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Abstract. Practical expressions are derived for evaluation efere confirmed later in more elaborate calculations by Raikh &
electrical and thermal conductivities and thermopower of degerakovlev (1982), Itoh et all (1983), and Nandkumar & Pethick
erate electrons in the outer envelopes of neutron stars with m@d84). Itoh et al[(1984, 1993) improved the results of Yakovlev
netic fields. All tensor components of the kinetic coefficients ageUrpin (1980) and Raikh & Yakovlev (1982) in the solid crust
calculated (those related to conduction along and across miagtaking into account finite sizes of atomic nuclei (which may
netic field and to the Hall currents). The kinetic coefficientse important in the inner crust) and the Debye—Waller factor
are presented as energy averages of expressions containingvehnich describes reduction of electron-phonon scattering rate
ergy dependent effective relaxation times of two types, assodute to background lattice vibrations). The Debye—Waller fac-
ated either with longitudinal or with transverse currents. Ther proved to be important at temperatdreclose to the melt-
calculation is based on the effective scattering potential piag temperature of a Coulomb crystdl,,, or at sufficiently
posed in the previous paper, which describes the electron-figh densities where zero-point lattice vibrations are strong. De-
and electron-phonon scattering, taking into account correlati@miled numerical and analytic calculations by Baiko & Yakovlev
effects in strongly coupled Coulomb liquid and multi-phono(L995,/1996) were in reasonable agreement with Itoh et al.
scattering in Coulomb crystal, respectively. Analytic fitting for¢1984 [ 1993).
mulae are devised for the effective relaxation times at arbitrary Magnetic fields in the neutron-star envelopes complicate
field strength. Basing on these results, we calculate the traakctron transport making it, particularly, anisotropic. The field
port coefficients at various temperatures, densities, and magengths of radio pulsars range frén~ 10* GtoB > 1013 G,
netic fields pertinent to the neutron star envelopes. with typical valueB ~ 10'2? G (Taylor et al. 1993). Some X-ray
pulsars and soft gamma repeaters are probably magnetars — neu-
Key words: stars: neutron — dense matter — conduction — maigen stars withB ~ 104 — 10'® G, as suggested by Thompson
netic fields & Duncan|(1995) and supported by recent observations (Vasisht
& Gotthelf[I997; Gotthelf et al.”1999; Kouveliotou etal." 1998,
1999; Shitov 1999). Magnetic field strength expressed in the
relativistic units,

1. Introduction

Transport properties of neutron star envelopes determine mary heB/(m2c’) ~ B/(4.414 x 10" G), 1)
aspects of neutron-star evolution. For instance, the thermal con-
ductivity in the outer envelope affects cooling of a neutron stargreater than unity for magnetars, unlike for ordinary pulsars.
and its radiation spectra (e.g., Gudmundsson ét al.|1983; PageThe magnetic field affects thermodynamic and kinetic prop-
1997; Potekhin et al. 1997). The electrical conductivity is therties of dense degenerate plasmas in different ways, depending
basic quantity for the studies of magnetic-field evolution (e.gon density, temperature, and field strength (e.g., Yakovlev &
Muslimov & Page 1996; Urpin & Konenkdv 1997; Konar &Kaminker[1994). In general, electron motion transverse to the
Bhattacharya 1997), which in turn affects thermal evolutidield is quantized into Landau orbitals. For sufficiently high tem-
(Miralles et al 1998). The thermopower determines a variety pérature, however, the field can be treatechas-quantizing
thermomagnetic phenomena (Urpin & Yakoviev 1980b; Urpiftlassical). The non-quantizing magnetic field does not affect
et al. 1986; Shibazaki et &l. 1989; Yabe efal. 1991). thermodynamic properties of matter, but hampers transverse
In the outer envelopes of neutron stars, the transport coeffansport and causes the Hall currents. lweakly quantiz-
cients are mainly determined by the processes of electron saad-field, where electrons populate several Landau levels, the
tering off strongly correlated ions. General formalism for calcuhermodynamic functions and kinetic coefficients oscillate with
lating kinetic properties of strongly coupled Coulomb plasmascreasing density around their classical val&songly quan-
was developed by Hubbard & Lampe (1969) and Flowers & Italzingmagnetic field confines most electrons to the ground Lan-
(1976) (see references to earlier results therein). Yakovlevd&u level. In this case, thermodynamic and kinetic properties of
Urpin (1980) derived approximate analytic expressions, whichatter are very different from those in the classical regime.
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The problem was extensively studied since the end of 1960sMagnetized degenerate matter
(Canuto & Ventura 1977 and references therein). Expressiodagnsider a plasma composed of electrons (with charg
for the kinetic coefficients, based on the solution of the Boltz- dasin Iepion Sspecies \F/)vith chardie and massn: ~ A 9
mann equation in the relaxation-time approximation and va i) 9 P o4 g ) i~ L

R L : wherem,, = 1.6605 x 10~** g is the atomic mass unit, and
for non-relativistic and relativistic electrons in the neutro

. . o .~ A is the atomic mass number). The complete pressure ion-
star envelopes with quantizing magnetic fields were Obtam%%tion oceurs at high temperatures or high densities (e.g., at
by Kaminker & Yakovlev [(1981) for transverse transport, b . : e

y \ ) P ’ 2 22 72 Ag cm~3 in the non-magnetic case — see Potekhin et

Yakovlev (1984) for longitudinal transport and by Hernquis@ - . S .
(1983) for all cases. Potekhin (1996, hereafter Paper 1) I5199.).Wheneverth|s assumption is violated, we will employ

shown that the usual description of electron transport alongj mean-ion approximation, in Wh'.Ch aII_ lons in all lonization
oo : . : stages arereplaced by a single species with some effective values
magnetic field with the Boltzmann equation yields almost the%
. - of Z and A. Electrons are assumed to be degenerate and nearly
same transport coefficients as a more general kinetic equat#roerze The degeneracy impli& < Th — -~ 2y /o
for the electron spin density matrix. According to Paper I, the, = ' "= thge Fermii/anerp (includiFn _th(eEFrest ?r?gr)/ 13)
Debye—Waller factor enhances the longitudinal electrical ancs1 ‘F 9y 9 o

thermal conductivities neaF,, much stronger if the magneticandkB is the Boltzmann constant. Degenerate electrons can be

fieldis quantizing. Basing on these results, Potekhin & Yakovle(z:\(/mSi.OIereOI as nearly free, if t_heir kinetic energy e_xcee_ds greatly
(1996, hereafter Paper Il) derived practical formulae for the Ioﬁ_typmal energy of electron-ion Coulomb attraction; in a non-

. . —3
gitudinal transport coefficients. gat%?cegléegaﬁygswa? 1tg|cs'5f)1appen50at>> 10AZgem™ (e.g.,
The studies cited above used the customary one-phonon a| N

proximation for the electron scattering in Coulomb solid. Re-

A degenerate electron gas can be characterized by the Fermi
. . nomentunpgr or wave numbekr = pr/h. Without any mag-
[¢] .
cently Baiko et al[(1998) have reconsidered eIectrontransporﬁgﬂc field, kp = kpo = (372n0)1/%, wheren, ~ pZ/(myA)

non-magnetized plasmas by including multi-phonon processesthe electron number density. It is also convenient to introduce
which have proved to give a contribution of similar magnitudl(%e wrelativit al:ameter” (el Y- Slha o & T:a/ukl)k‘kv 1I983) .
(but opposite sign) as the Debye—Waller factor riEar Con- yp G- P R

cerning the Coulomb liquid, Baiko et al. (1998) have suggested = hikpg/mec ~ 1.009 (pgZ/A)'/3, 2)

that incipient ordering of ions in the strong-coupling regime ereps = p/(108g ),

affects electron scattering; they have proposed an a| roximvavpe
g they brop bp Let the magnetic field be directed along the-axis. Then,

treatmentofthisef“fectbymodificationofthestaticstructurefac-Sin the Landau aauge of the vector potential. the quantum
tor of ions. Both modifications (in the solid and liquid phases 9 gaug P ' q

o . X . ates of a free electron can be labelled byffeordinate of
change the kinetic coefficients near the melting point and dras- - S
. T L . e electron guiding centre, the longitudinal electron momentum
tically reduce their discontinuities & = T,,. The new ion

structure factors have been employed by Potekhin et al. (19 Q’ht(:]aeulf:\?giu_ngﬁs%nﬂg ae::rlgt;/i\z?hb:st:; tgor?#gg in
hereafter Paper Ill) in calculations of electrical and thermaf. o 9 P P

L i va%rlable 6 = —1, statistical weightyy = 1) while the other
conductivities in the outer envelopes of neutron stars withou

e ) : , ed/els {» > 0) are doubly degenerate € +1, g, = 2).
magnetic fields. Numerical results in Paper Il have been fitte It is convenient to write (Paper I
by analytic expressions, derived in the relaxation-time approx- P
|mat|or1 with the use of a specially adjusted effective sca’[terlr;lge _ Ng(e) _0fo de, 3)
potential. mac?

Ilj this paper, the effective potential obtalned_|r_1 Paper Il [Bheree is the electron energy,
applied to calculation of electron transport coefficients at arbi- .
trary magnetic field strength, at temperatufes (10°-10°) K fo(e) = {exp [(e — p)/ksT] + 1}~ (4)
and densitiep ~ (103-10'1)gcm2 typical for the outer en-
velopes of neutron stars. Energy-dependent effective relaxa
times, subject to thermal averaging, are obtained for electron
transport parallel and perpendicular to the quantizing magneti . MeWe
fields. In the case of non-quantizing fields, the usual semiclas}g'rc-B(e)  2(rh)? 2 9npn(e): ®)
cal formulae (e.g., Urpin & Yakovl€v 1980Db) are utilized takin%| )
into account the results of Paper Il1. ere and hereafter,, = eB/mec is the electron cyclotron
The paper is composed as follows. In SEct. 2, we descrili@auencypx (¢) is the value ofp. | foran electron onthe Landau

typical plasma parameters of interest. In S8ct. 3, we express/g#! 72, andnum.x is th‘; Taxwznl;m Landa;u numB;ar for a given
electron transport coefficients through an effective scatteriffer@ye. Sincee = (mgc + ¢*pz + 2mec*hwen) /=, we have
potential in thg rglaxation time. approximation. In SELt. 4, W (¢) = [(e/c)? — (mec)? — 2mehwen]/? (6)
present analytic fits to the effective energy-dependent relaxation ) ) ) ]
times related to longitudinal and transverse electron transporfffd OPtaiMma, as integer part of convenient (Paper 1) dimen-
quantizing magnetic fields. Seict. 5 illustrates the main featui@nless energy variable
of the transport coefficients given by the present theory. v =pa(e)/(2mehw.). (7)

is the Fermi—Dirac distributiory is the chemical potentiak (
p includem.c?), and

Mmax

n=0
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At T <« Ty, the derivative(—0 fp/J€) can be replaced by
the delta functionj(e — ep); in this casen, = Np(ep). If
nmax > 1, the sum in Eq[{5) can be approximated by an inte-
gral, which gives the classical (field-free) result,

No(e) = pi(e)/(3*R%). (8) = 8

Electrostatic screening produced by electrons is character-
ized by the Thomas—Fermi wave numlig:: B~
2 One _

QP
° ONg(e) dfo
an 47T€2/ ((‘36 ) de. (9)

Oe
The field can be considered as non-quantizif§ i&> T,
where (Yakovlev & Kaminker 1994)

Tp = hwg/kp ~ 1.34 x 10%(B12 /%) K, (10)

Biz = B/(10'2 G), v, = /1 + 22, andw, = eBc/e is the
electron gyrofrequency (for = ¢p). In the non-quantizing
fields, Tr = Ty (v, — 1) and (krr/2kro)? (ag/7) Y/ Tr,
whereT, = mqc?/kg ~ 5.93 x 10° K andas = e?/hc
1/137 is the fine-structure constant.

The opposite case of strongly quantizing field occufs &t
Tg andp < pg, where

7

k%F = 4re

|.||\|\|.[||||\|||||||

mec?

quantum _|
solid  ~

~
~

~
~

i

lg T [K]

pp = Amunp/Z ~ 7.045 x 10° (A/Z) B¥)*gen3,  (11)
np = (7v2)"ta;?, anday, = (fic/eB)'/? is the so called
magnetic quantum length. In this case,
(4/3)%(p/pB)*"* kpo.

ThereforeTr is strongly reduced fop < pp.
The state of the one-component plasma (OCP) of ions de-
pends on the Coulomb parameter,

kp = 21202 ne = (12)

m

IIIIII\I\IIIII

lg p [g em™2]

2 2 1/3 Fig. 1.Characteristic plasma domains on theT plane foriron. Upper
(Ze) 22.75 7% /pe\1/ X 12 .
I'= T ~ T (Z> , (13) panel: non-magnetic plasma; lower panBl:= 10'* G. Solid lines
BLai 6 showTw andT;, vs. p; upper and lower dot-dashed lines correspond
whereq; = [3/(47n;)]'/? is the ion-sphere radius; = n,/Zz ©I' =1 andI’ = 175, respectively; short-dashed lines indicate the

is the number density of ions, afiy = T/(106 K). In a weakly domains of partigl io!wization. Dotted lines on th_e upper panel show
emperature profiles in the envelope of a “canonical” cooling neutron

coupled OCPI" < 1, fons form the Boltzmann gas WhOSétar(seetext)fortwovaluesoftheeffectivesurfacetemperé’ltzs[r}ﬂ5

screening properties are characterized by the inverse Deéxg2 % 10° K. Long-dashed lines on the lower panel shibwandps;
screening length,

and separate the regions of strong and weak magnetic quantization.
gp = V3l'/a;.

ForT' z 1, the ions constitute a strongly coupled liquid. The

liquid freezes into a Coulomb crystal at soime- T'y,. For clas- We neglect also effects of magnetic field on the OCP of
sicalions (whose zero-point quantum vibrations are negligiblégns. This is justified if the ion cyclotron energyw.;
I'm &~ 175, whereas strong zero-point vibrations suppress the,. Zm, /m; is small compared with eithéesT [i.e., T >
freezing and increask,, (Nagara et al. 1987). The freezing i9.0737 (Z/A) Bi,] or typical phonon energies in the OCP
completely suppressed in the so called quantum liquids, which hwy; i.e.,\/pe > 0.0094 Byo).

exist atz, 2 0.184Z7/3, as can be estimated from numerical The characteristip — 7' domains are shown in Fig. 1 for
simulations (Jones & Ceperley 1996). In general, the quantizgén plasma a3 = 0 and10'2 G. We have taken into account
tion of ionic motion is significant &’ <« 1},, where partial ionization in the mean-ion approximation. Electrons are

degenerate beloWr; ions are classical abo\,; thus, strictly
T, = hwp/kp ~ 7.832 x 10° (Z/A) \/ps K : : o= ees )
P p/k 7 7832 X 107 (Z/A4) /s speaking, our consideration is valid in the stripe between the

(14)

(15)

is the ion plasma temperatute, = (47Z%¢>n;/m;)'/? being

solid lines. In practice it may be reasonably accurate outside this

the ion plasma frequency. We do not consider the quantum igtnipe because itincorporates thermal averaging and because the

solids and liquids hereafter.

quantum effects are actually small as londag 0.1 7.
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The short-dashed contours indicate the region of partial ion- The components af, o, andi can be expressed as
ization: the upper contour corresponds to the effective charge

2
Z = 20andtheloweronetd = 15.We have evaluatedinthe | 7% € T N5(e) dfo de. (18
same manner as Potekhin et al. (1997), requiring the equatipf's e(p — 63/ e/c? i (€) T 9e ) 9¢ (18)
of state (EOS) of a plasma composed of free electrons and idn§iJ (u—€)/T

with the effective chargé to reproduce a “standard” EOS thatryg fynctionsr;, () play role of relaxation times determined

takes into account partial ionization. In the non-magnetic Cagk electron scattering in the magnetic field. Owing to the sym-
the OPAL EOS (Rogers et al. 1996) ha; been adopted as SHféTry properties of the tensass o, and, there are only three
a standard and, whenever necessary, interpolated as explaifiggrent non-zero components:. related to longitudinal cur-
in Potekhin et al. (1997). In the magnetic case, we have u th,TM_ — 7,, related to transverse currents, ang = —7,,
the finite-temperature Thomas—Fermi EOS by Thorolfsson giated to the Hall currents.
al. (1998).
The dotted curves on the upper panel (marked “NS”) re- - o
produce the temperature profiles (Potekhin et al. [bBihe 3-2. Non-quantizing magnetic field
envelope of a “canonical” neutron star of the masisM, and | the quantizing nature of the magnetic field is neglected, then
radius 10 km, with an effective surface temperatiire 10° K (e.g., Urpin & Yakovlev 1980b)
(the lower curve) an@ x 10° K (the upper curve). In reality,
effective temperatures of the middle-aged isolated neutron stars _ 70 _ wgTh
are believed to lie between these two extremes (e.g./Page 1988). "> ™= = 11 (wgT0)?’ Tvr =L (wgTo)2’
The dot-dashed lines on both panels correspord o 1
as/liquid smooth transition, upper lines) aid= 175 (lig- i o e
fj?d/soﬁd phase transition, Iowerp|!3r1es). ) (Iiq effective collision frequency in this case.

Finally, the long-dashed lines on the lower panel indicat In the outer envelopes of neutron stars, relaxation is mainly
threep — T regions, where the magnetic field is strongly quaﬁfetermined by electron-ion scattering. We restrict ourselves to

tizing (to the left ofpp and considerably beloW), classical con3|derathn do_f this n:jegh_a?llsr_n; géks;aglel |nc|u3|or|1 of othlerd
(much abovel;), or weakly quantizing. processes is discussed briefly in Sgkt. 6. In strongly couple
Coulomb plasmas, the scattering is significantly affected by ion

o correlations. In the liquid phase, an appropriate structure factor

3. Transport coefficients of ions should be employed. In the solid phase, an adequate
3.1. General relations description is provided by the formali_sm of electron scattering
off phonons with allowance for multi-phonon processes (see

Consider electron electric and thermal currents induced ingajko et al[ 1998 for discussion and references). In both the

magnetized plasma under the effect of an electric f#éldnd  |iquid and solid regimes, it is convenient to write the squared
weak gradients of chemical potentid), and temperatur®T".  Fourier transform of the scattering potential as

These currents can be decomposed into conduction and mag-2 ol 1o
netization components (e.g., Hernquist 1984). The latter orl€5|° = (47Z¢”)*[¢,|". (20)
relate to surfacg effects and must be SubtraCtedJLahdJT H(?re,qsq is the so called screening function (which would be
be the conduction components of electric and thermal curren g . .
o . Jp—— ual tog—= for the Coulomb potential, were the screening
densities. They can be written as (e.g., Landau & Lifshitz .L%BE
neglected). Then

(19)

wherer, is the non-magnetic relaxation time, equal to an inverse

je=0o-E"—a-VT, jr=a-E" -k VT, (16) 9
_ DoYo
where E* = E + Vpu/e is the electrochemical field. The(€) = dmn; Z%e* Ao (€)
symbolso, a, &, and & denote second-rank tensors (s . ) )
the electrical conductivity tensor) which reduce to scalars Wherevo = poc”/eis an electron velocity, andly () is the non-
B = 0 only. From the Onsager symmetry relation one obtaindagnetic Coulomb logarithm. In strongly coupled, degenerate
ai;(B) = Tai(—B) = Taij(B). Coulomb plasmas, one has

Egs.[[I6) can be rewritten as

2po/h he 2
_ 3 2 2 . q
E*=R - j.-Q VT, jr=-TQ -jeo—r-VT, (17) Ao—/o dgq’|¢q|"S(q)|F(q)] [1 <26> ] . (22)

_ -1 — —
whereR = 07, Q = —R-a,ands = § + Ta-Q are where F(q) is the form factor of ions, and(q) is an effec-

the specific re5|§tance, thgrmopower, gnd thermal CO”d“CF"ﬁ% structure factor that describes the effects of ion correlations
tensors, respectively (hefiis defined asin Paperll; an Oppos't?Baiko et al[T998)

sign has been adopted by Hernquist 1984).

(21)

In Paper IIl two forms of the effective Coulomb logarithm

1 We have recalculated the profiles using the updated non-magnéfle andA,;) have been obte}ineq from Ca|CU_|ati0_n3003ndf€
conductivities (Paper Ill), but an effect of the update turned out to I8 3 = 0 beyond the relaxation-time approximation. The latter
negligible. approximation fails if inelastic processes with energy transfer
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= kT are important. According to Baiko & Yakovlev (1995) In order to obtain the longitudinal transport coefficients, it
and Paper llI, this happens at low temperatufes< 7},. In s sufficient to assume th@* and V1" are collinear withB.
this paper we will focus on the cagez T, in which we can The electron distribution function can be sought in the form
neglect the difference betwedn andA, and adopt\g = A fo [eE* €~ 1 8T

The transport coefficients due to electron-ion and electron- €

phonon scatterings (in the Coulomb liquid and solid, respegherel is an appropriate scale Iength, ap() is a dimension-
tively) can be described with a reasonable accuracy (Paper légs function to be determined from the kinetic equation. The
in a unified way under the conditions typical for the outer ematter is reduced to an algebraic system (YakoWIev 1984):

velopes of neutron stars. For this purpose it is sufficient to re- =
place|¢,|2S(q)|F(q)|? in Eq. (22) by the expression: Pz: Upsmsmr st (€) [Pns(€) = Yonr s (€)] = 1. (30)
yn's’
F12 — efw(q) ( ) i . . .
lpg | = [T (tp, B), (23) Here,a,” . .. is a dimensionless scattering rate of an elec-
T tron from a state with quantum numbetsand s into a state
where with quantum numbers’ ands’, with changed{ = —1) or
unchanged~ = 1) direction of motion along3. The summa-
@2 = (¢ +kip)e P, (24) tion is performed oven’ < nyax(e), v = £1, ands’ = +1
’ r_ 1 o ;
@ = ¢3 (1+0.06T) efﬁ’ (25) folr n' > /1 (buts’ = —11if n' = 0). Notg that the terms with
) n’ =n, s’ = s, andy = +1 naturally vanish.
w(q) = u—2(q/qp)” (1 + B3/3), (26) Since the scattering potential is written in the fofim](20),
1 12232 1 iti i = 2 AT
Glty, ) = +0.1225 (t), to= 0.19 27) it is convenient to choosté = mec?hw./(2mn; Z2%e*). Then
(1 +1t3/t2)1/2 Z1/6 (Yakovlevi1984)
In this casee—*(@) plays role of an effective Debye—Waller®( Z%S (31)

factor at largel’ and is negligible al® < 1; u_y = 13,
whereu; is (w/w,)’ averaged over phonon frequencietn a andf
Coulomb crystal (e.g., Pollock & Hansen 1973)ijs an effec- . . .
tive screening wave number; attit,,, 3) is a phenomenologi- 0 (€) = [4(E+ 1) Bnpnr] S0 (), (32)
cal factor that describes reduction of the scattering rate, cauggfere¢ = ¢/mec?, pp, = pn/mec,

by quantum effects at, = T/T,, < 1. The factorsG, w,

and g, contain also phenomenological corrections to the Boﬁl,m/u [(e+ 1) + ’yﬁn;ﬁn/]Q @1

approximation expressed through= ma;Zprc/ep. Finally, AP0 Qo + 4 [ + 1)2 + vprin] Var! Qs,
the functionD(t,) = exp[—aou_1 exp(—9.1t,)/4], where ., ) - S B

oo = 1.683+\/x,/(AZ) andu_; = 2.8, isassociated with quan- S 1,-1 = 2[5, Q1 + 1Py, Q2] — by Vnn! prpur Qs,
tum corrections to the Debye—Waller factor (Baiko & Yakovle\él ds(y differ from 5O

' , by interchanging?, and
— > nn S, s’ nn’ss )
1995). Note that one can safely sét= 1 for T' 2 T, and Q2. Here the functions); (Yakovlev|1984) are generalized to

Z 5 30. arbitrary scattering potential:
3.3. Transport along quantizing magnetic field Q1 = / 1Py o (u) ¢*(u) du, (33)
0
Let us calculate the longitudinal electron transport coefficients >~ —
in the quantizing magnetic field using the relaxation time af2 = I (u) 7 (u) du, (34)
proximation and the effective scattering potential determined oo }
by Eq.[23). According to Papers | and Il, the longitudinal ki§); = / Loy (W) Iy 1 1 () 9% (u) du, (35)
netic coefficients can be written in the fom{18) by defining the 0
effective relaxation time... = 7 as where
N (o) (eB)? 'l 2
Bl€)cC _ € L (u) = [ — u" e L' (u 36
fTH(f) = m@(€)~ (28) (u) (n' ) v (W) (36)

is a Laguerre function (Sokolov & Terndv_1968;"(u) are

The dimensionless functiof®(¢) is determined by a kinetic ; : .
equation for the electron spin density matpix. s, (z, p.). It the associated Laguerre polynomials — e.g., Abramowitz &
1520 2 Stegun 1972)¢( ) = 2\qbq|/a,2n, and (hq)? is set equal to

has been shown in Paper I, however, that a good accurac¥ )2+ 2(h/am)u
provided by a simpler kinetic equation for the density distrad’n ~ 1P “m

bution functionf,s = pnss in the “fixed spin” representation 2 Eq.[32) reproduces Eq. (26) of Yakovlév (1984) corrected for a
(Yakovlevi1984). misprint.
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, , L I lg B[G]=15

3k < s s 1gB[G]=12 —
e o o o H{ o 0o 0 o
roTT “e  TT 7 gy 1 S\ o f
- ocooo 12 . _ . _ . _ - - s Q G
[oceee C == B=0 ] \ 20 6
cenn b b b b B By B e B e RN FRRTE PR SN SNNTN FRTEE RRRTE FRET S ST, SN
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 56 6 7 8 9 10 11

1% 1%

Fig. 2. Calculated (symbols) and fitted (solid lines) effective longitudiFig. 3. Same as in Fig]2 but faB = 10'® G and different set of .

nal Coulomb logarithm4 | vs. dimensionless electron energy variable

Eq. (@) for fully ionized iron (filled circles) and carbon (open circles) at

B = 10" G and three values of temperatute 1 is given at the right

end of each bunch of curves). Dot-dashed and dashed curves reprds@g:(41) relate the effective relaxation timeg and,, to

the field-free Coulomb logarithms, for Fe and C from Paper Ill.  the effective transverse electron collision frequem¢y and
correctly reproduce the known limi{s{[19) (non-quantizing field,

3.4. Transport perpendicular to quantizing magnetic field arbitrary Hall parameter) and (38) (arbitrary field, large Hall

_ parameter).
Let us start with the case of large Hall parametg,; > 1. In In addition, our interpolation(41) of,, eliminates the
this limit, as follows from Eq[({I9), well known divergency, that arises from direct substitution of

(37) Eq. [39) in the integrand of Eq.(]L8) becausg) turns to infin-

ity at each Landau threshold @8— n,,,.x) 1. PreviouslyW ()
provided the magnetic field is non-quantizing. The case of quagas truncated at some level, estimated by a semi-qualitative
tizing field was considered by Kaminker & Yakovlev (1981) angnaysis of physical processes that could, in principle, eliminate
Hernquist[(1984). The expressions for the transport coefficiegig divergency, were they included into the theory (Kaminker &
derived by these authors can be written in the farm (18) Byakoviev[I981). One can show, however, that the derivation of

Tyz = 1jwg and Tp, = (wém)’l,

defining, in analogy with EqL(37), expressions for the transverse transport coefficients [equivalent
Tye = 1/wy and T, = (wém)_l, (38) o our Eqs.[BB)E@O)] implied t_hangu > 1. By correcting
relations[(38) in case whetg 7, is not very large, Eq[{21) en-
where \ sures finiteness af,,, thus making a truncation unnecessary.
Np(e)e2 1 Z%etn;
e witi(e) 2mhiw? (e, (39)

4. Fitting formulae for 7 (e) and 7. (¢)

U(e) = Z

nn'~y

~2 ~ 1 1
2 P {(e 1+ ) (@1 + Q2) Explicit expressions of); and Q;- for the function|¢c|? in
the form [23) are given in the Appendix. Using them, we have
+4b \/WQﬂ : (40) performed extensive calculationsgf andr, from Egs.[2Z8),
(30)—-(32) and[(39). The key parameters of the funct't@ﬁ‘ l,
which enters these expressions, — the Debye—Waller parameter
- L ) apw = w(2kro) ~ u_s (2kro/qp)? and the Coulomb screen-
In weakly quantizing magnetic field, (e) oscillates around ing parameten, — (g./2kro)?, — as well as the magnetic field
7o(e); it can be replaced byy () in the non-quantizing limit. 13 metep, varied independently fromo— to 102. For any
This allows us to interpolate between the regimes of large avrgue off, the variable- [related to via Eq. [7)] varied from O to
moderate-to-low Hall parameters using the formulae: 25, taking on 5-10 values over each interah, 7max + 1).

B T weT? Calculation is quite simple as long as< 1, the functions

Ter =11 (wgT1)?’ Tyr = 11 (e )2 (41) ®(e) and¥(e) being given by Eqs[{A8)E(A10). Far > 1, we

and functiongQ; differ from Q; [Egs. [38)-{(3b)] by an addi-
tional factoru in each integrand.
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6.5

and two values of . The solid lines show the fit; the dot-dashed lineéx) conductivities in the outer neutron-star envelope composed of iron

showAy.

have fitted the results of our numerical calculations by analy

formulae.

for B = 10'? G and two values dig T (marked near the curves): com-

parison of the new results (solid lines) with the classical approximation
Eq. (I9), dashed lines] and with the old results for the longitudinal
Bnductivities (dotted lines) from Paper .

Let us define longitudinal and transverse effective Coulomb

logarithmsA | | (¢) through the relations

. No(G) pQU
10 = () Tmzren @' -
71 (€) = Np(e) Pv (43)

No(e) 4mn;Z2e* Ay (€)
As seen from EqL(21), the functiods andA | turn into Ag

if the magnetic field is non-quantizing. In the quantizing fields,

the ratiosA| /Ao andA | /A, are fitted by the expressions

A A ; — -
R 5 1+\~/6<—B\/5+OI ﬁ)]
AO Po x Nmax
9y —1/2
32 —1 FE

L2212 . — 44
T [Qnmax—&—lbx?/(l—&-%)g+007+5  (44)
Ay b A

e 1 = =

AO +[3(2) ZL‘Z

Jr(\/l;/ﬁo) {(B In Nppay) 71 — (C’ +D lnnmax)ﬁ] , (45)

wherez = 5, /vVb = \/2(V — Nmax),

30-15E — (15— 6 E) v2

A=

30—-10E — (20 — 5 E) v’

3 E 1 v 1-E+0.759}
S22 412023 B 1+ 7

2 1 — exp(—apw)

Nax apw 7
A=081+L)+02L, B=(068—13F)LYS,

C=142-E+LY?/3, D= (0.52 - E) LA

D =1+40.06 E=

2 9

E=(10+5/b)"Y, L=In(l+a'), L=alL,

i=[vas+ (24 0.5apw) ']

The leading terms at — 0 are proportional tozr—! in
Eq.[42) andz~2 in Eq. (48), reproducing the asymptotic be-
haviour of the function® and¥. The accuracy of the fit was
checked for — n,.x > 0.01, which is quite sufficient for most
applications. Eqd_(44) and_(45) fit our numerical results with
a typical error of a few percent. A maximum error up to 40%
occurs only at some extreme valuesigfapw, andv. In addi-
tion, we have compared the new ffit]44) with the one in Paper Il
(in the particular case afpw — oo which corresponds to the
screened Coulomb scattering potential considered in Paper I1).
On average, the new fit turned out to be more accurate than the
old one.

Figs2£4 illustrate the accuracy of Eqsl(44) and (45) for
realistic parameters in the neutron-star envelopes. In[Higs. 2 and
[3, the filled and empty circles represey(e) calculated from
Eqgs.[Z8) and(42); in Figl 4 we have additionally plotted(¢),
obtained using Eqd.(B9) arld {43). The parametgendapw
have been calculated for fully ionized iron or carbon plasmas
at variousT from 10° to 10® K and B from 10'? to 10® G
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Fig. 6. Same as in Fiff]5 but faB = 10'* G andT = 10° K. Fig. 7. Longitudinal conductivities forZ = 6 andT = 10° K at

B = 10'? and 10*® G. As in Figsl% and16, the solid, dotted, and
o ) ) ) _dashed lines show the new, old, and classical results, respectively.
(indicated in the figures). At every point, the plasma density has

been determined from the conditiep = ¢(v) using Eq.[(7).

In all figures, the fits[(44) o (45) are drawn by solid lineg1ent, especially in the regime of strong quantization, where they

The dashed and dot-dashed lines represent the non-magriggy reach orders of magnitude.

Coulomb logarithm\ (¢) given in Paper Ill. For comparison, we have plotted (by dotted lines) the lon-
Since our fitting formulae depend analytically on the pa#itudinal conductivities calculated using the formalism of Pa-

rameters of the effective screening functibnl (23), they need & Il. The temperature values in Hig. 5 have been deliberately

be changed in case future refinement of the theory will caugRosen the same as in Fig. 5 of Paper(I%and10” K). Note
modification of these parameters. that forT = 106 K, the plasma is entirely within the solid crust.

In this case, our old results agree nicely with the new ones. On
the contrary, fofl’ = 107 K in Fig.[5, as well as fofl" = 108 K
in Fig.[6, the displayed density range extends into both the solid
Figs[% and® show electrical and thermal conductivities calrust and liquid ocean of the star. The new conductivities go
culated with the effective relaxation times;(e) given by smoothly across the phase transition, whereas the old ones ex-
Egs. [41)-{(4B) at various, T", and B appropriate for outer en- hibit large jumps and appear to be significantly overestimated
velopes of the neutron stars. The use of the analytic equatiquest behind the ocean/crust interface. This is caused by an over-
(A8)-(AIQ) for v < 1 and [44),[(4b) forr > 1 reduces nu- estimated effect of the Debye—Waller factor in Paper I, now
merical calculation to one-dimensional integration in Eql (18)prrected by including multi-phonon processes.
which has been performed using a fast algorithm described in Fig[4 shows the longitudinal conductivities of carbon
Sect. 5 of Paper II. plasma forB = 102 and10'® G, which may chance, e.g.,
The density range in every figures allows to see the strongya neutron star with an accreted carbon shell. In this case, the
quantizing (below the first Landau threshold) and weakly quabettom of the ocean lies slightly aboye= 10°gcm—3. Once
tizing regimes. The non-quantizing (classical) results are plottadain, we observe significant discontinuities of the “old” con-
by the dashed lines. ductivities, which deviate from the new ones on both sides of
Fig[8 shows the longitudinal and transverse conductivitiise interface. The difference in the liquid phase is attributed to
in a neutron star envelope composed of ironfor= 102 G.  the modified ion structure factor used for obtainigg™|> in
The quantum oscillations around the classical values are m&agper lll, instead of a simplified screened-Coulomb model in
pronounced at lower temperatures. Elg. 6 illustrates the condthe previous work.
tivities at stronger fieldB = 10'* G, which may be relevant In Fig.[8 we present the longitudinal and transverse com-
to magnetars. The classical formulae correctly reproduce thenents of the thermopower tensor for the sets of parameters
large-scale trend of the curves and the reduction of transveused in Fig€.4,16. The longitudinal thermopower from Paper ||
conductivities with respect to longitudinal ones. Nevertheless,shown by the dotted lines. Unlike the conductivities, the lon-
deviations caused by the quantum oscillations are quite promitudinal thermopower did not possess considerable breaks at

5. Numerical results for transport coefficients
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6.5 7 7.5 8 8.5 9 We have used an effective potential, which has been ob-
lgp [g cm™3] tained in Paper Ill assuming that the conductivities are deter-

min the electron ttering off ions (off phonons in th
Fig. 8. Longitudinal (solid lines) and transverse (dashed lines) ther- ed _by © elec O. scattering off ions (off phonons . €
. ) ol crystalline phase). It is well known (e.g., Yakovlev & Urpin
mopower in units ofg /e, for two sets of indicated parameters. For, . . . .
1980) that this is the main mechanism regulating electron trans-

comparison, the dotted lines show the results of Paper Il. Vertical dGt= A -

dashed lines indicate the liquid/solid phase transition. port at7, S T < Typ. Other contributing mechanisms are
the electron-electron scattering and scattering off lattice defects
and impurities in the crystal. Corrections due to the impurity
scattering can be introduced in a standard albeit approximate

the phase transitions in the old theory. Nevertheless, one gy by summation of relevant partial collisional frequencies,

observe that the “new” results differ from the “old” ones. Asitviz: 7| = [rf' ]~" + [r}"/"]"". In the case of charged im-

the previous figures, this difference is noticeable in the vicinipurities with charge numbéf;,,,,, occasionally embedded in a

of the freezing point. Coulomb lattice, the effective scattering potential is again given

In the previous figures we have presented the longitudiy Eqs.[2D) and{23), by settifg = 1,e~*(@ =0, andg = 0
nal and transverse transport coefficients, which evince magd replacing by |Z — Zi,,,| andn; by nipmp. Thenrﬁf‘llD are
netic quantum oscillations around their classical values. Th&en by our formulae with an obvious modification of param-
off-diagonal (Hall) electrical and thermal conductivities do nadters.
exhibit such oscillations and practically coincide with their non-  We expect that our new formulae for the conductivities will
magnetic counterparts given by E4S.1(18) &ndl (19). Unlike theb® useful, in particular, in calculations of neutron-star thermal
the Hall component of the thermopowé),.,, does oscillate, as structure and evolution. It would be especially interesting to ap-
illustrated in Fig[® for iron plasma @ = 10'? GandI’ = 10°, ply these results to investigating thermal structure of magnetars.
107, and10® K. The oscillations are very sharp&t= 10° K,  Up to now, a very simplified analytic model (Heyl & Hernquist
but they are completely smeared out at the highest tempétfg98) has been used in this case, but the problem deserves a
ture,T = 10® K, which is close tdl' in the present example. more thorough study since it may provide a clue to the origin of
The difference of vertical scales in Figs$. 8 ddd 9 reflects thie anomalous X-ray pulsars (Heyl & Hernquist 1997). The for-
Q. is relatively small. Nevertheless, it may cause a variety afulae presented here are almost as simple as those used by Heyl
thermomagnetic effects in neutron star envelopes (Urpin et &lHernquist (1998), but they are accurate over a considerably
1986). broader range of plasma parameters.

The computer code that implements the formulae derived
in the present paper is freely available from the author by
electronic mail.

We have derived practical expressions for the electron trans-

port coefficients in degeneraté€ & Tr) layers of neutron-star o
envelopes with magnetic fields which may be quantizing. Ge'f?l‘-:krr]‘gi‘g’:esugergft”;i' ;"‘r:z i’:]ee"’(‘)sr‘xégl a:;?g"‘ﬂegii thﬁ)gosgt'tﬁl]';yégge
erally, these expressions require energy integration[Eq. (18)Nigi:male Suz?ieure de Lyon, where a part F(JJf i/his wgrk hZS been done.
the case of strongly degenerate electrdfis<€ Tr) and not

I am grateful to D.G. Yakovlev for his attention and useful discussions.
too close to the Landau thresholds £ nmax < kpT'/hw), | thank Frank Timmes for a useful advice concerning the computer

even this numerical integration becomes unnecessary, anddhif. This work was partially supported by INTAS Grant No. 96-542
electrical conductivity reads;; ~ (e*n.c?/er) 7;;(er), Where and REBR Grant No. 99-02-18099.
7;; iS provided by our analytic formulae, while the thermal

6. Conclusions
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Appendix: calculation of auxiliary functions the effective inter-collision times (¢) andr (¢) are related to
the functionsb () and¥ (¢) by Eqgs.[Z8) and(39), respectively.

Let us adopt Eq[(23) and sé&t = 1 for simplicity. Then the From Eqs/[30)£32) anflT40), we obtain

dimensionless function?(u) that enters Eqd_(33J=(35) can be

written as e b .
B(e) = A0~ W(e) = = [FQHO +QH0)], (A)
() 1 — e ¢Suts) (A1) 2Q1(¢) D5
U) = ————,
(u+ ug)? where

where¢ = 2(amgp) 2u_o(1 + (/3), £ = (am/h)z(p,L = Q) = up™t (1 — e ) — ¥ By (up)
Yo )% uo = € + &, andés = %(amqs) . Let us also define (14 ) et B (up + Cuo), (A9)

e e ¢(uto) QT (&) = (1+ug)e™ Fy(ug) —1+e ¢
Q;?n’m(é-’C) :/ T (U)In*j»n’*j(u) (7mdu' (A2) ( ) ( 0) 1( 03 +¢&s

0 u+§) —(1 4 ug + Cup) €*°7% Fy(ug + Cup),  (A10)
Then, forj = 0 or 1, we have ¢ = 2p2 /b, and the functior?; is readily given by polynomial
Q2sj = Qﬁ)n/Q(uOyo) oG an)nlz(u()’ Q) (A3) approximations (Abramowitz & Stegun 1972).
Qzﬂj = Q;‘?L)n’l(u()vo) — U ann’Z(uO’O) References

—etts [Q;?Bnq(uo, C) - UoQﬁ)nfz(an C)} , (A4)  Abramowitz M., Stegun I.A., 1972, In: Abramowitz M., Stegun L.A.

(eds.) Handbook of Mathematical Functions. Dover, New York
andQ:, Q;- are obtained fron», Q3 by replacing: — n—1  Baiko D.A,, Yakovlev D.G., 1995, Astron. Lett. 21, 702
andn’ — n/ — 1. Baiko D.A., Yakovlev D.G., 1996, Astron. Lett. 22, 708
For small Landau numbers.(n’ < 10), one can calculate Baiko D.A., Kaminker A.D., Potekhin A.Y., Yakovlev D.G., 1998,
(0) Phys. Rev. Lett. 81, 5556
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tions Iy, (u) in Eq. (B2). SIncel,, (u) = (=1)™ " Ly, (u), Canuto V., Ventura J., 1977, Fundam. Cosmic Phys. 2, 203

we assume’ > n without any loss of generality. Then Gotthelf E.V., Vasisht G., Dotani T., 1999, ApJ 522, L49
n Gudmundsson E.H., Pethick C.J., Epstein R.1., 1983, ApJ 272, 286
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