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Abstract. Practical expressions are derived for evaluation of
electrical and thermal conductivities and thermopower of degen-
erate electrons in the outer envelopes of neutron stars with mag-
netic fields. All tensor components of the kinetic coefficients are
calculated (those related to conduction along and across mag-
netic field and to the Hall currents). The kinetic coefficients
are presented as energy averages of expressions containing en-
ergy dependent effective relaxation times of two types, associ-
ated either with longitudinal or with transverse currents. The
calculation is based on the effective scattering potential pro-
posed in the previous paper, which describes the electron-ion
and electron-phonon scattering, taking into account correlation
effects in strongly coupled Coulomb liquid and multi-phonon
scattering in Coulomb crystal, respectively. Analytic fitting for-
mulae are devised for the effective relaxation times at arbitrary
field strength. Basing on these results, we calculate the trans-
port coefficients at various temperatures, densities, and mag-
netic fields pertinent to the neutron star envelopes.

Key words: stars: neutron – dense matter – conduction – mag-
netic fields

1. Introduction

Transport properties of neutron star envelopes determine many
aspects of neutron-star evolution. For instance, the thermal con-
ductivity in the outer envelope affects cooling of a neutron star
and its radiation spectra (e.g., Gudmundsson et al. 1983; Page
1997; Potekhin et al. 1997). The electrical conductivity is the
basic quantity for the studies of magnetic-field evolution (e.g.,
Muslimov & Page 1996; Urpin & Konenkov 1997; Konar &
Bhattacharya 1997), which in turn affects thermal evolution
(Miralles et al. 1998). The thermopower determines a variety of
thermomagnetic phenomena (Urpin & Yakovlev 1980b; Urpin
et al. 1986; Shibazaki et al. 1989; Yabe et al. 1991).

In the outer envelopes of neutron stars, the transport coeffi-
cients are mainly determined by the processes of electron scat-
tering off strongly correlated ions. General formalism for calcu-
lating kinetic properties of strongly coupled Coulomb plasmas
was developed by Hubbard & Lampe (1969) and Flowers & Itoh
(1976) (see references to earlier results therein). Yakovlev &
Urpin (1980) derived approximate analytic expressions, which

were confirmed later in more elaborate calculations by Raikh &
Yakovlev (1982), Itoh et al. (1983), and Nandkumar & Pethick
(1984). Itoh et al. (1984, 1993) improved the results of Yakovlev
& Urpin (1980) and Raikh & Yakovlev (1982) in the solid crust
by taking into account finite sizes of atomic nuclei (which may
be important in the inner crust) and the Debye–Waller factor
(which describes reduction of electron-phonon scattering rate
due to background lattice vibrations). The Debye–Waller fac-
tor proved to be important at temperatureT close to the melt-
ing temperature of a Coulomb crystal,Tm, or at sufficiently
high densities where zero-point lattice vibrations are strong. De-
tailed numerical and analytic calculations by Baiko & Yakovlev
(1995, 1996) were in reasonable agreement with Itoh et al.
(1984, 1993).

Magnetic fields in the neutron-star envelopes complicate
electron transport making it, particularly, anisotropic. The field
strengths of radio pulsars range fromB ∼ 108 G toB > 1013 G,
with typical valueB ∼ 1012 G (Taylor et al. 1993). Some X-ray
pulsars and soft gamma repeaters are probably magnetars – neu-
tron stars withB ∼ 1014 − 1015 G, as suggested by Thompson
& Duncan (1995) and supported by recent observations (Vasisht
& Gotthelf 1997; Gotthelf et al. 1999; Kouveliotou et al. 1998,
1999; Shitov 1999). Magnetic field strength expressed in the
relativistic units,

b = ~eB/(m2
ec

3) ≈ B/(4.414 × 1013 G), (1)

is greater than unity for magnetars, unlike for ordinary pulsars.
The magnetic field affects thermodynamic and kinetic prop-

erties of dense degenerate plasmas in different ways, depending
on density, temperature, and field strength (e.g., Yakovlev &
Kaminker 1994). In general, electron motion transverse to the
field is quantized into Landau orbitals. For sufficiently high tem-
perature, however, the field can be treated asnon-quantizing
(classical). The non-quantizing magnetic field does not affect
thermodynamic properties of matter, but hampers transverse
transport and causes the Hall currents. In aweakly quantiz-
ing field, where electrons populate several Landau levels, the
thermodynamic functions and kinetic coefficients oscillate with
increasing density around their classical values.Strongly quan-
tizingmagnetic field confines most electrons to the ground Lan-
dau level. In this case, thermodynamic and kinetic properties of
matter are very different from those in the classical regime.
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The problem was extensively studied since the end of 1960s
(Canuto & Ventura 1977 and references therein). Expressions
for the kinetic coefficients, based on the solution of the Boltz-
mann equation in the relaxation-time approximation and valid
for non-relativistic and relativistic electrons in the neutron
star envelopes with quantizing magnetic fields were obtained
by Kaminker & Yakovlev (1981) for transverse transport, by
Yakovlev (1984) for longitudinal transport and by Hernquist
(1984) for all cases. Potekhin (1996, hereafter Paper I) has
shown that the usual description of electron transport along
magnetic field with the Boltzmann equation yields almost the
same transport coefficients as a more general kinetic equation
for the electron spin density matrix. According to Paper I, the
Debye–Waller factor enhances the longitudinal electrical and
thermal conductivities nearTm much stronger if the magnetic
field is quantizing. Basing on these results, Potekhin & Yakovlev
(1996, hereafter Paper II) derived practical formulae for the lon-
gitudinal transport coefficients.

The studies cited above used the customary one-phonon ap-
proximation for the electron scattering in Coulomb solid. Re-
cently Baiko et al. (1998) have reconsidered electron transport in
non-magnetized plasmas by including multi-phonon processes,
which have proved to give a contribution of similar magnitude
(but opposite sign) as the Debye–Waller factor nearTm. Con-
cerning the Coulomb liquid, Baiko et al. (1998) have suggested
that incipient ordering of ions in the strong-coupling regime
affects electron scattering; they have proposed an approximate
treatment of this effect by modification of the static structure fac-
tor of ions. Both modifications (in the solid and liquid phases)
change the kinetic coefficients near the melting point and dras-
tically reduce their discontinuities atT = Tm. The new ion
structure factors have been employed by Potekhin et al. (1999,
hereafter Paper III) in calculations of electrical and thermal
conductivities in the outer envelopes of neutron stars without
magnetic fields. Numerical results in Paper III have been fitted
by analytic expressions, derived in the relaxation-time approx-
imation with the use of a specially adjusted effective scattering
potential.

In this paper, the effective potential obtained in Paper III is
applied to calculation of electron transport coefficients at arbi-
trary magnetic field strength, at temperaturesT ∼ (105–109) K
and densitiesρ ∼ (103–1011)g cm−3 typical for the outer en-
velopes of neutron stars. Energy-dependent effective relaxation
times, subject to thermal averaging, are obtained for electron
transport parallel and perpendicular to the quantizing magnetic
fields. In the case of non-quantizing fields, the usual semiclassi-
cal formulae (e.g., Urpin & Yakovlev 1980b) are utilized taking
into account the results of Paper III.

The paper is composed as follows. In Sect. 2, we describe
typical plasma parameters of interest. In Sect. 3, we express the
electron transport coefficients through an effective scattering
potential in the relaxation time approximation. In Sect. 4, we
present analytic fits to the effective energy-dependent relaxation
times related to longitudinal and transverse electron transport in
quantizing magnetic fields. Sect. 5 illustrates the main features
of the transport coefficients given by the present theory.

2. Magnetized degenerate matter

Consider a plasma composed of electrons (with charge−e)
and a single ion species with chargeZe and massmi ≈ Amu

(wheremu = 1.6605 × 10−24 g is the atomic mass unit, and
A is the atomic mass number). The complete pressure ion-
ization occurs at high temperatures or high densities (e.g., at
ρ >∼ 22 Z2Ag cm−3 in the non-magnetic case – see Potekhin et
al. 1997). Whenever this assumption is violated, we will employ
the mean-ion approximation, in which all ions in all ionization
stages are replaced by a single species with some effective values
of Z andA. Electrons are assumed to be degenerate and nearly
free. The degeneracy impliesT < TF ≡ (εF − mec

2)/kB,
whereεF is the Fermi energy (including the rest energy,mec

2)
andkB is the Boltzmann constant. Degenerate electrons can be
considered as nearly free, if their kinetic energy exceeds greatly
a typical energy of electron-ion Coulomb attraction; in a non-
magnetized plasma, this happens atρ � 10AZg cm−3 (e.g.,
Pethick & Ravenhall 1995).

A degenerate electron gas can be characterized by the Fermi
momentumpF or wave numberkF = pF/~. Without any mag-
netic field,kF = kF0 ≡ (3π2ne)

1/3, wherene ≈ ρZ/(muA)
is the electron number density. It is also convenient to introduce
the “relativity parameter” (e.g., Shapiro & Teukolsky 1983)

xr = ~kF0/mec ≈ 1.009 (ρ6Z/A)1/3, (2)

whereρ6 ≡ ρ/(106g cm−3).
Let the magnetic fieldB be directed along thez-axis. Then,

using the Landau gauge of the vector potential, the quantum
states of a free electron can be labelled by they-coordinate of
the electron guiding centre, the longitudinal electron momentum
pz, the Landau numbern, and a spin variables. The ground
Landau level (n = 0) is non-degenerate with respect to the spin
variable (s = −1, statistical weightg0 = 1) while the other
levels (n > 0) are doubly degenerate (s = ±1, gn = 2).

It is convenient to write (Paper II)

ne =

∫ ∞

mec2

NB(ε)

(

−∂f0

∂ε

)

dε, (3)

whereε is the electron energy,

f0(ε) = {exp [(ε − µ)/kBT ] + 1}−1 (4)

is the Fermi–Dirac distribution,µ is the chemical potential (ε
andµ includemec

2), and

NB(ε) =
meωc

2(π~)2

nmax
∑

n=0

gnpn(ε). (5)

Here and hereafter,ωc = eB/mec is the electron cyclotron
frequency,pn(ε) is the value of|pz| for an electron on the Landau
level n, andnmax is the maximum Landau number for a given
energyε. Sinceε = (m2

ec
4 + c2p2

z + 2mec
2
~ωcn)1/2, we have

pn(ε) = [(ε/c)2 − (mec)
2 − 2me~ωcn]1/2 (6)

and obtainnmax as integer part of convenient (Paper I) dimen-
sionless energy variable

ν = p2
0(ε)/(2me~ωc). (7)
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At T � TF, the derivative(−∂f0/∂ε) can be replaced by
the delta functionδ(ε − εF); in this casene = NB(εF). If
nmax � 1, the sum in Eq. (5) can be approximated by an inte-
gral, which gives the classical (field-free) result,

N0(ε) = p3
0(ε)/(3π2

~
3). (8)

Electrostatic screening produced by electrons is character-
ized by the Thomas–Fermi wave numberkTF:

k2
TF = 4πe2 ∂ne

∂µ
= 4πe2

∫ ∞

mec2

∂NB(ε)

∂ε

(

−∂f0

∂ε

)

dε. (9)

The field can be considered as non-quantizing ifT � TB ,
where (Yakovlev & Kaminker 1994)

TB = ~ωg/kB ≈ 1.34 × 108(B12/γr) K, (10)

B12 = B/(1012 G), γr =
√

1 + x2
r , andωg = eBc/ε is the

electron gyrofrequency (forε = εF). In the non-quantizing
fields, TF = Tr (γr − 1) and (kTF/2kF0)

2 ≈ (αf/π) γr/xr,
whereTr ≡ mec

2/kB ≈ 5.93 × 109 K and αf = e2/~c ≈
1/137 is the fine-structure constant.

The opposite case of strongly quantizing field occurs atT �
TB andρ < ρB , where

ρB = AmunB/Z ≈ 7.045 × 103 (A/Z) B
3/2
12 g cm−3, (11)

nB = (π
√

2)−1 a−3
m , andam = (~c/eB)1/2 is the so called

magnetic quantum length. In this case,

kF = 2π2a2
m ne = (4/3)1/3(ρ/ρB)2/3 kF0. (12)

ThereforeTF is strongly reduced forρ � ρB .
The state of the one-component plasma (OCP) of ions de-

pends on the Coulomb parameter,

Γ =
(Ze)2

kBTai
≈ 22.75 Z2

T6

(ρ6

A

)1/3

, (13)

whereai = [3/(4πni)]
1/3 is the ion-sphere radius,ni = ne/Z

is the number density of ions, andT6 ≡ T/(106 K). In a weakly
coupled OCP,Γ � 1, ions form the Boltzmann gas whose
screening properties are characterized by the inverse Debye
screening length,

qD =
√

3Γ/ai. (14)

For Γ >∼ 1, the ions constitute a strongly coupled liquid. The
liquid freezes into a Coulomb crystal at someΓ = Γm. For clas-
sical ions (whose zero-point quantum vibrations are negligible),
Γm ≈ 175, whereas strong zero-point vibrations suppress the
freezing and increaseΓm (Nagara et al. 1987). The freezing is
completely suppressed in the so called quantum liquids, which
exist atxr >∼ 0.18AZ7/3, as can be estimated from numerical
simulations (Jones & Ceperley 1996). In general, the quantiza-
tion of ionic motion is significant atT � Tp, where

Tp = ~ωp/kB ≈ 7.832 × 106 (Z/A)
√

ρ6 K (15)

is the ion plasma temperature,ωp = (4πZ2e2ni/mi)
1/2 being

the ion plasma frequency. We do not consider the quantum ion
solids and liquids hereafter.

Fig. 1.Characteristic plasma domains on theρ−T plane for iron. Upper
panel: non-magnetic plasma; lower panel:B = 1012 G. Solid lines
showTF andTp vs. ρ; upper and lower dot-dashed lines correspond
to Γ = 1 andΓ = 175, respectively; short-dashed lines indicate the
domains of partial ionization. Dotted lines on the upper panel show
temperature profiles in the envelope of a “canonical” cooling neutron
star (see text) for two values of the effective surface temperature,2×105

and2×106 K. Long-dashed lines on the lower panel showTB andρB

and separate the regions of strong and weak magnetic quantization.

We neglect also effects of magnetic field on the OCP of
ions. This is justified if the ion cyclotron energy~ωci =
~ωc Zme/mi is small compared with eitherkBT [i.e., T6 �
0.0737 (Z/A) B12] or typical phonon energies in the OCP
(∼ ~ωp; i.e.,

√
ρ6 � 0.0094 B12).

The characteristicρ − T domains are shown in Fig. 1 for
iron plasma atB = 0 and1012 G. We have taken into account
partial ionization in the mean-ion approximation. Electrons are
degenerate belowTF; ions are classical aboveTp; thus, strictly
speaking, our consideration is valid in the stripe between the
solid lines. In practice it may be reasonably accurate outside this
stripe because it incorporates thermal averaging and because the
quantum effects are actually small as long asT >∼ 0.1 Tp.
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The short-dashed contours indicate the region of partial ion-
ization: the upper contour corresponds to the effective charge
Z = 20and the lower one toZ = 15. We have evaluatedZ in the
same manner as Potekhin et al. (1997), requiring the equation
of state (EOS) of a plasma composed of free electrons and ions
with the effective chargeZ to reproduce a “standard” EOS that
takes into account partial ionization. In the non-magnetic case,
the OPAL EOS (Rogers et al. 1996) has been adopted as such
a standard and, whenever necessary, interpolated as explained
in Potekhin et al. (1997). In the magnetic case, we have used
the finite-temperature Thomas–Fermi EOS by Thorolfsson et
al. (1998).

The dotted curves on the upper panel (marked “NS”) re-
produce the temperature profiles (Potekhin et al. 1997)1 in the
envelope of a “canonical” neutron star of the mass1.4 M� and
radius 10 km, with an effective surface temperature2 × 105 K
(the lower curve) and2 × 106 K (the upper curve). In reality,
effective temperatures of the middle-aged isolated neutron stars
are believed to lie between these two extremes (e.g., Page 1998).

The dot-dashed lines on both panels correspond toΓ = 1
(gas/liquid smooth transition, upper lines) andΓ = 175 (liq-
uid/solid phase transition, lower lines).

Finally, the long-dashed lines on the lower panel indicate
threeρ − T regions, where the magnetic field is strongly quan-
tizing (to the left ofρB and considerably belowTB), classical
(much aboveTB), or weakly quantizing.

3. Transport coefficients

3.1. General relations

Consider electron electric and thermal currents induced in a
magnetized plasma under the effect of an electric fieldE and
weak gradients of chemical potential∇µ and temperature∇T .
These currents can be decomposed into conduction and mag-
netization components (e.g., Hernquist 1984). The latter ones
relate to surface effects and must be subtracted. Letje andjT

be the conduction components of electric and thermal current
densities. They can be written as (e.g., Landau & Lifshitz 1960)

je = σ · E∗ − α · ∇T, jT = α̃ · E∗ − κ̃ · ∇T, (16)

where E∗ = E + ∇µ/e is the electrochemical field. The
symbols σ, α, α̃, and κ̃ denote second-rank tensors (σ is
the electrical conductivity tensor) which reduce to scalars at
B = 0 only. From the Onsager symmetry relation one obtains:
α̃ij(B) = Tαji(−B) = Tαij(B).

Eqs. (16) can be rewritten as

E∗ = R · je − Q · ∇T, jT = −TQ · je − κ · ∇T, (17)

whereR = σ−1, Q = −R · α, andκ = κ̃ + Tα · Q are
the specific resistance, thermopower, and thermal conductivity
tensors, respectively (hereQ is defined as in Paper II; an opposite
sign has been adopted by Hernquist 1984).

1 We have recalculated the profiles using the updated non-magnetic
conductivities (Paper III), but an effect of the update turned out to be
negligible.

The components ofσ, α, andκ̃ can be expressed as




σij

αij

κ̃ij



=

∫





e2

e(µ − ε)/T
(µ − ε)2/T





NB(ε)

ε/c2
τij(ε)

(

−∂f0

∂ε

)

dε. (18)

The functionsτij(ε) play role of relaxation times determined
by electron scattering in the magnetic field. Owing to the sym-
metry properties of the tensorsσ, α, andκ̃, there are only three
different non-zero components:τzz related to longitudinal cur-
rents,τxx = τyy related to transverse currents, andτxy = −τyx

related to the Hall currents.

3.2. Non-quantizing magnetic field

If the quantizing nature of the magnetic field is neglected, then
(e.g., Urpin & Yakovlev 1980b)

τzz = τ0, τxx =
τ0

1 + (ωgτ0)2
, τyx =

ωgτ
2
0

1 + (ωgτ0)2
, (19)

whereτ0 is the non-magnetic relaxation time, equal to an inverse
effective collision frequency in this case.

In the outer envelopes of neutron stars, relaxation is mainly
determined by electron-ion scattering. We restrict ourselves to
consideration of this mechanism; possible inclusion of other
processes is discussed briefly in Sect. 6. In strongly coupled
Coulomb plasmas, the scattering is significantly affected by ion
correlations. In the liquid phase, an appropriate structure factor
of ions should be employed. In the solid phase, an adequate
description is provided by the formalism of electron scattering
off phonons with allowance for multi-phonon processes (see
Baiko et al. 1998 for discussion and references). In both the
liquid and solid regimes, it is convenient to write the squared
Fourier transform of the scattering potential as

|Uq|2 = (4πZe2)2|φq|2. (20)

Here,φq is the so called screening function (which would be
equal toq−2 for the Coulomb potential, were the screening
neglected). Then

τ0(ε) =
p2
0v0

4πniZ2e4Λ0(ε)
, (21)

wherev0 = p0c
2/ε is an electron velocity, andΛ0(ε) is the non-

magnetic Coulomb logarithm. In strongly coupled, degenerate
Coulomb plasmas, one has

Λ0 =

∫ 2p0/~

0

dq q3|φq|2S(q)|F (q)|2
[

1 −
(

~cq

2ε

)2
]

, (22)

whereF (q) is the form factor of ions, andS(q) is an effec-
tive structure factor that describes the effects of ion correlations
(Baiko et al. 1998).

In Paper III two forms of the effective Coulomb logarithm
(Λσ andΛκ) have been obtained from calculations ofσ andκ
atB = 0 beyond the relaxation-time approximation. The latter
approximation fails if inelastic processes with energy transfer
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>∼ kBT are important. According to Baiko & Yakovlev (1995)
and Paper III, this happens at low temperaturesT � Tp. In
this paper we will focus on the caseT >∼ Tp, in which we can
neglect the difference betweenΛκ andΛσ and adoptΛ0 = Λσ

for B = 0.
The transport coefficients due to electron-ion and electron-

phonon scatterings (in the Coulomb liquid and solid, respec-
tively) can be described with a reasonable accuracy (Paper III)
in a unified way under the conditions typical for the outer en-
velopes of neutron stars. For this purpose it is sufficient to re-
place|φq|2S(q)|F (q)|2 in Eq. (22) by the expression:

|φeff
q |2 =

1 − e−w(q)

(q2 + q2
s )2

G(tp, β), (23)

where

q2
s = (q2

i + k2
TF) e−β , (24)

q2
i = q2

D (1 + 0.06 Γ) e−
√

Γ, (25)

w(q) = u−2(q/qD)2 (1 + β/3), (26)

G(tp, β) =
1 + 0.122β2

(1 + t20/t2p)1/2
D(tp), t0 =

0.19

Z1/6
. (27)

In this casee−w(q) plays role of an effective Debye–Waller
factor at largeΓ and is negligible atΓ <∼ 1; u−2 = 13,
whereuj is (ω/ωp)j averaged over phonon frequenciesω in a
Coulomb crystal (e.g., Pollock & Hansen 1973);qs is an effec-
tive screening wave number; andG(tp, β) is a phenomenologi-
cal factor that describes reduction of the scattering rate, caused
by quantum effects attp ≡ T/Tp � 1. The factorsG, w,
andqs contain also phenomenological corrections to the Born
approximation expressed throughβ ≡ παfZpFc/εF. Finally,
the functionD(tp) = exp[−α0u−1 exp(−9.1tp)/4], where
α0 = 1.683

√

xr/(AZ)andu−1 = 2.8, is associated with quan-
tum corrections to the Debye–Waller factor (Baiko & Yakovlev
1995). Note that one can safely setG = 1 for T >∼ Tp and
Z <∼ 30.

3.3. Transport along quantizing magnetic field

Let us calculate the longitudinal electron transport coefficients
in the quantizing magnetic field using the relaxation time ap-
proximation and the effective scattering potential determined
by Eq. (23). According to Papers I and II, the longitudinal ki-
netic coefficients can be written in the form (18) by defining the
effective relaxation timeτzz = τ‖ as

NB(ε)c2

ε
τ‖(ε) =

(eB)2

4π3~Z2e4ni
Φ(ε). (28)

The dimensionless functionΦ(ε) is determined by a kinetic
equation for the electron spin density matrixρns1s2

(z, pz). It
has been shown in Paper I, however, that a good accuracy is
provided by a simpler kinetic equation for the density distri-
bution functionfns = ρnss in the “fixed spin” representation
(Yakovlev 1984).

In order to obtain the longitudinal transport coefficients, it
is sufficient to assume thatE∗ and∇T are collinear withB.
The electron distribution function can be sought in the form

fns = f0 + l sign(pz)
∂f0

∂ε

[

eE∗ +
ε − µ

kBT

∂T

∂z

]

ϕns(ε), (29)

wherel is an appropriate scale length, andϕ(ε) is a dimension-
less function to be determined from the kinetic equation. The
latter is reduced to an algebraic system (Yakovlev 1984):
∑

γn′s′

a
(γ)
ns→n′s′(ε) [ϕns(ε) − γϕn′s′(ε)] = 1. (30)

Here,a(γ)
ns→n′s′ is a dimensionless scattering rate of an elec-

tron from a state with quantum numbersn ands into a state
with quantum numbersn′ ands′, with changed (γ = −1) or
unchanged (γ = 1) direction of motion alongB. The summa-
tion is performed overn′ ≤ nmax(ε), γ = ±1, ands′ = ±1
for n′ ≥ 1 (but s′ = −1 if n′ = 0). Note that the terms with
n′ = n, s′ = s, andγ = +1 naturally vanish.

Since the scattering potential is written in the form (20),
it is convenient to choosel = mec

2
~ωc/(2πniZ

2e4). Then
(Yakovlev 1984)

Φ(ε) =
∑

ns

ϕns(ε) (31)

and2

a
(γ)
ns→n′s′(ε) = [4(ε̃ + 1)2p̃np̃n′ ]−1S

(γ)
nn′ss′(ε̃), (32)

whereε̃ = ε/mec
2, p̃n = pn/mec,

S
(γ)
nn′11 = [(ε̃ + 1)2 + γp̃np̃n′ ]2 Q1

+4b2nn′Q2 + 4b [(ε̃ + 1)2 + γp̃np̃n′ ]
√

nn′ Q3,

S
(γ)
nn′,1,−1 = 2b [n′p̃2

nQ1 + np̃2
n′ Q2] − 4bγ

√
nn′ p̃np̃n′ Q3,

andS
(γ)
nn′,−s,−s′ differ from S

(γ)
nn′ss′ by interchangingQ1 and

Q2. Here the functionsQi (Yakovlev 1984) are generalized to
arbitrary scattering potential:

Q1 =

∫ ∞

0

I2
n−1,n′−1(u) φ̃2(u) du, (33)

Q2 =

∫ ∞

0

I2
nn′(u) φ̃2(u) du, (34)

Q3 =

∫ ∞

0

Inn′(u)In−1,n′−1(u) φ̃2(u) du, (35)

where

Inn′(u) =

(

n′!

n!
un−n′

e−u

)1/2

Ln−n′

n′ (u) (36)

is a Laguerre function (Sokolov & Ternov 1968;Lm
n (u) are

the associated Laguerre polynomials – e.g., Abramowitz &
Stegun 1972),̃φ(u) = 2|φq|/a2

m, and (~q)2 is set equal to
(pn − γpn′)2 + 2(~/am)2u.

2 Eq. (32) reproduces Eq. (26) of Yakovlev (1984) corrected for a
misprint.
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Fig. 2.Calculated (symbols) and fitted (solid lines) effective longitudi-
nal Coulomb logarithmsΛ‖ vs. dimensionless electron energy variable
Eq. (7) for fully ionized iron (filled circles) and carbon (open circles) at
B = 1012 G and three values of temperature (lg T is given at the right
end of each bunch of curves). Dot-dashed and dashed curves represent
the field-free Coulomb logarithmsΛ0 for Fe and C from Paper III.

3.4. Transport perpendicular to quantizing magnetic field

Let us start with the case of large Hall parameter,τ0ωg � 1. In
this limit, as follows from Eq. (19),

τyx ≈ 1/ωg and τxx ≈ (ω2
gτ0)

−1, (37)

provided the magnetic field is non-quantizing. The case of quan-
tizing field was considered by Kaminker & Yakovlev (1981) and
Hernquist (1984). The expressions for the transport coefficients
derived by these authors can be written in the form (18) by
defining, in analogy with Eq. (37),

τyx = 1/ωg and τxx = (ω2
gτ⊥)−1, (38)

where

NB(ε)c2

ε

1

ω2
gτ⊥(ε)

=
Z2e4ni

2π~3ω2
c

Ψ(ε), (39)

Ψ(ε) =
∑

nn′γ

b

2p̃np̃n′

[

(ε̃2 + 1 + γp̃np̃n′)(Q⊥
1 + Q⊥

2 )

+4b
√

nn′ Q⊥
3

]

, (40)

and functionsQ⊥
i differ from Qi [Eqs. (33)–(35)] by an addi-

tional factoru in each integrand.
In weakly quantizing magnetic field,τ⊥(ε) oscillates around

τ0(ε); it can be replaced byτ0(ε) in the non-quantizing limit.
This allows us to interpolate between the regimes of large and
moderate-to-low Hall parameters using the formulae:

τxx =
τ⊥

1 + (ωgτ⊥)2
, τyx =

ωgτ
2
⊥

1 + (ωgτ⊥)2
. (41)

Fig. 3.Same as in Fig. 2 but forB = 1015 G and different set ofT .

Eqs. (41) relate the effective relaxation timesτxx and τyx to
the effective transverse electron collision frequencyτ−1

⊥ and
correctly reproduce the known limits (19) (non-quantizing field,
arbitrary Hall parameter) and (38) (arbitrary field, large Hall
parameter).

In addition, our interpolation (41) ofτxx eliminates the
well known divergency, that arises from direct substitution of
Eq. (39) in the integrand of Eq. (18) becauseΨ(ε) turns to infin-
ity at each Landau threshold as(ν −nmax)

−1. PreviouslyΨ(ε)
was truncated at some level, estimated by a semi-qualitative
analysis of physical processes that could, in principle, eliminate
the divergency, were they included into the theory (Kaminker &
Yakovlev 1981). One can show, however, that the derivation of
expressions for the transverse transport coefficients [equivalent
to our Eqs. (38)–(40)] implied thatωgτ⊥ � 1. By correcting
relations (38) in case whereωgτ⊥ is not very large, Eq. (41) en-
sures finiteness ofτxx, thus making a truncation unnecessary.

4. Fitting formulae for τ‖(ε) and τ⊥(ε)

Explicit expressions ofQi andQ⊥
i for the function|φeff

q |2 in
the form (23) are given in the Appendix. Using them, we have
performed extensive calculations ofτ‖ andτ⊥ from Eqs. (28),
(30)–(32) and (39). The key parameters of the function|φeff

q |,
which enters these expressions, – the Debye–Waller parameter
aDW = w(2kF0) ≈ u−2 (2kF0/qD)2 and the Coulomb screen-
ing parameteras = (qs/2kF0)

2, – as well as the magnetic field
parameterb, varied independently from10−4 to 102. For any
value ofb, the variableν [related toε via Eq. (7)] varied from 0 to
25, taking on 5–10 values over each interval(nmax, nmax + 1).

Calculation is quite simple as long asν < 1, the functions
Φ(ε) andΨ(ε) being given by Eqs. (A8)–(A10). Forν > 1, we
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Fig. 4. Longitudinal (Λ‖, filled circles) and transverse (Λ⊥, open cir-
cles) effective Coulomb logarithms in iron plasma forB = 1014 G
and two values ofT . The solid lines show the fit; the dot-dashed lines
showΛ0.

have fitted the results of our numerical calculations by analytic
formulae.

Let us define longitudinal and transverse effective Coulomb
logarithmsΛ‖,⊥(ε) through the relations

τ‖(ε) =
N0(ε)

NB(ε)

p2
0v0

4πniZ2e4Λ‖(ε)
, (42)

τ⊥(ε) =
NB(ε)

N0(ε)

p2
0v0

4πniZ2e4Λ⊥(ε)
. (43)

As seen from Eq. (21), the functionsΛ‖ andΛ⊥ turn into Λ0

if the magnetic field is non-quantizing. In the quantizing fields,
the ratiosΛ‖/Λ0 andΛ⊥/Λ0 are fitted by the expressions

Λ‖
Λ0

=







D

[

1 +

√
b

p̃0

(

A

x
− B

√
x + C

x − √
x

nmax

)

]−2

+L2x2

[

3x2 − 1

2nmax + 1.5x2/(1 + 2b)2
+ 0.07 +

E

5

]2






−1/2

, (44)

Λ⊥
Λ0

= 1 +
b

p̃2
0

Ã

x2

+(
√

b/p̃0)
[

(B̃ lnnmax) x−1 − (C̃ + D̃ lnnmax)
√

x
]

, (45)

wherex = p̃n/
√

b =
√

2(ν − nmax),

A =
30 − 15 E − (15 − 6 E) v2

0

30 − 10 E − (20 − 5 E) v2
0

,

B =
3

2
− E

2
+

1

4

v2
0

1 − 2v2
0/3

, C =
1 − E + 0.75 v2

0

1 + v2
0

,

Fig. 5. Longitudinal (‖) and transverse (⊥) electrical (σ) and thermal
(κ) conductivities in the outer neutron-star envelope composed of iron
for B = 1012 G and two values oflg T (marked near the curves): com-
parison of the new results (solid lines) with the classical approximation
[Eq. (19), dashed lines] and with the old results for the longitudinal
conductivities (dotted lines) from Paper II.

D = 1 + 0.06
L2

n2
max

, E =
1 − exp(−aDW)

aDW
;

Ã = 0.8(1 + L̃) + 0.2 L, B̃ = (0.68 − 1.3 Ẽ) L̃1/6,

C̃ = 1.42 − Ẽ + L̃1/2/3, D̃ =
(

0.52 − Ẽ
)

L̃1/4,

Ẽ = (10 + 5/b)−1, L = ln(1 + ã−1), L̃ = ãL,

ã =
[√

as + (2 + 0.5 aDW)−1
]2

.

The leading terms atx → 0 are proportional tox−1 in
Eq. (44) andx−2 in Eq. (45), reproducing the asymptotic be-
haviour of the functionsΦ andΨ. The accuracy of the fit was
checked forν −nmax ≥ 0.01, which is quite sufficient for most
applications. Eqs. (44) and (45) fit our numerical results with
a typical error of a few percent. A maximum error up to 40%
occurs only at some extreme values ofas, aDW, andν. In addi-
tion, we have compared the new fit (44) with the one in Paper II
(in the particular case ofaDW → ∞ which corresponds to the
screened Coulomb scattering potential considered in Paper II).
On average, the new fit turned out to be more accurate than the
old one.

Figs. 2–4 illustrate the accuracy of Eqs. (44) and (45) for
realistic parameters in the neutron-star envelopes. In Figs. 2 and
3, the filled and empty circles representΛ‖(ε) calculated from
Eqs. (28) and (42); in Fig. 4 we have additionally plottedΛ⊥(ε),
obtained using Eqs. (39) and (43). The parametersas andaDW

have been calculated for fully ionized iron or carbon plasmas
at variousT from 105 to 108 K and B from 1012 to 1015 G
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Fig. 6.Same as in Fig. 5 but forB = 1014 G andT = 108 K.

(indicated in the figures). At every point, the plasma density has
been determined from the conditionεF = ε(ν) using Eq. (7).
In all figures, the fits (44) or (45) are drawn by solid lines.
The dashed and dot-dashed lines represent the non-magnetic
Coulomb logarithmΛ0(ε) given in Paper III.

Since our fitting formulae depend analytically on the pa-
rameters of the effective screening function (23), they need not
be changed in case future refinement of the theory will cause
modification of these parameters.

5. Numerical results for transport coefficients

Figs. 5 and 6 show electrical and thermal conductivities cal-
culated with the effective relaxation timesτij(ε) given by
Eqs. (41)–(43) at variousρ, T , andB appropriate for outer en-
velopes of the neutron stars. The use of the analytic equations
(A8)–(A10) for ν < 1 and (44), (45) forν > 1 reduces nu-
merical calculation to one-dimensional integration in Eq. (18),
which has been performed using a fast algorithm described in
Sect. 5 of Paper II.

The density range in every figures allows to see the strongly
quantizing (below the first Landau threshold) and weakly quan-
tizing regimes. The non-quantizing (classical) results are plotted
by the dashed lines.

Fig. 5 shows the longitudinal and transverse conductivities
in a neutron star envelope composed of iron forB = 1012 G.
The quantum oscillations around the classical values are more
pronounced at lower temperatures. Fig. 6 illustrates the conduc-
tivities at stronger field,B = 1014 G, which may be relevant
to magnetars. The classical formulae correctly reproduce the
large-scale trend of the curves and the reduction of transverse
conductivities with respect to longitudinal ones. Nevertheless,
deviations caused by the quantum oscillations are quite promi-

Fig. 7. Longitudinal conductivities forZ = 6 and T = 106 K at
B = 1012 and 1013 G. As in Figs. 5 and 6, the solid, dotted, and
dashed lines show the new, old, and classical results, respectively.

nent, especially in the regime of strong quantization, where they
may reach orders of magnitude.

For comparison, we have plotted (by dotted lines) the lon-
gitudinal conductivities calculated using the formalism of Pa-
per II. The temperature values in Fig. 5 have been deliberately
chosen the same as in Fig. 5 of Paper II (106 and107 K). Note
that forT = 106 K, the plasma is entirely within the solid crust.
In this case, our old results agree nicely with the new ones. On
the contrary, forT = 107 K in Fig. 5, as well as forT = 108 K
in Fig. 6, the displayed density range extends into both the solid
crust and liquid ocean of the star. The new conductivities go
smoothly across the phase transition, whereas the old ones ex-
hibit large jumps and appear to be significantly overestimated
just behind the ocean/crust interface. This is caused by an over-
estimated effect of the Debye–Waller factor in Paper II, now
corrected by including multi-phonon processes.

Fig. 7 shows the longitudinal conductivities of carbon
plasma forB = 1012 and 1013 G, which may chance, e.g.,
in a neutron star with an accreted carbon shell. In this case, the
bottom of the ocean lies slightly aboveρ = 105g cm−3. Once
again, we observe significant discontinuities of the “old” con-
ductivities, which deviate from the new ones on both sides of
the interface. The difference in the liquid phase is attributed to
the modified ion structure factor used for obtaining|φeff

q |2 in
Paper III, instead of a simplified screened-Coulomb model in
the previous work.

In Fig. 8 we present the longitudinal and transverse com-
ponents of the thermopower tensor for the sets of parameters
used in Figs. 5, 6. The longitudinal thermopower from Paper II
is shown by the dotted lines. Unlike the conductivities, the lon-
gitudinal thermopower did not possess considerable breaks at
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Fig. 8. Longitudinal (solid lines) and transverse (dashed lines) ther-
mopower in units ofkB/e, for two sets of indicated parameters. For
comparison, the dotted lines show the results of Paper II. Vertical dot-
dashed lines indicate the liquid/solid phase transition.

the phase transitions in the old theory. Nevertheless, one can
observe that the “new” results differ from the “old” ones. As in
the previous figures, this difference is noticeable in the vicinity
of the freezing point.

In the previous figures we have presented the longitudi-
nal and transverse transport coefficients, which evince mag-
netic quantum oscillations around their classical values. The
off-diagonal (Hall) electrical and thermal conductivities do not
exhibit such oscillations and practically coincide with their non-
magnetic counterparts given by Eqs. (18) and (19). Unlike them,
the Hall component of the thermopower,Qyx, does oscillate, as
illustrated in Fig. 9 for iron plasma atB = 1012 G andT = 106,
107, and108 K. The oscillations are very sharp atT = 106 K,
but they are completely smeared out at the highest tempera-
ture,T = 108 K, which is close toTB in the present example.
The difference of vertical scales in Figs. 8 and 9 reflects that
Qyx is relatively small. Nevertheless, it may cause a variety of
thermomagnetic effects in neutron star envelopes (Urpin et al.
1986).

6. Conclusions

We have derived practical expressions for the electron trans-
port coefficients in degenerate (T <∼ TF) layers of neutron-star
envelopes with magnetic fields which may be quantizing. Gen-
erally, these expressions require energy integration, Eq. (18). In
the case of strongly degenerate electrons (T � TF) and not
too close to the Landau thresholds (ν − nmax >∼ kBT/~ωg),
even this numerical integration becomes unnecessary, and the
electrical conductivity readsσij ≈ (e2nec

2/εF) τij(εF), where
τij is provided by our analytic formulae, while the thermal

Fig. 9. Hall component of thermopower in units ofkB/e, for iron
plasma atB = 1012 G and three values of temperature.

conductivity is given by the Wiedemann–Franz law,κij ≈
(π2k2

BT/3e2) σij .
We have used an effective potential, which has been ob-

tained in Paper III assuming that the conductivities are deter-
mined by the electron scattering off ions (off phonons in the
crystalline phase). It is well known (e.g., Yakovlev & Urpin
1980) that this is the main mechanism regulating electron trans-
port at Tp <∼ T <∼ TF. Other contributing mechanisms are
the electron-electron scattering and scattering off lattice defects
and impurities in the crystal. Corrections due to the impurity
scattering can be introduced in a standard albeit approximate
way by summation of relevant partial collisional frequencies,
viz: τ−1

‖,⊥ = [τ ei
‖,⊥]−1 + [τ imp

‖,⊥ ]−1. In the case of charged im-
purities with charge numberZimp, occasionally embedded in a
Coulomb lattice, the effective scattering potential is again given
by Eqs. (20) and (23), by settingG = 1, e−w(q) = 0, andqi = 0
and replacingZ by |Z − Zimp| andni by nimp. Thenτ imp

‖,⊥ are
given by our formulae with an obvious modification of param-
eters.

We expect that our new formulae for the conductivities will
be useful, in particular, in calculations of neutron-star thermal
structure and evolution. It would be especially interesting to ap-
ply these results to investigating thermal structure of magnetars.
Up to now, a very simplified analytic model (Heyl & Hernquist
1998) has been used in this case, but the problem deserves a
more thorough study since it may provide a clue to the origin of
the anomalous X-ray pulsars (Heyl & Hernquist 1997). The for-
mulae presented here are almost as simple as those used by Heyl
& Hernquist (1998), but they are accurate over a considerably
broader range of plasma parameters.

The computer code that implements the formulae derived
in the present paper is freely available from the author by
electronic mail.
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Appendix: calculation of auxiliary functions

Let us adopt Eq. (23) and setG = 1 for simplicity. Then the
dimensionless functioñφ2(u) that enters Eqs. (33)–(35) can be
written as

φ̃2(u) =
1 − e−ζ(u+ξ)

(u + u0)2
, (A1)

whereζ = 2(amqD)−2u−2(1 + β/3), ξ = 1
2 (am/~)2(pn −

γpn′)2, u0 = ξ + ξs, andξs = 1
2 (amqs)

2. Let us also define

Q
(0)
jnn′m(ξ, ζ) =

∫ ∞

0

Inn′(u)In−j,n′−j(u)
e−ζ(u+ξ)

(u + ξ)m
du. (A2)

Then, forj = 0 or 1, we have

Q2+j = Q
(0)
jnn′2(u0, 0) − eζξs Q

(0)
jnn′2(u0, ζ), (A3)

Q⊥
2+j = Q

(0)
jnn′1(u0, 0) − u0 Q

(0)
jnn′2(u0, 0)

−eζξs

[

Q
(0)
jnn′1(u0, ζ) − u0Q

(0)
jnn′2(u0, ζ)

]

, (A4)

andQ1, Q
⊥
1 are obtained fromQ2, Q

⊥
2 by replacingn → n−1

andn′ → n′ − 1.
For small Landau numbers (n, n′ <∼ 10), one can calculate

Q
(0)
jnn′m(ξ, ζ) using an explicit expression of the Laguerre func-

tionsInn′(u) in Eq. (A2). SinceInn′(u) = (−1)n′−nIn′n(u),
we assumen′ ≥ n without any loss of generality. Then

In′n(u) = e−u/2u(n′−n)/2
n

∑

k=0

(−1)kcn′nkuk, (A5)

wherecn′nk =
√

n′!n!/[k!(n − k)!(n′ − n + k)!]. Forj = 0 or
1,

Q
(0)
jn′nm(ξ, ζ) =

2n−j
∑

l=0

(−1)l

min(n,l)
∑

k=max(0,l−n)

[

n − k√
nn′

]j

×cn′nkcn′,n,l−k(n′ − n + l)!Q
(0)
j,n′−n+l,0,m(ξ, ζ), (A6)

Q
(0)
j,n,0,1(ξ, ζ) = (1 + ζ)−neξEn+1(ξ + ζξ),

Q
(0)
j,n,0,2(ξ, ζ) = (1 + ζ)1−neξ[En(ξ + ζξ) − En+1(ξ + ζξ)];

an exponential integralEn(x) =
∫ ∞
1

t−ne−xtdt is easily cal-
culated (Abramowitz & Stegun 1972).

In case wherenorn′ is large, Eq. (A6) is impractical because
of approximate cancellations of positive and negative terms. In
this case, one can use the following representation3

Q
(0)
jn′nm(ξ, ζ) =

n−j
∑

k=0

[n! (n′)! (n − j)! (n′ − j)!]
1/2

k! (n − j − k)! (n′ − j − k)!

× 1

(m − 1)! (j + k)!

∫ ∞

ζ

x2k+j(x − ζ)m−1

(1 + x)n′+n−j+1
e−ξx dx. (A7)

Finally, let us consider an important particular case of
n = n′ = 0. For transport along and across magnetic field,

3 Eq. (A7) generalizes Eq. (B8) of Paper I to the case in whichζ and
(m − 1) may be non-zero simultaneously.

the effective inter-collision timesτ‖(ε) andτ⊥(ε) are related to
the functionsΦ(ε) andΨ(ε) by Eqs. (28) and (39), respectively.
From Eqs. (30)–(32) and (40), we obtain

Φ(ε) =
p̃2
0

2 Q‖(ξ)
, Ψ(ε) =

b

p̃2
0

[

ε̃2 Q⊥(ξ) + Q⊥(0)
]

, (A8)

where

Q‖(ξ) = u0
−1(1 − e−ζξ) − eu0 E1(u0)

+(1 + ζ) eu0+ζξs E1(u0 + ζu0), (A9)

Q⊥(ξ) = (1 + u0) eu0 E1(u0) − 1 + e−ζξ

−(1 + u0 + ζu0) eu0+ζξs E1(u0 + ζu0), (A10)

ξ = 2p̃2
0/b, and the functionE1 is readily given by polynomial

approximations (Abramowitz & Stegun 1972).
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