

with a = 1.28−0.267 ln(1+γ /240), b = 1+3/[1+ ln2(1+γ /90)], α′ = 0.012[1+ ln2(1+
γ /90)] and

f
‖
001(K) = f ‖001(0) exp[−(a′K/Kc)

2] + exp[−(b′K/Kc)
−β ]

1+ 0.5
√
Kc/K

, (23)

with a′ = 0.877 ln(13100/γ ), b′ = 0.89− γ /17000 andβ = 0.61(1+ 2410/γ )3/2. The
second parts of (22) and (23) ensure the correct large-K limits (2me/mp and 1 respectively,
cf paper I).

The radiative transitions forbidden for the atom at rest because of the conservation of
the angular-momentum projection become allowed for the moving atom. In particular, the
moving ground-state atom can absorb left-polarized radiaton. Oscillator strengths of such
transitions are significant only atK of the order ofKc ∼ 102 au. Therefore we derive for
them fitting formulae accurate to∼ 10% in this range ofK and do not attempt to fit the
complicated behaviour they show outside this range, where they are orders of magnitude
smaller (paper I).

The transition to a state|0s0〉 presents the dominating absorption channel for circular
polarization in a spectral rangeE(0)000−E(0)0,s−1,0 < h̄ω < E

(0)
000−E(0)0s0 (whereh̄ω is a photon

energy). For the right polarization, we put

f +0s0(K) =
0.012(K/Kc)

2s(1−K/Kc)

1+ 11 ln(1+ (γ /3300)2)
atK < Kc, s > 2, (24)

and zero atK > Kc; for the left polarization,

f −0s0(K) =
1.3× 10−4(K/Kc)

2(s+1)

2s [1+ (K/Kc)5(s+1)]
(s > 1). (25)

Although approximations (22)–(25) are rather crude, particularly owing to the anticrossings,
their accuracy may still be sufficient for astrophysical applications, as will be demonstrated
in the next section.

5. Spectral line shapes

As an application of the above fitting formulae, let us consider bound–bound absorption
spectrum of hydrogen under the conditions typical for neutron-star atmospheres (Pavlovet al
1995): densityρ & 10−2 g cm−3, temperatureT ∼ 105–106 K and magnetic field strength
B ∼ 1012–1013 G. Such absorption spectra have been studied in paper II. Neglecting the
Doppler and collisional broadening but taking into account the most important, magnetic
broadening, one obtains an average partial cross section of an atom with respect to absorption
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of polarized radiation with frequencyω via some specific transition|κ〉 → |κ ′〉 as the sum
σ(ω) =∑i σi(ω) over the rootsKi(ω) of the equationE′(K)−E(K) = h̄ω, whereE′(K)
(E(K)) is the energy of the final (initial) state of the atom, and

σi(ω) = C−1
w

4π3e2

mec
Ki |dKi/dω|w′(Ki) exp[−E(Ki)/kBT ]f (Ki). (26)

Here, f (K) is the oscillator strength for the given transition and polarization,kB is the
Boltzmann constant,

Cw = 2π
∫ ∞

0
Kw(K) exp[−E(K)/kBT ] dK (27)

is a normalization constant andw′(K) (w(K)) is the occupation probability of the final
(initial) atomic state in a plasma with a number density of electronsne. These occupation
probabilities can be estimated asw ∼ exp[−(4π/3)ne(4l)3], where l is the rms radius of
the atom. This expression is pertinent to the calculation of the bound–bound absorption
considered here. To calculate the thermodynamic properties of the plasma, however, one
should use, instead of these ‘optical’ occupation probabilities, ‘thermodynamical’ ones,
which are generally larger (Potekhin 1996).

In order to take into account induced emission,σi(ω) should be multiplied by
(1− e−h̄ω/kBT ). The collisional broadening can be taken into account by convolution of
σi(ω) with the Lorentzian profile characterized by the width0(Ki(ω)) (paper II). Since this
type of broadening has only marginal significance compared with the magnetic broadening
in the neutron-star atmospheres, we employ a simple order-of-magnitude estimate:

0(K) ≈ 00nea
3
B(kBT/Ryd)1/6(1+ 2r5/6

∗ ), (28)

where00 ≈ 15 au for transitions to the state|001〉 (that mainly determine absorption of
radiation polarized longitudinally) and00 ≈ (68/γ ) au for transitions to the state|010〉
(responsible for the main absorption peak of circular polarization).

Some of the typical absorption profiles obtained numerically in paper II are represented
by full lines in figure 3. The spectral range is shown that is relevant to interpretation
of spectral observations of neutron stars with the x-ray telescope on-board ROSAT satellite
(e.g. Pavlovet al 1995). Approximate profiles, obtained using the analytical approximations
of section 3.2 forE(K), the formulae of section 4 forl(K) andf (K) and the estimate (28)
for 0(K), are shown in figure 3 by broken curves. One can see that they correctly reproduce
the gross features of the spectral shapes, thus the proposed approximations are suitable for
using them in theoretical models of neutron-star atmospheres compatible with contemporary
observational data. The figure demonstrates also the importance of the decentred states: for
example, the absorption of longitudinally polarized radiation at ¯hω < 100 eV is produced
solely by the states of motion withK > Kc.

In reality, observed spectra are influenced not only by the bound-bound photoabsorption
shown in figure 3 but also by bound–free transitions. For moving atoms, bound–free
cross sections were calculated by Potekhin and Pavlov (1997). Under conditions typical of
atmospheres of cooling neutron stars, maximum bound–free photoabsorption turns out to be
of the same order of magnitude as the bound–bound one, but it is shifted to higher-photon
energies. In the spectral range shown in figure 3, the bound–free transitions are generally
less important.
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Figure 3. Comparison of numerically calculated (——) and approximate (– – –) spectral shapes
for bound–bound absorption of right (+), left (−) and longitudinally (‖) polarized radiation by
hydrogen atoms in thermal equilibrium with plasma under the conditions typical for atmospheres
of magnetic neutron stars:kBT = 1 Ryd (T = 1.58× 105 K), ρ = 0.01 g cm−3, andγ = 103

(B = 2.35× 1012 G).

6. Conclusions

We have obtained analytical approximations of binding energies, geometrical sizes and main
oscillator strengths of radiative transitions of the hydrogen atom moving across a strong
magnetic field. These approximations can be also applied to the hydrogen atom in crossed
electric and magnetic fields, since the latter problem reduces to the former one with the effec-
tive pseudomomentumK = mHcE/Ec, or equivalentlyK (au) = 8.4(E/V m−1)(B/G)−1.

Binding energies are the most important quantities in many applications and for that
reason we have presented not only fitting formulae depending analytically onγ andK
(section 3.2), but also considerably more accurateK-dependences at six selected values of
γ (section 3.1). Atomic sizes (section 4.1) play an important role in the distribution of
atoms over quantum states in a plasma and in their contribution to the plasma absorption
coefficients. For example, the size of an atom may be used to evaluate effects of
‘unbinding’ of electrons caused by random charge distribution in the plasma. For non-
magnetized hydrogen plasmas, an approximate treatment of these effects was revised
recently (Potekhin 1996); for strong magnetic fields analogous work is under way. The
approximations of oscillator strengths (section 4.2), along with those of the energies and
sizes, facilitate calculations of absorption spectra of strongly magnetized, partially ionized
hydrogen plasmas. Eventually, the analytical estimates ofγ - and K-dependences of
the binding energies, atomic sizes and transition rates will help to generalize previously
developed models of fully ionized atmospheres of magnetic neutron stars (Shibanovet al
1992) to the more realistic case of partially ionized atmospheres.
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