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Abstract. New calculations of the thermal and electrical eleand form nearly ideal Fermi-gas, whereas ions are partially or
tron conductivities are performed for a broad range of phydiilly ionized and form either a strongly coupled Coulomb liquid
cal parameters typical for envelopes of neutron stars and cooea Coulomb crystal. Under such conditions, electrons are usu-
of white dwarfs. We consider stellar matter composed of aaly most important charge and heat carriers, and the electrical
trophysically important chemical elements from H to Fe iand thermal conductivities are mainly determined by electron
the density range froh02-10*g cm 3 up to10°=10'°gcm3,  scattering off ions (hereaftesj scattering).
where atoms are fully ionized and electrons are strongly degen- The conductivities of degenerate electrons dus szatter-
erate. We have used modified ion structure factors suggestegiwere studied in a number of papers. The general formalism,
recently by Baiko et al. (1998). In the ion liquid, these modiased on a variational method (Ziman_1960), has been devel-
ifications take into account, in an approximate way, instanped by Flowers & Itoh (1976) (see references to earlier results
taneous electron-band structures that reduce the electrontlmerein). Their numerical results, however, have been critically
scattering rate. In crystallized matter, the new structure factoevised by Yakovlev & Urpin[(1980), who developed a sim-
include multi-phonon processes important at temperatures pta analytical description of the conduction duestgcattering
very much lower than the melting temperatdig. The trans- in dense Coulomb plasmas. The results by Yakovlev & Urpin
port coefficients obtained differ significantly from those derivefd980) were confirmed in detailed calculations for both solid
earlier in the important temperature rariig/5 < T' < 5T1,. (Raikh & Yakovlevi1982) and liquid (Itoh et &al. 1983; Nandku-
The results of our numerical calculations are fitted by analytiaalar & Pethick 1984) regimes. Later Yakovlév (1987) calculated
expressions convenient for astrophysical applications. the electron transport coefficients in the liquid phase taking into
account non-Born corrections. In Paper |, the authors performed

Key words: stars: neutron — stars: white dwarfs — dense matixtensive calculations of the same coefficients including addi-
— conduction tionally the effects of responsive electron background on the ion
structure factors.

Itoh et al. [1984, 1993) improved the results by Yakovlev &
1. Introduction Urpin (1980) and Raikh & Yakovley (1982) in the solid regime

h | and electrical duction in th | ¢ by including the nuclear form factdt(q) (wherefig isamomen-
Thermal and electrical conduction in the envelopes of neutr transfer), in order to take into account finite sizes of atomic

stars and the cores of white dwarfs plays crucial role in mafy, |ai and studied the role of the Debye-Waller faeto’ (9
aspects of evolution of these stars. Thermal conductivity is t 9. i(ittel 1963), which describes reductionafscattering
basic quantity needed for calculating the relationship betwe e in a crystal due to lattice vibrations. The Debye—Waller

theinternaltemperature of a neutron star and its effective surfage, . proved to be important at temperatures close to the melt-

temperature; this relationship affects thermal evolution of th temperature of a Coulomb crystal, and at sufficiently high

neuEron star and its radlat_|on spectra (e.g., Gudmundsson ef,d sities, where zero-point vibrations are large. Later Baiko &
198":; Page 1997; .Potekhln ,et al. 1997' herea}fter Paper. ). EloGroviev (1995/ 1996) made detailed Monte Carlo and analyt-
trical co_ndL_Jctlwty IS t_he k_)a3|c quantity used in calculatlons %al calculations of the electron transport in crystalline dense
magnet|c-f|eJd evqlutlon in neutron star crusts (e.g., Muslimgy, including the nuclear form factor and the Debye—Waller
& Page 1395; Urpin & Ko.n(_enkc‘v 1997, Konar & Bhat,taChary?actor; they fitted the results by simple analytical expressions.
1997). .Th_ermallconductw{ty of degenerat.e matter IS also FHese results were in reasonable agreement with those obtained
essential ingredient for white-dwarf pulsation modelling (e.gOy Itoh et al. (1984, 1993).

Fonéaine & lBrassard 199431' d k h . Nevertheless the transport theory developed in the cited arti-
£ or app ||<Tat|0ns one E ou | now the transpolrt groperﬂg@s possessed one important drawback: it predicted unrealisti-
ot dense stellar matter where electrons are strongly degenegaf, |, rqe jumps (by a factor of 2-4) of the transport coefficients

Send offprint requests 1@.Y. Potekhin at the melting point in spite of the fact that many other physical
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properties of ion liquid and solid were very similar. This indistatic screening properties of the electron gas are characterized
cated that the theory was incomplete and had to be improvelly the Thomas—Fermi wave numbef:

The improvements have been suggested recently by Baiko et 5
al. (1998) (hereafter Paper II). In the solid regime, multi-phonqg, . — 42 One or V1tay (2kp)2, 3)
processes have beenincluded in the electron-phonon scattering, o ™ Tr
whereas all previous calculations used the one-phonon apPiKere ;. ~ e is the electron chemical potential angd =
imation. Furthermore, it has been noted in Paper Il, that t[ge/hc = 1/137.036 is the fine-structure constant.
static structure factor of ions conventionally used in the liquid ' The state of ions (atomic nuclei) can be conveniently spec-

regime may require modification when applied to calculatiqfeg by the Coulomb plasma parameter
of the electron scattering processes because of appearance of

incipient ordered structures. The authors suggested an approx- (Ze)? 22752 (Pj) /3 @)
imate treatment of this effect by subtracting a certain part from kgT'a; Ts A ’
the static structure factor. Both modifications affect significant| : :

g heree is the elementary charge; = [3/(47n;)]/? is the

the electron transport properties near the melting point and re- ) . i .
duce the jumps of the transport coefficients. Ion-sphere radiusy; = n./Z is the number density of ions, and

. . ¢ 6 :

In this paper, we apply the results by Baiko etlal. (1998) 'S Ite(;npedr?turetlrr]w UET Itl? afo” K. If T ;?3 ’1'(3(;:5 are w?_?ktly
calculation of the electron electrical and thermal Conductiviti&;)lip € lan orlmd I'e % szanr_l gas. ’t (iy constitute
in a wide range of physical parameters typical for the envelo ?ﬁ rongly coupled liquid. Freezing occurs at a temperallire

of a neutron star or the core of a white dwarf. We also deriv 'Crh corres%?nr?]s tg :t F“;‘ Ir:or Clﬁsilcr?lv'%?szmn: 172, ;
an effectiveei scattering potential that yields the conductivitie%éfe eas quantum effects (zero-point io ations) suppress

Q

in a simple analytical form, reproducing the numerical resul efrteeélng and_mcre?iie[tlgt\lag;ra ethal. 1987). The quantum
within, at most, a few tens of percent in the whole of the phys- ects become important at < 1, where

ic_aIIy meaningfl_JI range of the plasma parameters. Finally, we _ Ty kg ~ 7.832 x 109 (Z/A)pé/Q K 5)
discuss the main features of the electron transport propertie’s,
and the role of various electron scattering mechanisms. s the ion plasma temperature, = (47Z2%e%n;/m;)'/? is

The paper is organized as follows. In SEELt. 2 we introdutiege ion plasma frequencyp; = Am, is the ion mass, and
basic definitions and give a brief overview of the main featuresof, = 1.6605 x 10724 g is the atomic mass unit. Under re-
electron conduction in different regimes. In SEtt. 3 we describbstic conditions, the quantum effects strongly suppress crys-
our calculation of the electron transport coefficients and propdsdlization of hydrogen and helium plasmas, but do not affect
a fit to these coefficients. Numerical results are discussedsignificantly the melting of carbon and heavier elements (e.g.,
Sectl#. Chabrief”1993). However, they affect the properties of matter

of any composition af” < 7.

2. Dense degenerate matter

I ) 2.2. Transport coefficients and structure factors
2.1. Equilibrium properties

) o ) Electrical ¢) and thermal£) conductivities of degenerate elec-
Consider fully ionized degenerate stellar matter in the densjfyns can be conveniently expressed through effective electron

2_104 —3 10 —3 ;
range from about0°-10"g cm- to ~.10 gem-=. For SIM-" collision frequenciesy, andv,, as (e.g., Ziman 1960; Yakovlev
plicity, we assume that there is one ion species at any givery Urpin 1980)

andT.

The state of degenerate electrons can be described byoth_e nee’ o — 2 kg Tne ©)
Fermi momentumy or wave numbekr: omiv,  3miv.
pr = hkp = h(37°ne)'/? = meca,, (1) Thecollision frequencies are reduced to sums of partial collision

frequencies associated with relevant electron scattering mech-
wheren, is the electron number density,. is the electron anisms which can be studied separately. This approximation is
mass,z, ~ 1.009 (psZ/A)'/? is the relativistic paramete accurate tov 1% in the case of strongly degenerate electrons
is the ion charge numbe# is the atomic weight, angs is (e.g., Ziman 1960; Lampe 1968).
mass density in units of 10°g cm3. The electron degeneracy In the solid phase af' < T,, where the frequency afi
temperature is collisionsr&’, is strongly reduced, the electron transport is lim-
ited by scattering off various irregularities of the crystalline
Tr = (ep — mec®) /kp ~ 5.93 x 10° (\/ 1422 - 1) K, (2) structure. The particular case of ion impurities, occasionally
embedded in the lattice, was studied in detail by Itoh & Ko-
wherekg isthe Boltzmann constantasgl = m.c? /1 + 22 = hyama[(1998) and will be taken into account in this article; in
m?c? is the electron Fermi energy. Our analysis is thus limitetlis case charge and heat transport are determined by a sin-
by the conditionl” <« 7. It is also restricted to temperaturegyle collisional frequency;.,,. On the other hand, in the liquid
T < 5x 107 K atwhich atomic nuclei do not dissociate. Electrophase, at not very strong electron degeneracyZfat 6 the
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thermal (but not the electrical) conductivity may be affected In the case of Coulomb scattering, one has

by electron-electrong@ collisions. Theeecollision frequency F(q)

v°¢ was evaluated, e.g., by Urpin & Yakovlév (1980), Timmes(q) = (g 9)
(1992), and in Paper | [see EQ-{32) below]. These results for 71\

electron-electron and electron-impurity scattering are not mo#terez(¢) is a static longitudinal dielectric function of the elec-

ified by the present consideration. The total effective collisidfPn 9as (Jancovici 1962), describing electron screening of the
frequencies are, = v, v, = v + v°¢ in the liquid and Scattering potential. The statio (— 0) approximation of elec-
A o K

K

Vo.r = VL + Uimp in the solid. tron screeningis adequat@T aslong as typical energieg transferred
We will focus onei scattering. In a weakly coupled ion gas/iw are small compared withgur, which is the case, since the

I' < 1, collective effects lead to a dynamical ion screenifomentum transfeig ~ pr. At densitiesp < 10'°gcm-?

of ei interaction which can be described by the dynamical dind under the condition of full ionization, one can safely set the

electric function formalism (e.g., Williams & DeWitt 1959).ion form factorF'(¢) equal to 1, which corresponds to point-like

In a strongly coupled ion liquid, it is customary to use thBUclei.

static structure factor of ions in order to describe the corre- The structure factors in Eq(8) are given by (Paper II)

lation effects (Hubbard 1966). This description, however, does +o0 . Py
not apply to quantum liquids, such as H or He at high densio(9) = / dw 5" (q,w) 1_o2’ (10)
ties (e.g., Chabrier 1993). In crystalline matterjnteraction - a2 1
is adequately described in terms of absorption and emission g,g(q) = S,(q) + (ZF — ) 5S.(q), (11)
phonons (Abrikosov 1961). The description can be realized us- . q 2 ,
ing a dynamical structure factor of ions (Flowers & lfoh 1976 o ,, z

The ei collision frequencies can be expressed through di- w(a) = /_Oo dw 5%(q, w) 1 _ o> (12)

mensionles€oulomb logarithms\,, ,, (cf. Yakovlev & Urpin

1980): In this casez = hw/(kgT') andS”(q,w) is the inelastic part

of the total dynamical structure factét(q,w) = S”(q,w) +
S’(q)d(w), whereas the elastic paff,(¢)d(w), describes Bragg
a?A(m, (7) diffraction. When interaction of electrons with a crystalline lat-
tice is considered, the Bragg diffraction leads to appearance
of electron band structure (Bloch states) but does not con-
tribute to electron transport (e.g., Flowers & Itoh 1976)z If
values “allowed” byS”(q,w) in Egs.[ID)(IR) are small, as
It happens for scattering in a classical Coulomb system [i.e., at
9“ = T,; cf. Eq. [18)], we can pull the other functions containing
z out of the integral setting = 0. ThendS,;(¢) vanishes, and

ke 2 2 S, (q) = Sx(q) = S"(q), whereS” (¢q) = [72° 8" (q,w) dw is
A= [ A0 (@) Sola) ll E (o) ] ®)

el _ drZ2%e*n, A 47 ep
ok PEUF @ 31k

wherevr = prp/m is the electron Fermi velocity.

For a strongly coupled plasma of iofis & 1), the Coulomb
logarithms calculated in the variational approach (with the si
plest trial functions, Zimah 1960) in the Born approximatio
read

c2

ohr the inelastic part of the static structure factor. In this case the

variational solution that is used in EQl (8) becomes exact.
. . In the liquid phasel” < T'y,, it is only the static structure
where gy is the cutoff parameter, equal to zero for the lig; . quid p . F o Xoo

ctor in the classical regimé(q) = [~ dwS(q,w) (e.9.,

uid phase and to the equivalent radius of the Brillouin zo >
5 = (67727“)1/3 in the solid phase. The latter cutoff filters out oung et al 1991 and references therein) that has been deter-

. mined quite accurately. Thus we will consider ormhassical
umklappelectron-phonon processes, which operate atgs o ids 7> 7 "I the solid phasé(q, «) was calculated with
and give the main contribution td, ,., from normal processes, q o~ P P (4,w)

that take place aj < gs and are negligible under the con reasonable accuracy in Paper Il, which enables us to study the
B = . . .

ditions of study (e.g., Baiko & Yakovlev_1905). Furthermoret,ranSport properties of quantum and classical solids.

u(q) = |U(q)|/(4rZe?), U(q) is the Fourier transform of the _ L

elementangei scattering potential, the factor in square brackefs Calculation of electron conductivities

d_e_sc_ribes kinematic suppression _(_)f backward scattering of redar - Solid phase

tivistic electrons (e.g., Berestetskii etal. 1982), &id.(¢) are )

theeffectivestatic structure factors which take into account iohhe dynam.|ca| structure factor of a Qoulomb crystal has peen

correlations, as discussed below. calculated in Paper Il in the harmonic-lattice approximation,

In order to take into account corrections to the Born afRKing into account explicitly multi-phonon processes. &or

proximation, we multiply additionally the integrand in Eg. (88 the inelastic part may be written as

q0

by the ratio of the exact cross section of Coulomb electron scat- e 2Wl@)~hw/(2ksT)  ptoo
tering to the Born cross section. This approximate treatmert (¢:w) = Y / dte™"K(q,T,t), (13)
— 00

of non-Born corrections was proposed by Yakovlev (1987) and )
used in Paper |. The corrections are significantdo 20 and K(g,T,t) = exp hg” coswyt 1 (14)
p 2 10°gcm 3. Y 2m; \wy sinh (2,/2) / ’



348 A.Y. Potekhin et al.: Transport properties of degenerate electrons

where(. ..),n denotes averaging over the phonon spectrum These fits cover a wide range of the parame@f)1 < n <

the first Brillouin zone, and 10 and0 < oy < 0.3, sufficient for calculation of transport

3h /(q-ey)? 1 coefficients. Egs[(21) anf{R2) reproduce also the asymptotes
W(q) = <” (n,, + ) > (15) of the effective structure factors at low and higivhich can be

2m; W 2// pn obtained from Eq<_(19) and (R0). The maximum fit error, equal

In this casey = (Q. s), s = 1, 2,3 enumerates phonon polar-0 4%, occurs for, = 0.001, andy = 0.04.

izations,Q is a phonon wave vectae, the polarization vector, We have alsq calculated the effective structure factors fpr
w, the frequency, and,, = (e* — 1)*1 is the mean number fcc Coulomb lattice and the results appear to be almost indis-

of phonons,z, = fw, /(ksT). For the lattice types of inter- tinguishable from those obtained for bcc lattice. Therefore, the

est [e.g., body centred cubic (bcc) or face centred cubic (f&!)actron transport coefficients are insgnsitive tothe latticellype,
ones], W (q) = r2.¢%/6, wherer2. is the mean-squared ion dis-2nd we will calculate them for bcc lattice.

placement. Thu8/(¢) does not depend on the orientatiorgof

An analytical fit tolV'(¢) was proposed by Baiko & Yakovlev 3.2, Liquid phase

1995):
( ) In the classical liquid, we employ the static structure factor,

W(q) = a1 (u—1 e M 4+ 2nu_s) /4, (16) S(q), obtained by Rogers and DeWitt (unpublished) for the
one-component classical plasma of ions in a rigid electron back-
ground by solving the modified hypernetted-chain (MHNC)
equations (Rosenfeld & Ashcrdit 1979), and fitted by Young
et al. (1991) in the rangé < I' < 225. For calculatingei

wheren = T/T,, un, = ((w/wp)™)ph IS a frequency moment
of Coulomb lattice¢_» = 13.0 andu_, = 2.8 for bcc lattice,
cf. Pollock & Hanseh 1973), and

q> 4kEa? Ty scattering rates, we have modified these structure factors by
a1 = Qo 4Kz W= 3, T 1.683 : (17) " subtracting the contribution of elastic scattering as prescribed
in Paper II:
It is possible to derive an asymptote 8f (¢, w), Eq. [13),
for T > T, (classical solid) and fofw| > wy. Expand?ng Syr(q) = S(q) — e 2W @D (27)3p, Z 5q—G), (23)
cosw,t ~ 1 — (w,t)?/2 andsinh (z,/2) ~ 2,/2 and noting G40
thatthe second termin Eq.{14) does not contributestita, w) ) ) )
at these frequencies, we obtain where the sum is over all non-zero reciprocal lattice vectors
) G, and the upper bar means averaging over orientatiogs of

§" (g w) ~ 1 exp (_ w?  hw ) (18) This modification is meant to account for instantaneous electron

’ T qur ¢?v3 2kgT )’ band-structures which emerge in a strongly coupled Coulomb

liquid because of local temporary crystal-like ordering. In this
context, the choice of the lattice type and corresponding vectors
is ambiguous, but the Coulomb logarithms are insensitive to

wherevr = /2kgT/m; is the thermal ion velocity. Thus in a
classical solid the collisional energy transfer is limited either
hqur or byhwy,, inboth cases being smaller thagil". Therefore

only the values: < 1 contribute to the integral$ (10L{(12) in" gjnce our consideration is based on the classical static struc-

this case. ture factorS(q), we obtainA, = A, andv¢’ = v¢ in the liquid

In the gengral case of classical or quantum Coulomb CrY&gime. This is justified because we typically havée T, for
tals, the effective structure factofs {10) aindl (12) can be Writtgql, cases under study (see below). Nevertheless we could easily

as (Paper Ii) incorporate the quantum effects into the calculation, were the
1 o oo 4y quantum dynamical structure factd¥$q,w) available for ion
Solq) = e W@ / — o K@), (19) fluid.

oo o Note thatin Paper | the Coulomb logarithms in the ion liquid
5S.(q) = e W@ / dr 1-2 Wlh r K(q,T,t), (20) Were calculated witt5(q) obtained for a polarizable electron

oo cosh™ x background including the local field corrections. The effect of
the response of the background appeared to be noticeable for
H and He plasmas only. We neglect this effect in the present
calculations because our consideration of ion liquid for light

wherez = ntT/h. We have calculated, (¢) anddS,(q) for
the bcc lattice and fitted them by the expressions

Sy(q) = e 2@ (e2W1((I) - 1) : (21) elements is approximate anyway due to the neglect of quantum
corrections taS(q).
6Sk(q) = M For light elements, the highest temperatures corresponding
) L+ Ly to the liquid regime" > 1, are much belowl. Accordingly,
0.101 p* 22) there exists a temperature range whére< 7y andI’ < 1.
+ : 22
(0.06408 + 12)(0.001377 + n“‘)?’/?]

5 1 The results by Baiko & Yakovlev (1995, 1996) for the fcc lattice,
Wilq) = Q1 U_27 which led to a different conclusion, were inaccurate due to an error in

2/n? + (u_/117)2 ' a Brillouin zone integration scheme for this lattice.
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In this interval the formalism of the effective structure factorae propose new analytical expressions, which combine reason-
does not provide an accurate treatment ofion screenind. Eor able accuracy with simplicity.

0.25, the Coulomb logarithms were calculated in Paper | taking Instead of constructing ad hoc fits to the numerical values
into account dynamical character of ion screeninig & 1and of o andx, we have chosen to devise affiective ei-scattering

ktr < kr (e.g., Williams & DeWitt 1969): potentialthat would allow us to perform explicit analytical inte-
gration in Eq.[(B) and that would reproduce correctly the familiar
Ay, = In (2]€F> S In (1> + 1+¢ In (1> limiting cases: the case of Debye ion screening in a weakly-
7 D 2 ¢ 2 1+¢ coupled plasma and the case of scattering by high-temperature
—vd/(2¢*) + 3/2, (24) phonons. In the first case?(q)S(q) in Eq. (8) should be re-

laced by(¢? + ¢2)~2, whereg, is the inverse screening length.
¢o = V3T /a; is the inverse Debye screening length ofionaslp,)n the seggn;c({abs)e @& < Teq< T..), ei scattering rate g detger-
¢ = (kTF/qD)2, andﬂ = WafZUF/C; 5/2 is a Iowgst—order mined byuz(q)S”(q),whereuE(q) ~ (q2+k%F)—2’ andS”(q)
non-Born correction in the weak electron-screening approxd- the approximate effective static structure factor (Paper 1)
mation (Yakovlev 1987). - _ which can be written a$” (q) ~ 1 — exp[—u_a?q?/(3D)].
The Coulomblogarithms inthe transition domain from weaghs approach ensures thatthe analytical limits mentioned above
(' < 1)tostrong [ < 1) ion coupling can be calculated usingyre reproduced automatically by the fit expression.

the formalism by Boerker et al. (1982). We do not apply this \ye propose the following form of the effective potential in
formalism, but the Coulomb logarithms calculated’at 0.25 Eq.[8):

and atl" > 1 converge nicely and can be fitted in a unified

manner. This convergence deteriorates at lower 10-100 9 1—ew@

gcm3, because electron screening ceases to be waak{ [“ (Q)S@K(Q)]eﬂf = (@ + ¢2)? Go,(1,8)D (1),
kr), and Eq.[(24) becomes inaccurate.

(25)

wheree~*(@) plays role of an effective Debye—Waller factor at
largeI” and is negligible af* < 1, ¢s is an effective screening
wave numberD (n) is associated with the quantum correction to
Using the effective structure facto, . (¢) described above, the Debye—Waller factor, ar@, .. (, ) is a phenomenological
we have calculated the Coulomb logarithths,, for Z from factor that describes reduction of thermal ion displacements in
1 to 26 and for mass numbers corresponding to the mostquantum solid af” < 7}, and contains non-Born corrections
abundant isotopes. The mass dengityaried from10gcm 3  expressed through the argumgnsee Eq.[[24)]. Our numerical
for Z = 1,2 and from100gcm~3 for Z > 3 to 10'°gcm~3; results are reproduced with the following choicegfw(q) and

the coupling parametdt varied from 1 tol0* for Z < 20 and G, (7, 3):

to 10° for 20 < Z < 26. The physically meaningful domain of ) 2 \.—p

the parameters is constrained by several conditions. First, itis % = (& +krr)e ", (26)
assumed that the atoms are fully ionized (for a treatment of the @Z() = ¢3(140.06T1) e—\/li (27)
case of partial ionization, see below). Secondly, light elements 2

are not present at very high densities and temperatures since ) Lz(g/qD) (1+5/3), (28)
) .

3.3. Numerical results and fitting formulae

2
s

w(q

they bu_rn into_heavierones.Th?rdly, ou_rcalculation inltheid G, (n,B8) = — (1+0.1226%), n = %, (29)

phase is confined to the classical regiriieX 1},), where the N+

quantum corrections to the ion structure factors are neglectetl.(n, 3) = G,(n,3) +0.0105 (1 — Z~')

Fourthly, electrons are assumed to be degenefate(1x). VN ¢ n

Finally, the present formalism appears to be invalid at very low x |1+ (*) Bl —rrarara (30)
1/3,2 c (n? + 0.0081)3/

temperatures <« T,,Z"'/%e* /(hvr), where the electron band- o1

structure effects strongly reduegscattering rate (e.g., Raikh D(n) = exp (—aou—1e """/4), (31)

& Yakovlev[1982), which is not taken into account in Ed. (8). I . .
éqhereao is given by Eq.[(I7). Inserting Eq_(25) into Eqg|. (8), we

For pract_|cal appl_|cat|ons, especially for modelling therm arrive at the analytical expressions for the Coulomb logarithms
and magnetic evolution of the neutron stars, as well as pulsa-

tions of the white dwarfs, it is desirable to have analytical fOP_resented in the Appendix.

mulae for the transport coefficients, rather than tables, graphsThe typical error Qf our fits n the physically reasonable
. ; : ange of parameters is 3% (maximum 6%) for> 20 and
orcumbersome theoretical expressions. Analytical formulae fOr, ) . . .
; radually increases with decreasifigThe maximum error oc-
o andx were presented in several papers based on the earfier : o . . .
. . . . urs for lowZ at the melting point in the high-density region,
theoretical results described in Sétt. 1 (Flowers & [toh 198 . L2
. : o where our formulae interpolate across the conductivity jump
Yakovlev & Urpin[1980; Itoh et al. 1993; Baiko & Yakovlev . . . . .
d{scussed in the next section. For instance, a typical error for

=8 ianifi i
1995; Paper I). As our present results are significantly d'ﬁere?:arbon plasma is 8% and the maximum is 22% at the highest

2 Definitions of the screening parameters below Eq. (15) of Papeﬂﬁns_ity P =10g Cm—_3) andl’ = I'y,. _ . .
corresponding to the present Elq.J(24), contained several misprints. Cor-Finally, let us outline the case of multicomponent ion mix-
rect definitions are reproduced here. tures. Actually the case deserves a separate study and we treat
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I I
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Fig. 1. Dependence of the electrical conductivity producee@iscat- Fig. 2. Same as in Fi§]1 but for the thermal conductivity.
tering on temperature (lower horizontal scale) or Coulomb coupling pa-
rameter (upper horizontal scale) in carbon plasma-at10* g cm 3.

Filled circles show the present numerical results, and the solid line is _ . . .
given by our fitting formula. The dashed line is obtained under tradi- Filled circles display our present numerical values of the

tional assumptions (see the text) and exhibits a jump at the melt@nductivities, while solid lines are the analytical fits. Dashed
point. Dotted lines are obtained including electron scattering’ly lines show the ‘old’ conductivities calculated using the ap-
impurities with concentrations;,, = 0.02 and 0.04. proximations which have been widely employed in the previ-
ous works (Sedtl1): the one-phonon approximation in the solid
phase and use of the total (inelastic + elastic) ion structure factor
d in the liquid phase. One can see large jumps of the ‘old’ curves
at the melting point. These jumps were present for all elements
b and for all plasma parameters, and they were typically a fac-
tor of 2—4 in magnitude (Itoh et al. 1993). The modification of
the structure factors improves the treatment of the conductivi-
. . ties both in the liquid and solid phases of strongly-coupled ion
@I) with Z = Z; andl’; = 25/362(47m‘?/3)1/3(kBT) " (the system (Sectﬂt.ql ahdB.2) angmakes the jumgp); almgst invisi-
ion-coupling parameter for ion specigk The latter expres- ble for different chemical elements in a broad range of densities.

sion is prompted py the ”gdditivity rulg" thatis hig_hly accuratg-ic has allowed us to produce the unified fits which are equally
for thermodynamic functions of multicomponent ion MIXIUres, |iq in solid and liquid matter.

(Hansen et al. 1977).

Another option is to adopt the widely used mean-ion apy
proximation. In the latter approximation, the plasma is treat
as a mixture of electrons and one ionic species, with an effect
chargeeZ. equal to an average charge of all ions at differe
ionization stages. The mean-ion approximation can be used
in the regime of partial ionization (cf. Paper I).

it approximately here. At least f&f 2 T}, it would be a goo
approximation to replac&?n;A.; — 3 ; Zin;A.; in Eq.(3),
where summation is over all ion specigsand the Coulom
logarithmA.; depends generally gin In a strongly coupled ion
system we recommend to calculate; from Eqgs.[(Al), [(26)-

Nevertheless, our calculations do show large jumps of the
nductivities at the melting point at high densities, where zero
int vibrations become important. We suggest that these jumps

fe artificial and come from using classical ion structure factors
ifl ion liquid (Sect[3.R) under the conditions in which quantum

fidcts in liquid are really important. On the other hand, the
guantum effects are properly included in our calculations for
crystalline matter. Since the numerical data used for construct-
ing the fitting formulae include both phases, liquid and solid,
the fitting of these data by the unified analytical expressions
Fig.[I shows the temperature dependence of the electrical csinifts the conductivities in the liquid phase closer to those in
ductivity of degenerate electrons in a carbon plasma at the solid phase. Therefore we expect that the fits in the high-
10* g cm3. Fig.[2 shows the same dependence of the therna&nsity ion liquid give more reliable electron conductivities than
conductivity. Upper horizontal scale indicates correspondimgr original numerical data. This assumption will be checked in
values of the ion coupling parametEr Since the ion charge the future when the structure factors in ion liquid are calculated
number is rather lowf = 6, non-Born corrections are insignif-taking into account the quantum effects.
icant. All the data presented in the figures, except dotted lines, Dotted lines in Figs.]1 arid 2 show the effect of another elec-
show the conductivities produced solely &iscattering. tron scattering mechanism — scattering by charged impurities

4. Discussion of the results
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Fig. 3. Electrical conductivity produced bgi scattering in Fe matter Fig. 4. Same as in Fil3 but for the thermal conductivity.
atp = 10®gcm 3 vs temperature or Coulomb coupling parameter.

Filled circles show the present numerical results, and the solid lineis 18 ——mmm™M————————————5—~
the fit (non-Born corrections included). Open circles are the present [
results but in the Born approximation. The dashed line is the old result,
in the Born approximation. .

(e

~
|

g
(Sect[ZR). We have assumed an admixture of oxygen nucﬁléﬁ
with concentrations 2% and 4%. Electron-impurity scatteringa
is seen to have little effect on the conductivities at high temo
peratures, but it becomes dominant scattering mechanism @&t
T < Ty,

Figs[3 and ¥ are analogous to Figs. 1 &hd 2 and show thg
temperature dependence of the conductivities produceei byﬁio e
scattering in iron plasma at = 10®gcm~3. Filled dots are ]
our numerical results and solid lines are the fits. One can again L 170
see large jumps of the traditional conductivities at the melting 3
point, and the smooth character of the improved curves. For el- lgp [gem ']

ements with higl? (like Fe), the non-Born corrections becom?—ig. 5. Thermal conductivity vs density in iron plasma at sevéral

important in a dense plasma (Yakoviev 1987). To illustrate thig ;s symbols show numerical resuilts, and curves are the fits. Con-

effect, (_)pen_circles display results Ofm_” calculationsin the Bogilictivity due toeecollisions is included but is entirely unimportant.
approximation. The non-Born corrections are seen to increag@urities are neglected.

theeicollision frequency (decrease the conductivities) by about
20-30%. The corrections become lower when density decreases
below 106 g cm—3. Dashed lines show the ‘old’ conductivitiesdensity range (related to the outer envelope of a neutron star
calculated in the Born approximation. The divergence betwe@ht0 the core of a white dwarf). We assume that no impurities
the ‘old’ and new results in the Born approximation, seen ff€ Present, but we include the contributioreefscattering in
Fig.[ at relatively low temperatures, is caused by a not very &ddition to theei scattering. Theescattering contributes ta,,
curate determination of the low-temperatufe< T,) asymp- 1€ lowers the thermal conductivity. According to Paper I,
tote of an effective electron-phonon potential in the ‘old’ results 3a2 (kpT)? [ 2ke \?
by Baiko & Yakovlev {1995). vee = TEB (F> J(2e,9), (32)
The density dependence of the thermal conductivity at sev- 27 mec® \krr

f[ahral vallues odfF |ts f:llspllca_lyed ||n FlgﬂStT]rﬁdG. F.5 shows thﬁ/herey = \BTyo/T, Tye = (h/kp)/IncPng/m? is the

ermal conductivity of iron plasma in the density range appra .on plasma temperature, and
priate to the outer envelope of a neutron stalgdf[K]= 6.5,
7.0, 7.5 and 8.0. Fig] 6 shows the thermal conductivity of mat- N 6 2 y®
ter composed of H, He, C, Fe &t= 107 K in about the same 7 (%1 y) = {1+ 522 + 524 ) |3(1+ 0.07414y)3

o
~
©
©
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Fig. 6. Thermal conductivity vs density in matter of different chemicaFig. 7. Coulomb logarithms versus effective Coulomb coupling param-
composition (H, He, C, Fe) & = 107 K. Filled circles are numerical eter for a partially ionized iron plasma with effective chatfig = 4
values and curves are fits. Lower curves and circles are calculaség = 10° g cm™? in the mean-ion approximation.

including ei and ee collisions, while upper curves and circles take

account ofei collisions alone. Although we did not include the data withi < A/2 in the
fitting, our fit formulae appear to be robust and reproduce them

xIn 1+ 2.81 081 ﬁ quite well.
Yy y 2
[ 4 .
™ Y 5. Conclusions
MG +y)4} (33)

We have reconsidered the electrical and thermal conductivi-

For a plasma of light elementg, < 6, the strongest effect of the ties of degenerate electrons produceehscattering, using the
eecollisions takes place at temperatures comparable to deg@@dified structure factors of ions as suggested in Paper II. We
eracy temperaturéy (Lampe_1968; Urpin & Yakovlel 1980), have analysed the electron transport in a wide range of den-
as confirmed by Fi6. For Fe matteecollisions are unimpor- Sities, from about 0>~10*gcm™2 to ~ 107-10'gcm?, and
tant. For H and He plasmas, their effect is more pronounced@iperatureg’ ~ 10*-10° K, for chemical compositions of as-
lower p, where the chosen temperatufe= 107 K, is closer to trophysical importance. The obtained conductivities differ sig-
Tr. We conclude thatecollisions do not play a leading role innificantly from those calculated previously in a wide range of
thermal transport by degenerate electrons but should be tal@Rperaturesly, /5 S T' S 515, near the melting temperature
into account in a plasma composed of light elements. T, of Coulomb crystals. Our new approach has reduced unreal-
The strong effect of chemical composition (Fih. 6) is rdstically large jumps of the transport coefficients at the melting
lated to theZ-dependence of the collision frequencig, . The point obtained in the earlier works. This, in turn, allowed us to
higher isZ, the larger is/¢,, and the lower is the conductivity.develOp a unified description of electrop conductipn in liquid
Comparing Fig$l5 and 6 we see that a temperature variatff#fl crystal matter and obtain an effective potential forehe
by a factor of 30 can change the thermal conductivity of irdfiteraction. _ o
plasma much less than altering the chemical composition from Theei scattering, which we studied in this article, is known
H to Fe at fixedl". This effect has important consequences féf Pe the mostimportant mechanism of electronrelaxation under
the relationship between surface and internal temperaturedtvailing physical conditions in the envelopes of neutron stars
neutron stars (Paper I). and in the cores of white dwarfs. We expect th'at the improved
Finally let us consider partially ionized matter. We expedfansport coefficients can be used to solve various problems of
that this case can be considered in the mean-ion approxirfft phyS|_cs of neutron stars and \_/vhlte dwarfs (coollng, evolution
tion (Sect[3B). Figl7 shows the dependence of the CouloffpAccreting stars, nuclear burning of matter, pulsation modes,
logarithmsA,, andA,, on the effective Coulomb plasma param€Volution of magnetic fields, etc.).

eterl’ = ZZ;e? (4,77”1/3)%/3(1‘313T)71 for a partially 'On'_Zed Fe AcknowledgementsiVe thank F.J. Rogers and H.E. DeWitt for un-
matter atp = 10°gcm ® and Z.z = 4. The assumption that published tables of the static structure factor of ion liquid. D.G.Y.,
Zem is independent of temperature is unrealistic, and we ad@py.p. and D.A.B. are grateful for the hospitality of and stimulating

it for illustration only. Open and filled symbols show numericaltmosphere at the N. Copernicus Astronomical Center in Warsaw. This
values ofA, andA,, respectively, calculated in the mean-ionvork was supported by Grant Nos. RFBR 99-02-18099a, DFG-RFBR
approximation, while dotted and dashed lines are the fit curv€6:-02-00177G, INTAS 96-0542 and KBN 2 PO3D 014 13.
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