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Hydrogen atom moving across a strong magnetic field:
analytical approximations
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loffe Physico-Technical Institute, Politekhnicheskaya 26, St Petersburg 194021, Russia
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Abstract. Analytical approximations are constructed for binding energies, quantum-mechanical
sizes and oscillator strengths of main radiative transitions of hydrogen atoms arbitrarily moving
in magnetic fields~ 10'2-10'3 G. Examples of using the obtained approximations for
determination of maximum transverse velocity of an atom and for the evaluation of absorption
spectra in magnetic neutron-star atmospheres are presented.

1. Introduction

An atom moving across a magnetic field is equivalent to an atom placed in perpendicular
magnetic and electric fields. We consider the hydrogen atom moving in a magnetic field
B, strong enough to significantly squeeze the electron wavefunction. Quantitatively, the
parametery = ho./(2 Ryd) = B/(2.35x 10° G) is assumed large. Here, = eB/mec

is the electron cyclotron frequency and Rydmee*/2h? is the ground-state energy of the
field-free atom.

Although only small values ofs are available in the laboratory, large values are not
uncommon in astrophysics. Spectra of some white-dwarf stars have been interpreted as
produced by hydrogen at field strengths betweehai@ 18 G (Wunner and Ruder 1987,
Fassbinder and Schweizer 1996, and references therein). Neutron stars which are observed
as radio pulsars reveal field strengths in excess»fl® G, and over half of them possess
magnetic fields from 16 to 2 x 10*® G (Taylor et al 1993). Absorption of radiation by
strongly magnetized atomic hydrogen may have large effects on ultraviolet and x-ray spectra
of the neutron stars, which are measured with modern space telescopes @all2995).

The physics of solid state presents another important field of application of quantum-
mechanical calculations of strongly magnetized hydrogen atoms. Excitons and shallow
impurities in semiconductors reveal hydrogen-like spectra with scaled values ahd
Ryd. Such scaling offers a possibility to reach the regime- 1 in an experiment (e.qg.
Elliott and Loudon 1960, Klaasseat al 1997).

The non-moving hydrogen atom in a strong magnetic field was thoroughly studied in
the past two decades (Rudgtral 1994, and references therein). Extensive tables of binding
energies have been presented jsieret al (1984) and supplemented by Wintgen and
Friedrich (1986), Ivanov (1988), Xét al (1992) and Kravchenket al (1996). Tables of
oscillator strengths at various values pfhave been published by Forstet al (1984);
analytical fits to photoionization cross sectionsyat> 1 have been proposed by Potekhin
and Pavlov (1993).
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The problem of a moving atom (or an atom in crossed fields) is much more complicated
because of the absence of axial symmetry. Much work has been done at low field strengths
(e.g. Melezhik 1993), where the second-order perturbation theory was applicable (e.g. Braun
and Solov'ev 1984, and references therein). The simplifying approximation of infinite proton
mass, exploited in this regime, breaks down in strong fields because of collective motion
effects studied in detail by Avroet al (1978), Baye and Vincke (1990) and Dippsl al
(1994). In particular, so-called decentred states (with the electron localized mostly in the
‘magnetic well’ aside from the Coulomb centre) are likely to be populated. These exotic
states have been predicted by Burkatsal (1976) and studied by Ipatovet al (1984),

Baye et al (1992), Dzyaloshinskii (1992) and Schmelcher (1993). As well as the usual
‘centred’ states, the decentred states have an infinite discrete energy spectrum (Potekhin
1994, hereafter paper I). Collective-motion effects on the centred states of the strongly
magnetized hydrogen atom have been considered by Vincke and Baye (1988) and Pavlov
and Mésaros (1993) in frames of the theory of perturbation.

Completely non-perturbative results, covering both centred and decentred states as well
as the transition region, were first presented by Vinekal (1992) for binding energies and
wavefunctions. In paper |, additionally, oscillator strengths have been considered. Pavlov
and Potekhin (1995), hereafter paper Il, studied spectral line shapes, and Potekhin and
Pavlov (1997) calculated photoionization cross sections. None of these numerical results,
however, has been published in an easy-to-use form of tables or analytical expressions. This
paper provides such expressions for the magnetic field strengths typical of neutron stars,
300< y < 10% This range is physically distinguished, since at weaker fields the transition
region is strongly complicated by multiple narrow anticrossings (Vinekal 1992). The
relative simplicity of the spectrum at > 300 facilitates analytical description. The upper
bound,y ~ 10 corresponds to the onset of non-negligible relativistic effects (Chen and
Goldman 1992).

In the next section we recall the basic definitions and physical properties of a hydrogen
atom arbitrarily moving in a strong magnetic field. In section 3, we first present accurate
analytical fits to binding energies, depending on the state of motion, for a number of bound
states and various field strengths. Then we derive analytical approximations continuously
depending orny. As a by-product, simple and accurate approximations are obtained for
binding energies of the non-moving atom at apy> 1. The obtained formulae are
applied to evaluation of the maximum transverse velocity of the strongly magnetized atom.
Section 4 is devoted to analytical approximations of quantum-mechanical sizes and main
oscillator strengths of the atom. In section 5, an example of using the obtained expressions
for calculation of absorption coefficients of strongly magnetized, hot hydrogen plasma is
presented.

2. Centred and decentred states: general description

Motion of the hydrogen atom in a magnetic field can be conveniently described by the
pseudomomentum (e.g. Johnsetral 1983)

. .
K = mprp + MeTle — EB X (Te - rp)’ (1)
where the subscript= e ori = p indicates electron or proton, respectively,

A(ry) (2

7i = =[Hot, 1] = ——V; —
h m; m;c
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is the velocity operator; the massg, = —ge = e the charge A(r) the vector potential of

the field, andHy; the two-particle Hamiltonian operator. Gorkov and Dzyaloshinskii (1968)
have shown that in the representation in which all three componenis bfve definite
values the pseudoseparation of the centre-of-mass motion can be performed, that is, the
relative motion can be described in terms of a one-particle Hamiltonian which depends on
K. The expectation value of the velocity of the atonVig E, whereE is the expectation

value of the energy.

It is convenient to describe the centred states of the atom using the relative coordinate
r® = r. — ry as independent variable and the axial gauge of the vector potential,
A(r) = %B x r. For the decentred states, the ‘shifted’ representation (Gorkov and
Dzyaloshinskii 1968) is more convenient. In the latter representation, the independent
variable isr® = re — ry — r. and the gauge is\(r) = ;B x (r — [(mp — me)/mu]re).
Here,r. = (¢/eB?) B x K is the relative guiding centre angy = mp+me is the mass of
the atom.

Let us assume thaBB is directed along thez-axis. The z-component of the
pseudomomentum corresponding to the motion along the field separates exactly from the
Hamiltonian, giving the kinetic terrKZ?/ZmH, while the transverse componetits produce
non-trivial effects. Therefore we assumie = 0 and K, = K hereatfter.

If there were no Coulomb attraction, then the electron Landau numben, 1, 2, ...
and thez-projections of the angular momentum of the relative motion would be exact
guantum numbers (sincK is definite, the electron and proton do not possess definite
projections of the angular momenta separately from each other—see Jairelof083).

In this case the transverse part of the wavefunction could be described by a Landau function
D, (rf)), wherer(f) is the projection of® in the (xy)-plane and is defined in the shifted
reference frame (e.g. paper I). The energy of the transverse excitation (with the zero-point
and spin terms subtracted) is

E,; = [n + (me/mp)(n + 9)Tho.. 3)

A wavefunctiony, of an atomic statéx) can be expanded over the complete set of the
Landau functions

Y @) =3 @, (") (2), (4)
wheren = 0 or 1 indicates the conventional or shifted representation, respectively (a
generalization to continuoug in paper | proved to be less useful). The adiabatic
approximation used in early works (Gorkov and Dzyaloshinskii 1968, Burlebwe 1976)
corresponds to retaining only one term in this expansion.

A bound state can be numbered|as = |nsvK), wheren ands relate to the leading

term of the expansion (4), andenumerates longitudinal energy levels

E),,(K) = E — Ej; (5)

nsvy

and controls thez-parity: g\”. (—z) = (=1)"g\". (z). This way of numbering is

conventional for the non-moving atom @t 2> 1. The statess = 0 are tightly bound

in the Coulomb well, while the states> 1 are hydrogen-like, with binding energies below

1 Ryd. For a moving atom, this way of humbering remains unambiguogs-at300, in

spite of the fact that there may not exist an obvious leading term of (4) in this case (paper I).
The inequalityE, < 0 determines truly bound states, as opposed to the ones subject to

autoionization. In particular, all states with# 0 belong to continuum gt 2 0.2 and will

not be considered hereafter.
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Since the transverse factots; in (4) are known analytically, only the one-dimensional
longitudinal functionSg,i’é’fK are to be found numerically. An algorithm which is most
efficient aty > 1 has been described in paper I. At small pseudomomE&ntthe states
v = 0 remain tightly bound and centred, the average electron—proton displaceéreintg
considerably smaller thary. For the hydrogen-like statas> 1, however,x is close torc
at anyk.

According to the second-order perturbation approximation at siialthe absolute
expectation value of the velocity= dE,/dK in a bound statéx) equalsk /M , where

nsy?

ML is the effective ‘transverse’ mass (Vincke and Baye 1988, Pavlov a#stdvbs 1993).
ML always exceedsy, and it is greater the stronger the field and the higher the considered
atomic level.

The largerK, the greater is the distortion of the wavefunction towards caused
by the motion-induced electric field in the co-moving reference frame. The perturbation
approximation becomes increasingly inaccurate, until near some critical Kglaéransition
to the decentred state occurs, and the character of the motion totally changes. With further
increasingk , the transverse velocity decreases and tends to zero, while the electron—proton
separation increases and tends-do Thus, for the decentred states, the pseudomomentum
characterizes electron—proton separation rather than velocity.

The shifted {{ = 1) adiabatic approximation becomes fairly goodkat> K.. At very
large K the longitudinal functions become oscillator-like, corresponding to a wide, shallow
parabolic potential well of a deptty ¢?/r. (Burkovaet al 1976). For a fixed, this limit
is reached ak > (v + %)2]’_1/613, whereag is the Bohr radius. Still at arbitrarily larg&
there remain an infinite number of bound states with high values whose longitudinal
wavefunctions are goverened by the Coulomb tail rather than by the parabolic core of the
effective one-dimentional potential (paper ).

The decentred states of the atommt> K. ~ 10° au have relatively low binding
energies and large quantum-mechanical sizes,K /y au; therefore they are expected to
be destroyed by collisions with surrounding particles in the laboratory and in the white-
dwarf atmospheres. In neutron-star atmospheres at10°, however, the decentred states
may be significantly populated (paper Il). This necessitates inclusion of the entire range of
K below and aboveX. in the consideration.

3. Binding energies

3.1. Dependence of the energies on the pseudomomentum at selected field strengths

We have calculated binding energies of the hydrogen atom moving across the strong
magnetic field aty = 300, 600, 1000, 2000, 3000 and 10000 for several lowest tightly
bound and hydrogen-like states, using the technique described in paper I. At each value of
y and for each state, the calculations have been perform&d-at0 and at about 50-100
values ofK from K < 10 to K > 10* au, approximately equidistant in &g but with
additional points near avoided crossings. The calculated energies have an accuracy of 3-5
digits.

In applications, however, one usually has to deal with a distribution of atoms over a
more or less broad band of values of the pseudomomedituend calculate the observable
guantities by averaging ovek. This makes it highly desirable to have an analytical
approximation of thek-dependence of the energids(K). Lai and Salpeter (1995) were
the first to present an analytical fit #(K), which was rather accurate for the ground state
at K < K. but could not be applied to excited or decentred states.
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We describe the longitudinal energy (5) by the formula

EY (K) E2 (K)
I _ nsv nsv
Ensn O = K K e T 14 (KofK)Ye ©

The two-term structure of (6) is dictated by the necessity to describe the two physically
distinct regions ok below and above&.. The parametex has the meaning of the width of
the transition region neak in logarithmic scale of pseudomomenta. As noted in paper I,
for the tightly bound state&_ is close to(2muE©)%2, whereE© = —EJ,,(0). We write
Kc = qo(2myE)Y2 and treatg, as a fitting parameter.

Intricate structure of the region of avoided crossings (see Vietké1992) complicates
its accurate analytical description. We have chosen to keep our formulae simple at the cost
of decreasing accuracy near these crossings.

For the tightly bound states, we parametrize the functiBfi$(K) as follows:

K2
EQR(K) = EQ) — , @
0s0 0s0 2meﬁ + qlKZ/Eé%
EZy(K) = 2[r2 + 3% + gor,] /2 Ryd, 8)

wherer, = r¢/ag = K/(y au), g1 and g, are dimensionless fitting parameters, amgk
is the effective mass which is close to (but not necessarily coincident with) the transverse
effective mass\Z;. obtained by the perturbation technique.

In the considered range ¢f, the parameteg; can be approximated as

_ Ig(y /300 if s =0,
' os otherwise.

Optimal values of the other parameters are listed in table 1. The last column presents the
root-mean-square (rms) differeneg between the computed and fitted energies. Maxmum
errors of the fit £ 3oz) occur near the avoided crossings.

Binding energies of the hydrogen-like states are approximated by the same formula (6)
but with slightly different expressions fat® and E@. For these states/.  exceedsny
by orders of magnitude and the perturbation method fails even at small valée$Rs#Hviov
and Mesaros 1993), which renders the notion of transverse mass practically useless for
the fitting. Thus we considen.y as effectively infinite and puty, = EL (v > 1),
Furthermore, the transition region is not well defined, therefd¢eand « lose their clear
meaning and become mere fitting parameters.

The functionE® (K) that describes the longitudinal energy at laigés now
Eg,(K) = {2 Ry [r2 + v + Drd? + gor.] > + 1/ Eg} ™ ©)

wherer, and E© have the same meaning as before. The first and second terms in the
square brackets ensure the correct asymptotic behaviour (paper I). In this case,

2 -1 (oddv)
v2 + 2"21g(y /300 (evenv).

Optimal values of the parametejs and« are listed in table 2. As well as in table 1, the
last column presents rms errors which are several times smaller than the maximum errors
near anticrossings.

In both tables 1 and 2, only truly bound (not autoionizing) states are considered. For
example, all states with > 0, v > 0 belong to continuum at > 673, therefore table 2
does not contain entries for themjat= 1000 and higher.

q2 =
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Table 1. Parameters of the analytical approximation (6)—(8) for the energies of tightly bound

states|0s0).
sy E© (Ryd) Ig(meft/mn)  qo o q2 o (Ryd)
0 300 10.722 0.009 0.859 0.001 0.102 0.028
600 13.210 0.042 0.811 0.107 0.157 0.040
1000 15.325 0.072 0.823 0.117 0.189 0.025
2000 18.610 0.141 0.850 0.178 0.233 0.018
3000 20.770 0.175 0.873 0.191 0.244 0.017
10000 28.286 0.319 1.019 0.173 0.275 0.027
1 300 7.669 0.161 0.963 0.132 0.115 0.026
600 9.607 0.269 1.060 0.093 0.160 0.021
1000 11.277 0.369 1.147 0.060 0.176 0.024
2000 13.904 0.578 1.195 0.122 0.215 0.016
3000 15.649 0.701 1.202 0.147 0.235 0.014
10000 21.830 0.944 1.337 0.298 0.240 0.033
2 300 6.450 0.304 1.184 0.030 0.120 0.017
600 8.142 0.497 1.197 0.081 0.181 0.014
1000 9.610 0.643 1.262 0.074 0.195 0.014
2000 11.937 0.931 1.291 0.127 0.230 0.014
3000 13.493 1.093 1.320 0.153 0.240 0.022
3 300 5.734 0.466 1.263 0.039 0.122 0.015
600 7.274 0.701 1.273 0.082 0.183 0.012
1000 8.617 0.897 1.347 0.090 0.204 0.018
2000 10.755 1.252 1.403 0.131 0.232 0.019
3000 12.191 1.451 1.457 0.154 0.240 0.026
4 300 5.243 0.616 1.330 0.050 0.128 0.013
600 6.676 0.892 1.342 0.095 0.194 0.011
1000 7.929 1.124 1.437 0.096 0.211 0.017
2000 9.933 1.555 1.544 0.114 0.229 0.016
5 300 4.877 0.755 1.391 0.058 0.128 0.012
600 6.227 1.086 1.393 0.107 0.199 0.012
1000 7.413 1.354 1.545 0.130 0.229 0.010
6 300 4.589 0.888 1.448 0.062 0.123 0.013
600 5.874 1.281 1.441 0.121 0.207 0.013
1000 7.004 1.668 1.587 0.107 0.210 0.018
7 300 4.355 1.021 1.504 0.070 0.132 0.013
600 5.585 1.480 1.473 0.139 0.213 0.014

3.2. Two-dimensional approximations

Equations (6)—(9) help us to derive approximations of the binding energies as functions of
two continuous arguments and K. For this purpose, we replace the numerical parameters
listed in tables 1 and 2 by analytical functions;af

One of these parameters—the longitudinal energy of the atom atF¥@st-has an
independent significance. For this reason, we have constructed an accurafeititothe
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Table 2. Parameters of the analytical approximation (6) and (9) for the energies of hydrogen-like
states|Osv), v > 1.

sy Eg, (Ryd) o o ox (Ryd)
0 1 300 0.9643 1.751 0.7081 0.0013
600 0.9781 3.019 0.7441 0.0013
1000 0.9850 4595 0.7604 0.0018
2000 0.9912 8.467 0.7977 0.0017
3000 0.9936 12.43 0.8095 0.0012
10000 0.9976 39.65 0.8052 0.0023
0 2 300 0.5522 1.064 0.6186 0.0006
600 0.5755 1.463 0.6252 0.0005
1000 0.5917 1.885 0.6322 0.0018
2000 0.6125 2.632 0.6255 0.0007
3000 0.6240 3.143 0.6406 0.0037
10000 0.6554 4810 0.6573 0.0022
0 3 300 0.2456 5.608 0.8501 0.0005
600 0.2473 10.68 0.8495 0.0013
1000 0.2482 16.67 0.8617 0.0003
2000 0.2489 31.35 0.8940 0.0002
3000 0.2492 45.96 0.8966 0.0002
10000 0.2498 150.1 0.8956 0.0003
0 4 300 0.1814 2.145 0.7140 0.0025
600 0.1858 2.868 0.6699 0.0003
1000 0.1887 3.566 0.6609 0.0002
2000 0.1924 4,963 0.6165 0.0002
3000 0.1945 5908 0.5970 0.0003
10000 0.1999 8.965 0.5675 0.0006

0 5 300 0.10982 10.05 0.9245 0.00014
600 0.11032 18.58 0.9422 0.00014

1000 0.11057 29.87 0.9404 0.00010

2000 0.11079 56.85 0.9630 0.00009

3000 0.11088 83.66 0.9619 0.00009

10000 0.11104 273.3 0.9745 0.00006

0 6 300 0.08920 2435 0.8688 0.00054
600 0.09068 4.328 0.7156 0.00016

1000 0.09167 5.237 0.7205 0.00018

2000 0.09294 7.419 0.6593 0.00010

3000 0.09362 8.825 0.6237 0.00016

10000 0.09542 13.43 0.5906 0.00026

1 1 300 0.9407 2109 0.6794 0.0010

600 0.9640 3,563 0.7029 0.0024
1 2 300 0.5138 1930 0.6417 0.0038
2 1 300 0.9223 2421 0.6553 0.0014

widest possible range of values. For the tightly bound states, we have

Ego(y)/Ryd = In@xpl(L + 5) 2] + paln(L + p2y/7)1%) + palin(L + pay ). (10)
The parameterg;—ps depend ors; they are presented in table 3. This fit is accurate to
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Table 3. Parameters of the analytical approximation (10) for the energies of tightly bound states
|0s0) at 107! < y < 10%.

©

pr1 p2 2] pa ps

15.55 0.378 2.727 0.3034 0.4380
0.5332 2.100 3.277 0.3092 0.3784
0.1707 4150 3.838 0.2945 0.3472
0.07924 6.110 4.906 0.2748 0.3157
0.04696 7.640 5.787 0.2579 0.2977
0.03075 8.642 6.669 0.2431 0.2843
0.02142 9.286 7.421 0.2312 0.2750
0.01589 9.376 8.087 0.2209 0.2682

~NOoO o WNPEFO

Table 4. Parameters of the analytical approximations (11)—(13) for the energies of hydrogen-like
states|00v) at 1< y < 10%.

v 1 2 3 4 5 6

a, 0.785 0578 0901 0.631 0.970 0.660
b, 1724 0.765 1.847 0.717 1.866 0.693

within 0.1-1% aty = 10~1-10* and it also provides the correct limits pt— O.
For the hydrogen-like states, we use the asymptotic result (Haines and Roberts 1969)

o _ LRyd where | 1= D72 8~ y~t  (oddv) 11)
" (n+6)? n=v/2, §~(ny)* (evenv).
We have obtained the following fits to the quantum defector odd v,
8(y) = (a, +b,/y +0.077)7 1, (12)
wherea, ~ 1 andb, ~ 2; and for even,
5(y) = [av + 1.28In(L + by Y32, (13)

where a, ~ % and b, ~ % Accurate values of;, and b, are given in table 4. At
1<y <104 rms errors of (12) lie within 3« 1074, and those of (13) within 1.

The parametersi, @ andgo in (6)—(9) that determin& -dependences of the energies
can also be replaced by analytical functiongyofLet us start with the tightly bound states
(v = 0). For the effective mass, we have

meft(y) = mu[Ll + (v /v0)], (14)

where the power indexy and the valuey (roughly corresponding to the onset of strong
coupling between internal and centre-of-mass motions of the centred atom) depend on the
guantum numbes and are given by

co = 0.9374 0.038*°8 and Yo = 61501 + 0.038%%?)[1 + 7.87s%2] 1.
For the critical pseudomomentum, we write
qo = Ko/vV2myE©® = c1+In(1+y/y1). (15)

The parameters:; and y; take on the values; = 0.81,1.09,1.18 1.24 andy; =
(8.0,3.25,2.22,1.25 x 10* for s = 0,1, 2, 3, respectively. Fos > 4, we putc; =
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lg K (a.u.) lg K (a.u.)

Figure 1. Energy spectrum of the hydrogen atom moving across a strong magnetic field. Upper
panels: tightly-bound states & 0); lower panels: hydrogen-like states of the manifoleg 0.
Numerical values @) are compared with the analytical approximations of section 3.2 (——)
and of Lai and Salpeter (1995) (— — —, upper panels). Triangig¢snark the limit of validity

of the perturbation formalism according to equation (3.8) of Lai and Salpeter; large ci@les (
point the present analytical approximation for the critical pseudomomertgm

0.93 + 0.08 and y; = 6500. The remaining parameters can be replaced by simple
expressionsy = 0.053In(y/150) andg, = 0.158[In((1 + 0.1s)y /215)]%/°.

Now let us turn to the hydrogen-like states. For odd states, we have, approximately,
g0 = (W4 /170%° and @« = 0.66 + v/20, whereas for even hydrogen-like states
go = v+/y /1200 andx = 0.66.

These approximations are not so accurate as those provided by tables 1 and 2, but their
advantage is that they may be used at arbitrarin the range considered. In figure 1
they are compared with our numerical results and with the fitting formulae of Lai and
Salpeter (1995). The figure demonstrates that these approximations are validkaframy
0 to infinity. Noticeable discrepancies between our fitted and calculated data occur only in
narrow ranges oK near anticrossings.

3.3. The largest transverse velocity

As an example of application of the above formulae for binding energies, let us estimate the
maximum velocity of the atomymax = max|dE/dK|. It can be alternatively interpreted

as the maximum transverse electric fi€lg,y, = vmaxB/c that could be applied to an atom

at rest. A stronger electric fielfl > £,y forces the atoms to move with velocities around
the drift velocity of free charges in crossed fieldsyix = c£ x B/B?, provided that

£ < & = B = 137036y au (in conventional unitss, = 2.998 x 10°[B/G] V m~1). Still

higher electric field€ > &., cannot be counterbalanced by motion, hence it causes Stark
ionization.



58 A'Y Potekhin

Table 5. The largest transverse velocities (in au) in the lowest st@d3: numerical values
vmax compared with the present analytical approximatigaxappr and with the approximation
vmaxLs Of Lai and Salpeter (1995).

s 0 0 0 0 1 2 3
y 300 1000 3000 10000 3000 3000 3000
Umax 0.0588 0.0479 0.0372 0.0253 0.0240 0.0198 0.0173

Umaxappr 0.0622  0.0467 0.0367 0.0279 0.0232 0.0187 0.0154
UmaxLS 0.0850 0.0637 0.0548 0.0585 0.0520 0.0571 0.0628

A numerical evaluation ofna requires multiple calculation of derivativés:, /0K in
the most complicated regioR ~ K.. Thus the analytical approximations can be most
helpful here. A reasonable approximation is simphxappr = 9| E|/0K at K = K., where
E is given by (6) anK by (15). Table 5 presenighaxapprobtained using this approximation
for the lowest tightly bound states along withax1 s given by equation (3.30) of Lai and
Salpeter (1995) and withnax evaluated numerically. The values listed in table (in atomic
units of velocity, 1 au= 2188 km s') can be translated into those of the critical electric
field, Emov = yUmadau] x (5.14 x 1011 V m=1).

4. Geometrical characteristics and radiative transitions

4.1. Atomic sizes and dipole moments

Geometrical characteristics of an atom play an important role in distribution of atoms over
guantum states in a plasma and in their contribution to the plasma absorption coefficients,
since a ‘size’ of an atom may be used to approximately evaluate effects of destruction
of atoms caused by random charge distribution in the plasma (e.g. Potekhin 1996). The
K-dependence of rms sizes is complicated and can be non-monotonous near anticrossings.
However, the sizes usually need not be known with high precision, that relieves the problem
of fitting. The accuracy level of the approximations presented in this section is typically
several percent.

At K = 0, the atom is axially symmetric, and its rms sizes along the Cartesian
coordinates can be approximated/as= l,o ~ ag+/(s + 1)/ and

Lo~ {1/v2+1/In[y/(L+ s)]}(Ryd/E®)2ag (v =0 (16)
Lo~ (1.6 Ryd/E@)ag (v =1). (17)

Let us consider an atom moving aloBy. Both transverse sizes of the electron ‘cloud’
remain approximately independent &f. I, ~ [, ~ l,,. However, the atom acquires a
constant dipole momemnt = e(r, —r,) proportional to the mean proton—electron separation
X = |[{r.—7p)|. This separation is always smaller thanand it approaches at K > K.
With an accuracy of up to 10%, &t > 300,

X/re~1—[1400152V1+s(EQ) ™1+ (K/K)Y*]™t
—[1 4+ 0.004y2 (E@(K) ™Y1 + (K¢/K)Y*] 72, (18)

whereE@, E@ K. anda are defined above.
The size of the electron cloud along the field is also affected by the motion. It can be
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Figure 2. Comparison of calculated geometrical sizes of the at@® With the analytical
approximations of section 4.1 (—).

described by the formulae
[1+ (1 — mu/men) (K /Kc)?]Y? L2

1+ (K/Ko)Ye 1+ (Ke/K)Ye
I = 5%+ 1Y w>1). (20)
Here,l o is the value atk = 0 given by (16), (17), and

L =1lg V=0 (19)

Z

Lo = v+ 3[r2+ 4.3+ 1v?)rAY*

has the correct asymptotics Bt— oo (paper ).

In figure 2 the average size of the atakk ) = [*+12+12+12]"/?, expressed through
the above formulae, is compared with values calculated numerically. On the left panel (at
y = 600), the strong deviations of the numerical values from the fit for the q@@8sand
|011) at K ~ 107 au are caused by their anticrossing, which occurs shortly before the level
(011 enters continuum. Ay = 2000 (right panel), this level belongs to the continuum at
arbitrarily smallK, so it does not (anti)cross truly bound levels.

4.2. Oscillator strengths

In this section we consider those oscillator strengththat dominate photoabsorption of
polarized radiation by ground-state hydrogen atoms at largéhe polarization is assumed
circular (right, for which we will use superscript-', or left, ‘—") or linear, longitudinal
(“II") with respect to the static magnetic field.

At K = 0, the left-polarized radiation cannot excite the ground-state agom=¢ 0),
while right and longitudinally polarized radiation is absorbed mainly via transitions to the
states|010 and |001), respectively. The corresponding oscillator strengths have been
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computed and tabulated by Forsétial (1984). With an accuracy of 1-2%, atQy < 10%,
they are reproduced by a single five-parameter formula

0.584y 1+ ugzy

L+ uy2) 14 uay"s

For f,,(0), the parameteres; take on the values; = 12, u; = 1.43, u3 = 9.8 x 107>,
us = 1.585 andus = 0.713. For fJ,(0), we haveu; = 2.64, uz = 1.076,uz = 6 x 10°°,
ugs = 0.247 andu5 = 0.381.

For the moving atom, in the restricted range 309 < 10%, we put
1—a(K/Ke)" 2(me/mp)
14+ (K/Ko)Ve 14 (Ke/K)YVe'

with @ = 1.28—0.267 In(1+4 /240, b = 1+ 3/[1+In*(1+y/90)], &’ = 0.012[1+In*(1+
y/90)] and

(21)

f’flw(o) - (1

fohioK) = fo0(0) (22)

exp[—(b'K/Kc) 7]
1+05/K¢/K

with @’ = 0.877In(1310Q'y), b’ = 0.89 — y/17000 and8 = 0.61(1 + 2410/y)%?. The
second parts of (22) and (23) ensure the correct |&denits (2me/mp and 1 respectively,
cf paper I).

The radiative transitions forbidden for the atom at rest because of the conservation of
the angular-momentum projection become allowed for the moving atom. In particular, the
moving ground-state atom can absorb left-polarized radiaton. Oscillator strengths of such
transitions are significant only & of the order ofK. ~ 10° au. Therefore we derive for
them fitting formulae accurate te 10% in this range ok and do not attempt to fit the
complicated behaviour they show outside this range, where they are orders of magnitude
smaller (paper 1).

The transition to a stat@®s0) presents the dominating absorption channel for circular
polarization in a spectral ranggl, — E¢)_; o < hw < Ego— Eg (Wherehw is a photon
energy). For the right polarization, we put

0.012K /K> (1 — K/K¢)

fo01(K) = fao1(0) expl—(a'K /Ko)?] + (23)

T (K) = atK < K¢, s > 2, 24
foo®) = T + (,/33002) = Red (24)
and zero atk > K¢; for the left polarization,
_ 1.3 x 104K /K)2s+D
firo(K) = /e (s > 1). (25)

2[1+ (K/Ko)%+D]

Although approximations (22)—(25) are rather crude, particularly owing to the anticrossings,
their accuracy may still be sufficient for astrophysical applications, as will be demonstrated
in the next section.

5. Spectral line shapes

As an application of the above fitting formulae, let us consider bound—bound absorption
spectrum of hydrogen under the conditions typical for neutron-star atmospheres (Eallov
1995): densityp > 102 g cnv 3, temperaturel’ ~ 10°-10° K and magnetic field strength

B ~ 10*-10% G. Such absorption spectra have been studied in paper Il. Neglecting the
Doppler and collisional broadening but taking into account the most important, magnetic
broadening, one obtains an average partial cross section of an atom with respect to absorption
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of polarized radiation with frequenay via some specific transitiopr) — |«’) as the sum
o(w) =), 0;(w) over the rootK; (w) of the equationt’(K) — E(K) = hw, whereE’(K)
(E(K)) is the energy of the final (initial) state of the atom, and

o (w) _ C;l 47T3€2

Ki|dK; /dow|w'(K;) expl-E(K;)/ ksT]f (K;). (26)

meC

Here, f(K) is the oscillator strength for the given transition and polarizatignjs the
Boltzmann constant,

C,=2m /w Kw(K)exp[-E(K)/ksgT]dK (27)
0

is a normalization constant and'(K) (w(K)) is the occupation probability of the final
(initial) atomic state in a plasma with a number density of electignsThese occupation
probabilities can be estimated as~ exp[—(4r/3)ne(41)%], where! is the rms radius of
the atom. This expression is pertinent to the calculation of the bound—bound absorption
considered here. To calculate the thermodynamic properties of the plasma, however, one
should use, instead of these ‘optical’ occupation probabilities, ‘thermodynamical’ ones,
which are generally larger (Potekhin 1996).

In order to take into account induced emissiof(w) should be multiplied by
(1 — e"@/ksTy  The collisional broadening can be taken into account by convolution of
oi (w) with the Lorentzian profile characterized by the widttK; (w)) (paper Il). Since this
type of broadening has only marginal significance compared with the magnetic broadening
in the neutron-star atmospheres, we employ a simple order-of-magnitude estimate:

I'(K) ~ Toneal (ks T /Ryd)¥/6(1 4 2r5/5), (28)

whereT'y &~ 15 au for transitions to the stat801) (that mainly determine absorption of
radiation polarized longitudinally) antly ~ (68/y) au for transitions to the stat®10
(responsible for the main absorption peak of circular polarization).

Some of the typical absorption profiles obtained numerically in paper Il are represented
by full lines in figure 3. The spectral range is shown that is relevant to interpretation
of spectral observations of neutron stars with the x-ray telescope on-board ROSAT satellite
(e.g. Pavlowt al 1995). Approximate profiles, obtained using the analytical approximations
of section 3.2 forE(K), the formulae of section 4 fdK) and f(K) and the estimate (28)
for I'(K), are shown in figure 3 by broken curves. One can see that they correctly reproduce
the gross features of the spectral shapes, thus the proposed approximations are suitable for
using them in theoretical models of neutron-star atmospheres compatible with contemporary
observational data. The figure demonstrates also the importance of the decentred states: for
example, the absorption of longitudinally polarized radiatiohat< 100 eV is produced
solely by the states of motion witk > K.

In reality, observed spectra are influenced not only by the bound-bound photoabsorption
shown in figure 3 but also by bound-free transitions. For moving atoms, bound—free
cross sections were calculated by Potekhin and Pavlov (1997). Under conditions typical of
atmospheres of cooling neutron stars, maximum bound—free photoabsorption turns out to be
of the same order of magnitude as the bound-bound one, but it is shifted to higher-photon
energies. In the spectral range shown in figure 3, the bound—free transitions are generally
less important.
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Figure 3. Comparison of numerically calculated (——) and approximate (— — —) spectral shapes
for bound—-bound absorption of right-, left (—) and longitudinally ) polarized radiation by
hydrogen atoms in thermal equilibrium with plasma under the conditions typical for atmospheres
of magnetic neutron stargg? = 1 Ryd (T = 1.58 x 10° K), p = 0.01 g cn3, andy = 10°

(B =2.35x 10*2 G).

6. Conclusions

We have obtained analytical approximations of binding energies, geometrical sizes and main
oscillator strengths of radiative transitions of the hydrogen atom moving across a strong
magnetic field. These approximations can be also applied to the hydrogen atom in crossed
electric and magnetic fields, since the latter problem reduces to the former one with the effec-
tive pseudomomenturk = myc&/&,, or equivalentlyk (au) = 8.4(£/V m™1)(B/G)~ L.

Binding energies are the most important quantities in many applications and for that
reason we have presented not only fitting formulae depending analytically and K
(section 3.2), but also considerably more accuratdependences at six selected values of
y (section 3.1). Atomic sizes (section 4.1) play an important role in the distribution of
atoms over quantum states in a plasma and in their contribution to the plasma absorption
coefficients. For example, the size of an atom may be used to evaluate effects of
‘unbinding’ of electrons caused by random charge distribution in the plasma. For non-
magnetized hydrogen plasmas, an approximate treatment of these effects was revised
recently (Potekhin 1996); for strong magnetic fields analogous work is under way. The
approximations of oscillator strengths (section 4.2), along with those of the energies and
sizes, facilitate calculations of absorption spectra of strongly magnetized, partially ionized
hydrogen plasmas. Eventually, the analytical estimateg -ofand K-dependences of
the binding energies, atomic sizes and transition rates will help to generalize previously
developed models of fully ionized atmospheres of magnetic neutron stars (Shieaabv
1992) to the more realistic case of partially ionized atmospheres.
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