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ABSTRACT

We present an equation of state and radiative opacities for a strongly magnetized hydrogen plasma at mag-
netic fields B, temperatures T, and densities � typical for atmospheres of isolated neutron stars. The first- and
second-order thermodynamic functions, monochromatic radiative opacities, and Rosseland mean opacities
are calculated and tabulated, taking account of partial ionization, for 8� 1011 G � B � 3� 1013 G,
2� 105 K � T � 107 K, and a wide range of �. We show that bound-bound and bound-free transitions give
an important contribution to the opacities at Tdð1 5Þ � 106 K in the considered range of B in the outer
neutron star atmosphere layers, which may substantially modify the X-ray spectrum of a typical magnetized
neutron star. In addition, we reevaluate opacities due to free-free transitions, taking into account the motion
of both interacting particles, electron and proton, in a strong magnetic field. Compared to the previous neu-
tron star atmosphere models, the free-free absorption is strongly suppressed at photon frequencies below the
proton cyclotron frequency. The latter result holds for any field strength, which prompts a revision of existing
theoretical models of X-ray spectra of magnetar atmospheres.

Subject headings: equation of state — magnetic fields — plasmas — stars: atmospheres — stars: neutron

1. INTRODUCTION

Models of neutron star atmospheres are needed for inter-
pretation of their spectra and cooling. These atmospheres
differ from the atmospheres of ordinary stars because of the
high gravity and magnetic fields (for review see, e.g., Pavlov
et al. 1995; Ventura & Potekhin 2001).

A magnetic field is called strong if the electron cyclotron
energy �h!ce ¼ �heB=mec exceeds 1 a.u.; i.e., the field strength
B is higher than B0 ¼ m2

ece3=�h
3 ¼ 2:3505� 109 G, where

me is the electron mass, e the elementary charge, and c the
speed of light. Usually the field is called superstrong
if �h!ce > mec2, that is, B > Br ¼ m2

ec3=e�h ¼ 4:414� 1013 G.
Most of the radio pulsars have magnetic fields B �
1012 1013 G (Taylor, Manchester, & Lyne 1993), whereas
anomalous X-ray pulsars and soft gamma repeaters are
thought to have superstrong fields (e.g., Mereghetti 2001;
Thompson et al. 2000 and references therein). Nonnegli-
gible amounts of neutral atoms can exist in the photosphere
at typical neutron star temperatures T � 106 K (Potekhin,
Chabrier, & Shibanov 1999, hereafter Paper I). A strong
magnetic field enhances atomic binding and makes the
quantum mechanical characteristics of an atom dependent
on its motion across the field (for a recent review see Lai
2001). In photospheres of the neutron stars, the field is, as a
rule, strongly quantizing; i.e., it sets all the electrons on the
ground Landau level. This occurs if �e41 and � < �B,
where

�e ¼
�h!ce

kBT
� 134:3

B12

T6
; ð1Þ

� is the density, and �B ¼ mH=ð�2
ffiffiffi
2

p
a3mÞ � 7100B

3=2
12 g cm�3

(for the hydrogen plasma). Here and hereafter,

mH ¼ mp þme, mp is the proton mass, am ¼ ð�hc=eBÞ1=2 is
the magnetic length, kB is the Boltzmann constant, B12 ¼
B=1012 G, and T6 ¼ T=106 K.

Opacities for the two polarization modes of radiation are
quite different in strongly magnetized plasmas (e.g., Pavlov
et al. 1995 and references therein), which makes thermal
emission of neutron stars polarized and anisotropic (Zavlin
et al. 1995). The mean opacities are strongly reduced at
�e41 (e.g., Silant’ev & Yakovlev 1980); thus, the bottom of
the photosphere is shifted to high densities (e.g., Pavlov et
al. 1995; Lai & Salpeter 1997).

The chemical composition of neutron star atmospheres is
not precisely known. Just after the neutron star birth in a
supernova explosion, the outer stellar envelope is most
probably composed of iron. However, light elements may
be brought to the surface later (e.g., by fallback, accretion,
or encounters with comets). Because of rapid gravitational
sedimentation, the lightest element will cover the surface
(see Brown, Bildsten, & Chang 2002). About 1012–1014 g
of hydrogen (<10�19 M�) is sufficient to fill the entire
photosphere.

Shibanov et al. (1992) presented the first model of hydro-
gen atmospheres with strong magnetic fields. Later it was
developed beyond the diffusion approximation (Shibanov &
Zavlin 1995) and used for astrophysical predictions (e.g.,
Zavlin et al. 1995; Zane, Turolla, & Trevis 2000; Zane et al.
2001; Ho & Lai 2001, 2003; Lai & Ho 2002; Özel 2001,
2003) and for interpretation of observed neutron star spec-
tra (e.g., Page, Shibanov, & Zavlin 1995, 1996; Pavlov et al.
1995; Özel, Psaltis, &Kaspi 2001).

The above studies assume that the atmosphere is fully
ionized. Meanwhile, it was recognized long ago (e.g., Miller
1992) that a significant contribution to the opacities of
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neutron star photospheres with strong magnetic fields might
come from bound-bound and bound-free absorption by
atoms. Examples of monochromatic opacities in partially
ionized iron (Rajagopal, Romani, & Miller 1997) and
hydrogen (Potekhin, Chabrier, & Shibanov 2000) atmos-
pheres confirmed this conjecture. In Paper I we have pre-
sented an equation of state (EOS) of a partially ionized
hydrogen plasma for the values of T and B typical for
atmospheres of the radio pulsars. Here we report results of
extensive calculations of thermodynamic functions based
on the theory developed in Paper I, supplemented by calcu-
lations of the opacities (monochromatic and Rosseland
mean). Partial ionization and plasma nonideality are
taken into account for 11:9 � log10 B=G � 13:5 and 5:3 �
log10 T=K � 7:0. Bound-bound and bound-free radiative
transitions are treated within the framework of a previously
developed theory (Pavlov & Potekhin 1995; Potekhin &
Pavlov 1997). The free-free absorption cross sections are
reevaluated. Whereas the previous authors considered pho-
toabsorption by an electron scattered off a fixed Coulomb
center, we take into account the finite proton mass, which
has a nontrivial effect on the photoabsorption in a quanti-
zing magnetic field.

The paper is composed as follows. In x 2 we formulate the
main assumptions and give the basic formulae used in our
work. In x 3 we present the EOS of partially ionized hydro-
gen under conditions in neutron star photospheres. In x 4
we discuss various contributions to the hydrogen photoab-
sorption cross sections in strong magnetic fields and derive a
new formula for the free-free cross section. Opacities of
hydrogen photospheres of the neutron stars are discussed in
x 5. Appendices give some detail of calculation of the free-
free cross sections.

2. BASIC EQUATIONS AND PHYSICS INPUT

2.1. Hydrogen AtomMoving in aMagnetic Field

If an atom rests without motion in a strong magnetic
field, there are two distinct classes of its quantum states: at
every value of the Landau quantum number n and the mag-
netic quantum number �s (n � 0, s � �n), there is one
tightly bound state, with binding energy growing asymp-
totically as ½lnðB=B0Þ�2, and an infinite series of hydrogen-
like states with binding energies approaching the energies
of a field-free H atom (e.g., Canuto & Ventura 1977). The
atom is elongated: its size along the magnetic field B either
decreases logarithmically (for the tightly bound states) or
remains nearly constant (for the hydrogen-like states),
while the transverse radius is close to am, decreasing as
B�1/2. The radiative transition rates are different for the
three basic polarizations: the linear polarization along the
field and the two circular polarizations in the transverse
plane.

This simplicity is destroyed when atomic motion is taken
into account. The electric field, induced in the comoving
frame of reference, breaks down the cylindrical symmetry.
In the nonrelativistic quantum mechanics, the binding
energies and wave functions of the H atom are given by a
solution of the Schrödinger equation with the two-particle
Hamiltonian

H ¼ �2e
2mp

þ �2e
2me

� e2

re � rp
�� �� ; ð2Þ

wheremi, ri, and pi are the mass, radius, and kinetic momen-
tum of the electron (i ¼ e) or proton (i ¼ p). The kinetic
momentum (related to the velocity) equals (e.g., Landau &
Lifshitz 1976)

pi ¼ pi �
qi
c
AðriÞ ; ð3Þ

where qi is the charge of the ith particle (qe ¼ �qp ¼ �e), pi
is the canonical momentum (i.e., pi ¼ �i�hri in the coordi-
nate representation), and AðrÞ is the vector potential of the
field. A conserved quantity related to the center-of-mass
motion is the pseudomomentum

K ¼ pp þ pe þ
e

c
B� rp � re

� �
: ð4Þ

Let the z-axis of the Cartesian coordinates ðx; y; zÞ be
directed along B. Separating the center-of-mass motion
(Gor’kov & Dzyaloshinskii 1967; Vincke, Le Dourneuf, &
Baye 1992; Potekhin 1994) and choosing the gauge of the
vector potential in the form

AðrÞ ¼ 1

2
B� r�mp �me

mH
r0

� �
; ð5Þ

where r0 is arbitrary, one comes to the effective one-particle
Schrödinger equation

p2z
2l

þH? þHK ðr0Þ �
e2

r0 þ rj j

� �
 ðrÞ ¼ E ðrÞ : ð6Þ

Here r ¼ re � rp � r0 is a ‘‘ shifted ’’ relative coordinate,
pz ¼ �i�h@=@z is the z-component of its conjugate momen-
tum p,

H? ¼ �2?
2l

� e

mpc
B x ðr� pÞ ; ð7Þ

HK ðr0Þ ¼
1

2mH
K þ e

c
B� r0

� �2
þ e

mHc
K þ e

c
B� r0

� �
x ðB� rÞ ; ð8Þ

and l ¼ memp=mH is the reduced mass. In equation (7),

p ¼ pþ e

2c
B� r ð9Þ

and the subscript ‘‘?’’ denotes a vector component perpen-
dicular to B.

HKðr0Þ turns to zero, if we set r0 ¼ rc, where

rc ¼
c

eB2
B� K ð10Þ

is the relative guiding center (the difference between the elec-
tron and proton guiding centers). This choice of r0 is most
useful for bound states with large K? and the states of the
continuum, whereas for bound states with small K? the
choice r0 ¼ 0 is most appropriate (Potekhin 1994; Potekhin
& Pavlov 1997).

The eigenfunctions of H? are the Landau functions
�nsðr?Þ (given, e.g., by eq. [5] of Potekhin & Pavlov 1993),
with eigenenergies

E?
ns ¼ n�h!ce þ ðnþ sÞ�h!cp ; ð11Þ

where !cp ¼ ðme=mpÞ!ce is the proton cyclotron frequency.
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It is convenient to expand the wave function on the basis
of�nsðr?Þ,

 ðrÞ ¼
X
n0s0

gn0s0 ðzÞ�n0s0 ðr?Þ ; ð12Þ

and to label  ðrÞ by numbers n and s, corresponding to the
leading term of this expansion. The third quantum number
� then enumerates ‘‘ longitudinal ’’ energy levels. The adia-
batic approximation widely used in the past (e.g., Gor’kov &
Dzyaloshinskii 1967; Canuto & Ventura 1977) corresponds
to retaining only one term n0 ¼ n, s0 ¼ s in equation (12).
We perform calculations without this approximation.

The total energy of the atom in equation (6) can be
written as

E ¼ E?
ns þ Ek

ns�ðK?Þ : ð13Þ

Here the longitudinal energy E
k
ns�ðK?Þ is negative for the

bound and autoionizing (resonance) states and positive for
the continuum states, in which the motion along z is infinite
(in the latter case, � is continuous). Since n ¼ 0 for the
bound states of an H atom in a strong magnetic field, we will
drop the number n but imply n ¼ 0 for these states. Then the
binding energy is

�s�ðK?Þ ¼ E
k
s�ðK?Þ

��� ���� s�h!cp : ð14Þ

The substitution of equation (12) in equation (6) reduces
the problem to the set of the coupled channel equations

p2z
2l

þ E?
n0s0 � E

� �
gn0s0 ðzÞ þ

X
n00;s00

V tot
n00s00;n0s0 ðzÞgn00s00 ðzÞ ¼ 0 ; ð15Þ

where

V tot
ns;n0s0 ðzÞ ¼ ns HK ðr0Þj jn0s0h i?þVns;n0s0 ðr0; zÞ ð16Þ

is a total coupling potential and

Vns;n0s0 ðr0; zÞ ¼ ns
�e2

r0 þ rj j

����
����n0s0

	 

?

ð17Þ

is an effective Coulomb potential. Here

ns f ðrÞj jn0s0h i?¼
Z

�	nsðr?Þf ðrÞ�n0s0 ðr?Þd2r? : ð18Þ

Numerical solutions of equation (6) for various K? were
presented by Vincke et al. (1992). At superstrong fields,
binding energies were calculated by Lai & Salpeter (1995).
The system of equations given by equation (15) was numeri-
cally solved for the discrete atomic states by Potekhin
(1994) and for the continuum by Potekhin & Pavlov (1997).
According to these studies, an atom moving across the
strong magnetic field acquires a constant dipole moment
parallel to rc. Those radiative transitions, which were dipole
forbidden for an atom at rest because of conservation of the
z-projection of the angular momentum, become allowed
and should be taken into account in the atmosphere models.
If K? is small enough, the dipole moment is also small.
When K? exceeds a certain critical value, the atom becomes
decentered: the average distance between the electron and
proton approaches rc. In this case,K? characterizes the elec-
tron-proton distance, rather than the atomic velocity. The
binding energies (eq. [14]) decrease with increasing K?.
Asymptotically, at large K?, all longitudinal energies tend

to�e2/rc. In this limit, the cylindrical symmetry of the wave
function and dipole selection rules are restored, but the axis
of symmetry is shifted to the distance rc from the Coulomb
center.

2.2. ThermodynamicModel

The EOS for partially ionized hydrogen in strong mag-
netic fields was constructed and discussed in Paper I. We
employ the free-energy minimization technique in the
‘‘ chemical picture ’’ of a plasma (for discussion of its advan-
tages and limitations see, e.g., Saumon, Chabrier, & Van
Horn 1995; Potekhin 1996b). The treatment is based on the
framework of the free-energy model developed by Saumon
& Chabrier (1991, 1992) at B ¼ 0 (see also Saumon et al.
1995 and x 2 of Paper I) and extends it to the strong mag-
netic field case.

We consider a plasma composed of Np protons, Ne elec-
trons, NH hydrogen atoms, and Nmol molecules in a volume
V, the number densities being nj 
 Nj=V . The Helmholtz
free energy is written as the sum

F ¼ Fe
id þ Fp

id þ Fneu
id þ FC

ex þ Fneu
ex ; ð19Þ

where Fe
id, F

p
id, and Fneu

id are the free energies of ideal gases of
the electrons, protons, and neutral species, respectively, FC

ex

takes into account the Coulomb plasma nonideality, and
Fneu
ex is the nonideal contribution that arises from interac-

tions of bound species with each other and with the elec-
trons and protons. In equation (19) we have disregarded the
additive contribution due to photons, since it does not affect
ionization equilibrium. Moreover, generally we need not
assume thermodynamic equilibrium of radiation with mat-
ter. Ionization equilibrium is given by minimization of F
with respect to particle numbers under the stoichiometric
constraints, provided that the total number N0 of protons
(free and bound) is fixed. The latter number is determined
by the total mass density: n0 
 N0=V � �=mH.

The first term in equation (19) is Fe
id ¼ leNe � PeV , where

le and Pe are the chemical potential and pressure of the ideal
Fermi gas, respectively. They are obtained as functions of
the electron number density ne and temperature T from
equations (e.g., Blandford &Hernquist 1982)

Pe ¼ Pr
b�

3=2
0ffiffiffi
2

p
�2

X1
n¼0

ð2� �n0Þð1þ 2bnÞ1=4I1=2ð�n; �nÞ ; ð20Þ

ne ¼ 	�3
C

�0b

2�2

X1
n¼0

ð2� �n0Þ

ffiffiffiffi
2

�n

s
@

@�n
I1=2ð�n; �nÞ

" #
; ð21Þ

where

I1=2ð�; �Þ ¼
Z 1

0

et�� þ 1ð Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 1þ �t

2

� �r
dt ;

�n ¼ le
kBT

þ ��1
0 � ��1

n ; �n ¼
T=Trffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2bn

p ;

and b ¼ ðB=BrÞ. In these equations, 	C ¼ �h=ðmecÞ2 �
3:8616� 10�11 cm, Pr ¼ mec2=	

3
C � 1:4218� 1025 dyn

cm�2, andTr ¼ mec2=kB � 5:930� 109 K are the relativistic
units of length, pressure, and temperature, respectively, and
mec

2 is not included in le. We employ analytic fitting formu-
lae to the standard Fermi-Dirac integral I1/2 in equation
(20) and to the expression in square brackets in equation
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(21), accurate within a few parts in 103. These fits are pre-
sented, respectively, in x 3 of Chabrier & Potekhin (1998)
and in Appendix C of Potekhin (1996a). When the electrons
are nonrelativistic (as usually in the photospheres), equa-
tions (20) and (21) reproduce equations (30) and (31) of
Paper I.

The Coulomb free-energy contribution consists of three
parts, FC

ex ¼ Fpp þ Fee þ Fpe, which represent, respectively,
the proton-proton, electron-electron, and proton-electron
interactions. There was no detailed study of the influence of
a strong magnetic field on these contributions in the � and T
domain we are interested in. Therefore, we employ nonmag-
netic expressions (Chabrier & Potekhin 1998; Potekhin &
Chabrier 2000), scaled with B. Specifically, the nonmagnetic
expression for Fpe is based on numerical results obtained in
the hypernetted chain approximation for the linear response
theory with a local field correction (Chabrier 1990). The
nonmagnetic expressions for Fpp and Fee result from fitting
the most accurate numerical results available in the litera-
ture (see Potekhin & Chabrier 2000 for references). In the
strong magnetic field, the B-scaling of the nonmagnetic FC

ex

is constructed so as to match known low- and high-density
limits (x IIIB of Paper I).

The free energy of nondegenerate and nonrelativistic gas
of protons, Fp

id, is given by

Fp
id

NpkBT
¼ ln 2�a2m	pnp

� �
þ ln 1� e��p

� �
� 1

þ �p
2
� ln 2 cosh

gp�p
4

� �� �
; ð22Þ

where gp ¼ 5:585 is the proton gyromagnetic factor,
	p ¼ �h½2�=ðkBTmpÞ�1=2 is the proton thermal wavelength,
and �p ¼ �h!cp=kBT � 0:0732B12=T6.

Let Ns� be the total number of H atoms with given quan-
tum numbers s and � in the volume V, and let ps�ðK?Þd2K?
be the probability for such an atom to have a transverse
pseudomomentum in an element d2K? aroundK?. Then the
ideal part of the free energy for hydrogen atoms is

FH
id ¼kBT

X
s�

Ns�

Z
ln Ns�	H

ð2��hÞ2

V
ps�ðK?Þ

" #(

�1� �s�ðK?Þ
kBT

)
ps�ðK?Þd2K?

þNHkBT
�p
2
� ln 2 cosh

gp�p
4

� �� �
 �
; ð23Þ

where 	H � 	p is the thermal wavelength of an atom. The
probability density ps�(K?) is calculated in a thermodynami-
cally consistent way from derivatives of the total free energy
F with respect to the particle numbers. Molecules H2 are
treated in an approximate manner, without taking into
account their excited states and possible effects caused by
their motion across the magnetic field and rotation. Finally,
the nonideal part of the free energy of neutral species, Fneu

ex ,
is obtained in frames of the hard-sphere model, with effec-
tive radii depending on the quantum numbers and pseudo-
momenta of interacting atoms (see Paper I for detail).

Once the free energy is obtained, its derivatives over �
and T and their combinations provide the other thermo-
dynamic functions.

2.3. PolarizationModes and Opacities: Basic Relations

Propagation of radiation in magnetized plasmas was dis-
cussed in many papers and monographs (e.g., Ginzburg
1970). At photon energies �h!much higher than

�h!pl ¼
4��h2e2ne

me

 !1=2

� 28:7�
1=2
0 eV ; ð24Þ

where !pl is the electron plasma frequency and
�0 
 �= g cm�3ð Þ, radiation propagates in the form of extra-
ordinary (hereafter labeled by index j ¼ 1) and ordinary
(j ¼ 2) normal modes. These modes have different polariza-
tion vectors ej and different absorption and scattering co-
efficients, which depend on the angle hB between the
propagation direction and B (e.g., Kaminker, Pavlov, &
Shibanov 1982). The two modes interact with each other via
scattering. Vectors ej for a fully ionized plasma have been
derived by Shafranov (1967). Ventura (1979) gave an
instructive analysis of the plasma polarization modes rele-
vant to the neutron stars. Gnedin & Pavlov (1973) formu-
lated the radiative transfer problem in terms of these modes.
They introduced the convenient real parameters q and p,
which completely determine the normal-mode polarization
properties, and which are defined as

qþ ip ¼ "yy � "xx cos2 
B þ "xz sin 2
B � "zz sin
2 
B

2i "xy cos 
B þ "yz sin 
B
� � ; ð25Þ

where "ij are the components of the complex permittivity
tensor (Ginzburg 1970), and the z-axis is directed along B.
The parameter q determines the ellipticity of the normal
modes, and the parameter p is associated with absorption of
radiation. In the most common case, one has

qj j4 pj j; qð!; 
BÞ � ~qqð!Þ sin2 
B
2 cos 
B

: ð26Þ

These relations may be invalid in narrow frequency ranges
where resonant absorption occurs (e.g., near the electron or
ion cyclotron resonance).

The formulae for ej that take into account contribution of
the plasma ions, implied in Shafranov (1967), have been
explicitly written by Ho & Lai (2001). The electron-positron
vacuum polarization in a strong magnetic field dramatically
changes the normal-mode properties in certain �-! domains
(for a review see Pavlov & Gnedin 1984). The vacuum
dielectric tensor has been obtained by Adler (1971) at
B5Br and by Heyl &Hernquist (1997a, 1997b) in both lim-
its of B5Br and B4Br. Using these results, Ho & Lai
(2003) derived convenient expressions for the polarization
vectors of normal modes, which take into account the con-
tributions from the electrons, ions, and vacuum.

The presence of bound species modifies the complex per-
mittivity tensor and hence the properties of the normal
modes. Their accurate treatment in a partially ionized
medium with a strong magnetic field is a complicated prob-
lem, which has not been solved yet. The normal polarization
modes of a neutral gas of hydrogen atoms in strong mag-
netic fields were studied by Bulik & Pavlov (1996), who
applied the Kramers-Kronig relations to the bound-free
and bound-bound atomic absorption coefficients obtained
previously by Potekhin & Pavlov (1993) and Pavlov &
Potekhin (1995). The thermal motion effects, which had not
been calculated by that time for the bound-free transitions
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in strong magnetic fields, were evaluated using a perturba-
tion approximation (Pavlov &Mészáros 1993). The qualita-
tive behavior of the polarization vectors proved to be the
same as for the fully ionized plasma in a wide range of ! and
hB, where equation (26) holds. However, there are quantita-
tive differences. The frequencies at which equation (26) is
not valid are of the order of the photoionization threshold
!th and the principal bound-bound transition frequencies,
where the resonant absorption takes place in the neutral gas
(instead of !ce and !cp in the fully ionized plasma). The
numerical values of ~qqð!Þ are modified. For instance, at !
well above !th, ~qqð!Þ is larger than it would be in the case of
full ionization, which makes the normal-mode polarization
more linear.

Polarization properties of normal modes in a partially
ionized plasma with a strongly quantizing magnetic field
remain unexplored. Hereafter we consider mostly situations
in which the neutral fraction is small. Since even for com-
pletely nonionized gas the properties of the polarization vec-
tors (in particular, their dependence on hB) are qualitatively
the same as for the fully ionized plasma (except for the reso-
nant absorption frequency ranges), we assume that the
polarization modes for the fully ionized plasma are a good
approximation and adopt the formulae given by Ho & Lai
(2003).

At a fixed photon frequency !, the absorption opacity
�aj ð
BÞ in each mode j and scattering opacities �sjj0 ð
BÞ from
mode j into mode j0 can be presented as (e.g., Kaminker et al.
1982)

�aj ð
BÞ ¼ m�1
H

X1
�¼�1

ej;�ð
BÞ
�� ��2
a� ; ð27Þ

�sjj0 ð
BÞ ¼
3

4

X1
�¼�1

ej;�ð
BÞ
�� ��2 
s�

mH

Z �

0

ej0;� 

0
Bð Þ

�� ��2sin 
0B d
0B ;
ð28Þ

where � ¼ 0, �1, ej;0 ¼ ej;z is the z-component of ej, and
ej;�1 ¼ ðej;x � ej;yÞ=

ffiffiffi
2

p
are the circular components. The

cross sections 
� depend on !, but not on j or hB.
The total scattering opacity from mode j is �sj ¼ �sj1 þ �sj2,

and the total extinction opacity is �j ¼ �aj þ �sj .
In the diffusion approximation (whose accuracy was

studied, e.g., by Shibanov & Zavlin 1995), the effective
opacity is

�effj ¼ cos2 #

�
k
j

þ sin2 #

�?j

 !�1

; ð29Þ

where # is the angle between B and the intensity gradient,

1

�
k
j

¼ 3

4

Z �

0

cos2 
B
�jð
BÞ

sin 
B d
B;
1

�?j
¼ 3

2

Z �

0

sin3 
B
�jð
BÞ

d
B :

ð30Þ

The effective opacity for the nonpolarized radiation is
�eff ¼ 2=½ð�eff1 Þ�1 þ ð�eff2 Þ�1�.

In a partially ionized atmosphere, the opacity is contrib-
uted by electrons, ions, and bound species. The scattering
cross section includes contributions from the electrons
and protons: 
s� ¼ 
s;e� þ 


s;p
� (the Rayleigh scattering by

atoms can be important only at lower photon energies than

considered in this paper). The absorption cross section 
a�
includes contributions from absorption by plasma electrons
and protons (free-free transitions due to the electron-proton
collisions, 
ff� , and proton-proton collisions, 
pp� ), transi-
tions between discrete states of an atom (bound-bound
absorption, 
bb� ), and photoionization (bound-free, 
bf� ).
Hence, for the hydrogen atmosphere we can write


a� ¼ xH 
bb� þ 
bf�
� �

þ ð1� xHÞ 
ff� þ 
pp�
� �

; ð31Þ

where xH is the number fraction of atoms, which will be
evaluated in the following section.

3. EQUATION OF STATE

3.1. Calculation of Tables

Our treatment of the ionization equilibrium and EOS of
hydrogen in strong magnetic fields is based on the theory
developed in Paper I and briefly exposed in x 2.2. Since our
free-energy model is computationally expensive, it is not
possible to use the EOS code ‘‘ on-line ’’ in any practical
application. The alternative is to tabulate thermodynamic
quantities covering the density, temperature, and magnetic
field domain of interest and to rely on an interpolation pro-
cedure in the table. Here we present EOS tables that cover a
range of �, T, and B appropriate for most typical neutron
stars, such as isolated pulsars.

As discussed in Paper I, our model becomes less reliable
at relatively low T and high �, particularly because of for-
mation of molecules and chains Hn, which are treated in an
approximate manner. In this domain, the partial number
fractions and thermodynamic quantities are strongly model
dependent. However, this domain of uncertainty is unim-
portant for modeling of not too cold neutron stars because
the temperature grows inside the stellar envelope. For this
reason, we have chosen as an input parameter the ‘‘ astro-
physical density parameter ’’ R ¼ �0=T

3
6 , which is custom-

ary in the stellar opacity calculations (e.g., Seaton et al.
1994; Iglesias & Rogers 1996), and restricted the calculation
toR < 4� 103.

3.2. Ionization Equilibrium

Our detailed thermodynamic model shows that a strong
magnetic field generally increases the fraction of bound spe-
cies. In Figure 1, ionization equilibrium curves at B ¼ 1012

and 1013.5 G are compared with the case of B ¼ 0. The latter
case is treated in the framework of the nonmagnetic free-
energy model (x II of Paper I), which is a variant of the Sau-
mon & Chabrier (1991, 1992) model. In all cases, the excited
atoms contribute significantly at low �. In the strong mag-
netic field, the population of decentered atoms is also signifi-
cant at low �. At higher density, the excluded-volume effect
eliminates the excited and decentered atoms. At these high
densities, the plasma species strongly interact, which leads
to appearance of a significant fraction of clusters. Such clus-
ters contribute to the EOS similarly to the atoms, lowering
the pressure, but their radiation absorption properties are
clearly different from those of an isolated atom. Therefore,
they should be excluded from xH in equation (31). Analo-
gously, at low � we should not include in xH the highly
excited states that do not satisfy the Inglis & Teller (1939)
criterion of spectral line merging, being strongly perturbed
by plasmamicrofields. Such states form the so-called optical
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pseudocontinuum (e.g., Däppen, Anderson, & Mihalas
1987). This distinction between the ‘‘ thermodynamic ’’ and
‘‘ optical ’’ neutral fraction is inevitable in the chemical pic-
ture of a plasma at high densities (see, e.g., Potekhin 1996b
for a discussion). We discriminate the atoms that keep their
identity from the ‘‘ dissolved ’’ states (i.e., strongly per-
turbed by the plasma environment) using the occupation
probability formalism. At every s, �, and K?, we calculate
the ‘‘ optical ’’ occupation probability wo

�sðK?Þ, replacing
the Inglis-Teller criterion by an approximate criterion based
on the average atomic size (eq. [14] of Pavlov & Potekhin
1995). The fraction of weakly perturbed atoms, which con-
tribute to the bound-bound and bound-free opacities, con-
stitutes a fraction wo

�sðK?Þ=wt
�sðK?Þ < 1 of the total number

of atoms. Here wt
�sðK?Þ is the ‘‘ thermodynamic ’’ occupa-

tion probability derived from the free energy (Paper I).
Thick lines in Figure 1 show the neutral fraction of the

weakly perturbed atoms in their ground state, which con-
tribute to the opacities as isolated atoms, whereas the thin
lines show the total fraction of protons bound in atoms or
clusters.

According to our model, at relatively low T, pressure ion-
ization proceeds via a first-order phase transition. This
‘‘ plasma phase transition ’’ occurs at temperatures below
Tc � 3� 105B0:39

12 K at densities around �c � 143B1:18
12 g

cm�3 (Paper I). In general, the validity of the free-energy
models in the framework of the chemical picture of plasmas
is questionable near the plasma phase transition domain.
However, the Tc and �c values correspond to log10 Rc � 3:7,
which is beyond the upper R limit for our tables, so that the
plasma phase transition is not crossed along the tabulated
isotherms.

Figure 2 shows the domains of partial ionization in the T-
� plane at three values of B. With increasing B, the domains
where the atomic fraction is above a specified level expand
significantly. For instance, at B ¼ 5� 1012 G, the domain
where xH > 0:01 extends to T ¼ 106 K. Such an amount of
atoms can give an important contribution to radiative
opacities.

Our tables provide values of xH, as well as the fractions of
ground-state atoms, molecules, and clusters at every R, T,
and B entry.

3.3. Thermodynamic Functions

Figure 3 shows pressure P along two isotherms for the
same field strengths as in Figure 1. The pressure varies over
many orders of magnitude in the shown density range.
Therefore, in order to make the discussed effects more visi-
ble, we plot in Figure 3 the ratio of P to n0kBT, the pressure
of an ideal monatomic hydrogen gas at the same � and T.

At different field strengths (including B ¼ 0), the devia-
tions from the ideal gas behavior are qualitatively the same,
but quantitatively different. At very low �, we have nearly
fully ionized, almost ideal nondegenerate gas of electrons
and protons, so that P=n0kBT � 2. With increasing density,
atomic recombination proceeds according to the Saha equa-
tion (in the strong magnetic field, the modified Saha equa-
tion is given by eq. [54] of Paper I). Therefore, the ratio P/
n0kBT decreases. At high density, however, the atoms
become pressure ionized: in this region the increase of P due

Fig. 1.—Neutral fraction of ground-state H atoms (heavy lines) and the
total neutral fraction (including excited states and states forming the optical
pseudocontinuum; light lines) as function of density at T ¼ 5� 105 K and
B ¼ 0 (dashed lines), 1012 (solid lines), and 1013.5 G (dot-dashed lines).

Fig. 2.—Domains of partial ionization at log10 B=G ¼ 11:9, 12.7, and 13.5. The contours delimit the domains where the atomic fraction exceeds 0.1%
(dotted lines), 1% (dashed lines), or 10% (solid lines). The hatched region is the domain where the molecular fraction exceeds 1%.
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to the increased number of free electrons and protons com-
petes with a negative nonideal contribution, which is mainly
due to the Coulomb term FC

ex in the free energy. The dot-
dashed curve bends down near the high-� edge of the left-
hand panel of Figure 3 because of enhancement of the
nonideal contribution; it is a precursor of the plasma phase
transition, where our model becomes inapplicable. Finally,
at still higher densities, the electrons become degenerate and
raise the pressure far above n0kBT. The dotted lines in Fig-
ure 3 show the pressure of an ideal electron-proton gas;
their upward bending marks the onset of electron degener-
acy. At B ¼ 0, it occurs at �emHð2mekBTÞ3=2=ð3�2�h3Þ �
6T

3=2
6 g cm�3, but in the strongly quantizing field the elec-

trons become degenerate at �eðmH=�2�ha2mÞðmekBT=2Þ1=2
� 613B12

ffiffiffiffiffiffi
T6

p
g cm�3.

Since the strong magnetic field enhances atomic recombi-
nation and delays pressure ionization and electron degener-
acy at high densities, the discussed features of the P/n0kBT
curves become more prominent and shift to higher � with
increasing B, as seen in Figure 3.

Along with the pressure, our EOS tables contain internal
energy U, entropy S, specific heat CV, and the logarithmic
derivatives of pressure �T ¼ ð@ lnP=@ lnTÞV and �� ¼
�ð@ lnP=@ lnVÞT . Other second-order quantities can be
calculated using the Maxwell relations (e.g., Landau &
Lifshitz 1993). For example, the heat capacity at constant
pressure, CP, and adiabatic gradient, rad ¼ ð@ logT=
@ logPÞS, are given by relations

CP ¼ CV þ PV

T

�2
T

��
; rad ¼ �T

�2
T þ ��CVT=ðPVÞ

: ð32Þ

Figure 4 shows rad at different values of B. At low density,
the magnetic field increases the adiabatic gradient, thus sta-
bilizing the matter against convection. This thermodynamic
effect is additional to the hydromagnetic stabilization con-
sidered, e.g., by Chandrasekhar (1961) and Miralles, Urpin,
& van Riper (1997). However, at higher densities,
� � 1 100 g cm�3, there is a significant decrease of rad due
to the partial recombination of H atoms. The adiabatic gra-
dient increases again at still higher densities, where the
plasma is fully pressure ionized.

4. CROSS SECTIONS

4.1. Scattering

The scattering cross sections by the electrons under the
conditions typical for photospheres of the neutron stars
with strong magnetic fields were thoroughly studied in the
past (e.g., Ventura 1979; Kaminker et al. 1982; Mészáros
1992 and references therein). The cross section 
s;e�1 exhibits
a resonance at the electron cyclotron frequency !ce. Outside
of a narrow (about the Doppler width) frequency range
around !ce, the cross sections are


s;e� ¼ !2

ð!þ �!ceÞ2 þ �2e;�

T ; ð33Þ

Fig. 3.—Pressure P relative to n0kBT , where n0 is the total number density of protons (free and bound). Left panel: T ¼ 105:7 K; right panel: T ¼ 106:5 K;
dashed lines: B ¼ 0, solid lines: B ¼ 1012 G, dot-dashed lines: B ¼ 1013:5 G. Dotted lines represent the pressure of a fully ionized electron-proton ideal gas at the
same values of T andB.

Fig. 4.—Adiabatic temperature gradient rad at T ¼ 5� 105 K, for dif-
ferent field strengths (shown by different line styles): log10 B=G ¼ 12:0,
12.3, 12.6, 12.9, 13.2, and 13.5. Triangles show the zero-field case.
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where 
T ¼ ð8�=3Þðe2=mec2Þ2 is the nonmagnetic Thomson
cross section and �e;� is an effective damping frequency
given by equation (38) below.

The scattering by the protons, which is completely negli-
gible in a nonmagnetized plasma, becomes important in the
strong magnetic field, because 
s;pþ1 exhibits a resonance at
!cp. It is the same as the electron cyclotron resonance but a
different mass and opposite charge of the particle:


s;p� ¼ me

mp

� �2 !2

!� �!cp

� �2þ�2p;� 
T : ð34Þ

The damping frequency �p;� will be derived below (eq. [53]).
We neglect the Doppler broadening of these resonances.

Within the thermal width of the cyclotron resonance, the
treatment of radiation scattering is nontrivial (e.g., Ventura
et al. 1985 and references therein). However, at Td107 K,
the Doppler width �!(T/Tr)

1/2 is smaller than the fre-
quency resolution of our opacity tables (chosen to be
D log10 ! ¼ 0:02).

4.2. Absorption by Atoms

Oscillator strengths for the H atomwhich rests in a strong
magnetic field were calculated, e.g., by Forster et al. (1984).
Bound-bound transitions of the H atom moving arbitrarily
in a strong magnetic field were studied by Pavlov & Pote-
khin (1995). The modification of the binding energies due to
the atomic motion (x 2.1) leads to a dramatic ‘‘ magnetic
broadening ’’ of the spectral lines averaged over all states of
motion, which exceeds by orders of magnitude the usual
Doppler broadening. Thus the spectral profile of the bound-
bound opacities becomes continuous in a wide frequency
range, resembling a reversed bound-free profile. Our calcu-
lation of the bound-bound absorption cross sections relies
on the theory presented by Pavlov & Potekhin (1995) and
employs fitting formulae for the binding energies, oscillator
strengths, and electron collision widths derived by Potekhin
(1998).

Photoionization cross sections of the nonmoving H atom
in a magnetic field were calculated by many authors (e.g.,
Potekhin, Pavlov, & Ventura 1997 and references therein).
Photoionization of the H atom in a strong magnetic field
with allowance for motion was studied, using different mod-
ifications of the adiabatic approximation (x 2.1) by Bez-
chastnov & Potekhin (1994) and Kopidakis, Ventura, &
Herold (1996). A complete numerical treatment beyond the
adiabatic approximation has been developed by Potekhin &
Pavlov (1997), who adapted the R-matrix formalism
(Wigner & Eisenbud 1947) to the case under study. They
showed that none of the versions of the adiabatic approxi-
mation can provide accurate 
bf� for all values of � and K?,
particularly because the continuum-channel coupling
strongly affects 
bf� at sufficiently large K?. Here we use the
complete numerical treatment. Since it is computationally
involved, we use an interpolation across a precalculated set
of tables. For each of the three basic polarizations, we have
calculated 
bf� ð!;K?;BÞ on a predefined grid, with log10 �h!
(eV) ranging from 1.0 to 4.5 with step 0.02, log10 K? (a.u.)
ranging from 1 to 3 with step 0.1, and log10 B (G) ranging
from 11.9 to 13.5 with step 0.1. At the low-K? end of the
grid, K? ¼ 10 a.u., the atomic properties are virtually the
same as at K ¼ 0; beyond the upper limit, K? > 103 a.u.,

the contribution of the bound-free transitions to the total
opacities is negligible. The grid is sufficiently fine for calcula-
tion of atmosphere models. However, the step 0.02 in
log10 ! does not allow us to resolve the narrow Beutler-
Fano–type resonances which appear due to autoionizing
states in the vicinity of photoionization thresholds of partial
cross sections (Potekhin et al. 1997; Potekhin & Pavlov
1997). Whenever such a resonance occurs near a grid point,
it produces a spurious outlier on the otherwise smooth

bf� ð!;K?Þ dependence. We filter out such outliers by
smoothing 
bf� as a function of ! at every K?, using the
three-point median filter. Since the grid does not allow us to
resolve the photoionization threshold accurately, the
threshold frequency !th is determined independently for
every K?, using analytic fits to the binding energies
(Potekhin 1998).

In addition to the bound-bound and bound-free atomic
transitions, in a plasma environment there are transitions
from bound states to the highly perturbed atomic states dis-
cussed in x 3.2. These perturbed levels effectively dissolve
and merge in a pseudocontinuum, which lies below the pho-
toionization threshold. In order to take into account the
radiative transitions into this pseudocontinuum, we employ
a below threshold extrapolation, as described for the zero-
field case by Däppen et al. (1987), Stehlé & Jacquemot
(1993), and Seaton et al. (1994). Below !th, the effective
‘‘ bound–quasi-free ’’ photoabsorption cross section due to
the dissolved lines is


bf� ð! < !thÞ ¼
2�e2

mec

wo
i � wo

f

wo
i

fif ;�
d�f
d!

; ð35Þ

where wo
i and wo

f are the optical occupation probabilities of
the initial and final states, respectively, fif ;� is the corre-
sponding oscillator strength, and d�f =d! is the number of
final states per unit frequency interval. By analogy with
Stehlé & Jacquemot (1993), we interpolate wo

f as function of
frequency and set wo

f ¼ wo
i at ! smaller than the lowest

allowed transition frequency. Taking into account that

bf� ð! < !thÞ is a smooth continuation of 
bf� ð! > !thÞ
(Däppen et al. 1987), we write


bf� ðK?; ! < !thÞ ¼ 1�
wo
f ðK?; !Þ
wo
i ðK?Þ

� �

bf ;extr� ðK?; !Þ ; ð36Þ

where 
bf ;extr� ðK?; !Þ is a power-law extrapolation of

bf� ðK?; !Þ at ! < !th.

Unlike the B ¼ 0 case, in our case fif ;� and wo
f depend on

polarization. For photoabsorption by an atom in the
ground state, fif ;�1 6¼ 0 only for even upper states, whereas
fif ;0 6¼ 0 only for odd states. We take into consideration only
the appropriate states while calculating wo

f in equation (36).
The K?-dependent cross sections are averaged over the

distribution of atoms over K? with statistical weights
wo
i ðK?Þ exp½��iðK?Þ=kBT �, as in Pavlov & Potekhin (1995)

and Potekhin & Pavlov (1997).

4.3. Free-Free Absorption

In the classical cold plasma approximation (e.g.,
Ginzburg 1970), the free-free absorption by electrons is


ff� ¼ 1

ð!þ �!ceÞ2 þ �2e;�

4�e2

mec
�ff� ð!Þ ; ð37Þ
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where �ff� is an effective frequency of electron-proton
collisions which lead to absorption of photons. Broadening
of the electron cyclotron resonance in equations (33) and
(37) is determined by the sum of the effective frequencies for
absorption and scattering,

�e;� ¼ �ff� þ �se ; ð38Þ

where

�se ¼
2

3

e2

mec3
!2 ð39Þ

is the natural (radiative) width of the resonance. The damp-
ing frequency given by equation (38) ensures the correct
value of the cyclotron absorption cross section integrated
across the resonance (e.g., Ventura 1979):

Z !ceþD!

!ce�D!


s;e�1ð!Þ þ 
ff�1ð!Þ
� �

d! ¼ 4�2e2

mec
; ð40Þ

with �e;�5D!5!ce.
The values of �ff� are provided by quantum mechanical

calculations. It is customary (e.g., Armstrong & Nicholls
1972) to express 
ff through the thermally averaged Gaunt
factors �gg or, equivalently, Coulomb logarithms � ¼
ð�=

ffiffiffi
3

p
Þ�gg. Taking into account equation (37), we can write

�ff� ¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

mekBT

s
nee4

�h!
1� e�uð Þ�ff

� ; u 
 �h!

kBT
: ð41Þ

The factor ð1� e�uÞ allows for the induced radiation.

4.3.1. Infinite ProtonMass Approximation

In the zero-field case, the electron free-free absorption
rate can be calculated assuming the electron scattering off a
fixed Coulomb potential. In this case, allowance for the
finite ion mass consists of replacing me by the reduced mass
l. The Born approximation yields the well-known formula
for the cross section of free-free photoabsorption by an elec-
tron having an initial momentum pi and final momentum
pf ¼ ðp2i þ 2me�h!Þ1=2 (e.g., Bethe & Salpeter 1957),


ffðpi; !Þ ¼
16�2nee6

3mec�h!3

1

pi
ln

pf þ pi
pf � pi

����
���� ; ð42Þ

whose averaging over the Maxwell distribution gives the
classical Coulomb logarithm

�ff
cl ¼ eu=2K0

�
u

2

�
; ð43Þ

K0(u/2) being the modified Bessel function. Hummer (1988)
calculated �ggff using accurate non-Born quantummechanical
results by Karzas & Latter (1961) and fitted it by a Padé for-
mula. The nonmagnetic Gaunt factor is applicable if the
magnetic field is nonquantizing, i.e., if �e < 1, where �e is
given by equation (1). In the quantizing magnetic fields, the
Coulomb logarithm was evaluated in the Born approxima-
tion by several authors (Pavlov & Panov 1976; Nagel 1980;
Mészáros 1992). In this approximation, �ff

� , which is gener-
ally a function of B, T, and !, depends only on the two

dimensionless arguments, u and �e:
1

�ff
� ¼ 3

4 e
u=2

X1
n¼�1

Z 1

0

Q�
n ð�e; u; yÞdy ; ð44aÞ

where

Q�
n ð�e; u; yÞ ¼

y

�

A�
n

ðyþ 
þ �Þ sinhð�e=2Þ½ � nj j ; ð44bÞ

A0
n ¼

xnK1ðxnÞ
yþ �e=4

; A�1
n ¼ yþ 
þ nj j�

�2
K0ðxnÞ ; ð44cÞ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2
yþ y2

p
; 
 ¼ 1þ exp ��eð Þ

1� exp ��eð Þ ; ð44dÞ

xn ¼ u� n�ej j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ y

�e

r
: ð44eÞ

Equations (44a)–(44e) have been derived assuming that
an electron scatters off a fixed Coulomb center. Actually the
protons are moving and can absorb radiation during colli-
sions. Although this process is negligible at B ¼ 0, it may be
important at ! near or below !cp. The previous authors
(Pavlov et al. 1995; Zane et al. 2000, 2001; Özel 2001; Ho &
Lai 2001) supplemented 
ff� by a cross section of ‘‘ ion free-
free absorption,’’ 
ff ;p� . For hydrogen, taking into account
equations (33) and (34), their formulae can be written as


a� ¼ 
ff� þ 
ff ;p� ;

ff ;p�


s;p�
¼ 
ff�

s;e�

: ð45Þ

We find, however, that equation (45) is erroneous.

4.3.2. Absorption in Proton Collisions

There are two effects of the finite proton mass on the
absorption: first, the absorption can occur in proton-proton
collisions, and second, the absorption in the electron-proton
collisions is modified because of the proton motion. Let us
start with the first process. By analogy with equation (37),
we write the cross section as


pp� ¼ 1

!� �!cp

� �2þ�2p;�
4�e2

mpc
�pp� ð!Þ ; ð46Þ

where �pp� is the effective frequency to be determined.
In the classical picture (Ginzburg 1970), an ion-ion colli-

sion does not change the total electric current and hence
does not cause dissipation. Therefore, it does not contribute
to the damping of radiation. In quantum mechanics, this
corresponds to vanishing dipole matrix element for the
absorption. In Appendix A we evaluate the nonvanishing
quadrupole term under the condition that the magnetic field
does not quantize proton motion, that is, �p < 1, and obtain

�pp ¼ 256

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

mpkBT

r
npe4

�h!

kBT

mpc2
1� e�uð Þ�pp ; ð47Þ

where �pp is an appropriate Coulomb logarithm. In
Figure 5, �pp is plotted by the solid line. For comparison, we
also show � for distinguishable particles (corresponding to
eq. [A4]; dashed line), and the classical Coulomb logarithm

1 The set of equations given by eq. (44) is equivalent to eq. (27) of Pavlov
& Panov (1976), but in eq. (44c) for A�1

n we have restored the power 2 of �,
lacking in Pavlov & Panov (1976) apparently due to a misprint.
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�ff
cl (eq. [41]; dotted line). The fit

�pp � 0:6 ln 22u�1 þ 9u�0:3
� �

þ 0:4
ffiffiffiffiffiffi
�u

p
ð48Þ

accurately reproduces �pp at small and large u and has a
maximum error within 1.5% at intermediate u.

We see that 

pp
� differs from 


ff ;p
� (defined by eq. [45] with

the use of eqs. [37] and [41]) by a factor of 32ð2mp=meÞ1=2�
ðkBT=mpc2Þ�pp=�ff

cl � T=109 K.
One should remember that equations (46)–(48) are

obtained in the nonrelativistic approximation. Therefore
they do not take into account spin-flip processes and are
inapplicable at very high T or high !, where the relativistic
corrections can be important.

4.3.3. Electron Free-Free Process with Allowance for
Finite ProtonMass

Let us write the cross section of photoabsorption due to
the electron-proton collisions in the form of combined
equations (37) and (41), neglecting broadening:


ff� ¼ 29=2�3=2nee
6

3m
3=2
e kBTð Þ1=2c�h!

1� e�u

ð!þ �!ceÞ2
�e
� : ð49Þ

The superscript ‘‘ e ’’ indicates that the electron (not proton)
cyclotron resonance has been separated off ��. Since the
colliding electron and proton are treated on equal footing,
we anticipate that thus defined normalized cross section �e

�

will reveal a resonant peak at ! � !cp.
The initial and final states of the interacting electron and

proton are just continuum states of the H atom. An accurate
treatment of these states would imply a solution of the
coupled channel equations given by equation (15) and
calculation of the R-matrix, as we did for the bound-free
process. However, we will restrict to the first Born approxi-
mation. In this approximation, �e

� is given by equations
(B20)–(B22) derived in Appendix B. For the longitudinal
polarization (� ¼ 0), a calculation by these equations well
reproduces the Coulomb logarithm (42) obtained in the
infinite proton mass approximation. However, for the two
circular polarizations the result is different; it is shown in

Figure 6 by the solid lines. As expected, we see a remarkable
proton cyclotron resonance at � ¼ þ1, which is due to the
denominator !� !cp in the last terms of equation (B22c). In
addition, for both circular polarizations there are smaller
spikes at higher proton-cyclotron harmonics, arising from
the logarithmic singularities of ~vvnsn0sð�; �Þ at �! 0 (see eq.
[B8]). Apart from these spikes, �e

�1 is accurately described
by the formula �e

�1 � �ff
�1!

2=ð!� �!cpÞ2, where �ff
�1 is

given by equation (44) (Fig. 6, dot-dashed lines). We note
that the factor !2=ð!� �!cpÞ2 naturally appears in the clas-
sical plasma model with allowance for the ion motion. The
classical model also helps to restore the damping factors

Fig. 6.—Comparison of accurate and approximate normalized free-free
cross sections �e

� (eq. [49]) for two circular polarizations � ¼ �1 at
�e ¼ 104. Solid lines: eqs. (B19)–(B22); dot-dashed lines: eq. (51); short-
dashed lines: customary approximation, eq. (45); long-dashed lines: �ff

� ,
eq. (44); dotted lines: �ff

cl , eq. (43). Arrows indicate the proton cyclotron
harmonics.

Fig. 5.—Coulomb logarithms for photoabsorption in collisions of non-
relativistic protons (�pp, solid line), collisions of identical but distinguish-
able particles (dashed line), and electron-proton scattering (�ff

cl , dotted line).
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neglected in equation (49). Let �e and �p be the electron and
proton damping frequencies due to processes other than the
electron-ion collisions. For the processes considered above
(Thomson scattering and proton-proton collisions),2 we
have �e ¼ �se and �p ¼ �sp þ �pp, where �sp ¼ 2e2!2=ð3mpc3Þ
is the natural width of the proton cyclotron resonance.
Averaged Newtonian equations of motion for the electrons
and protons in the magnetic and radiation fields give the
complex permittivity tensor " (cf. Ginzburg 1970, x 10).
Neglecting (me/mp)

1/2 compared to unity and assuming that
�p5 �e5!, we have

Imð"xx þ i�"xyÞ

¼
!2
pl

!
!cpð!ce þ �!Þ�p þ !ð!� �!cpÞ�e þ !2�ff�
� �

�
(

ð!þ �!ceÞð!� �!ceÞ � �ff� �p þ �e
me

mp

� �
� �p�e

� �2

þ !�ff� þ ð!þ �!ceÞ�p þ ð!� �!cpÞ�e
� �2)�1

;

ð50Þ

where � ¼ �1 and Immeans the imaginary part. Neglecting
the tiny shift of the position of the cyclotron resonances
caused by the damping, we can now write


ff� � !2

ð!þ �!ceÞ2ð!� �!cpÞ2 þ !2~��2�

4�e2�ff�
mec

; ð51Þ

where

~��� ¼ �ff� þ
�
1þ �!ce

!

�
�p þ

�
1� �!cp

!

�
�e ; ð52Þ

and �ff� is given by equation (41).
The accurate calculations according to Appendix B are

reproduced by equations (51) and (41), if we multiply �ff
� in

the latter equation by a correction factor of the order of
unity. This quantum correction factor proves to be the same
for � ¼ þ1 and � ¼ �1. Thus, the two effective collision fre-
quencies (longitudinal �ff0 and transverse �ffþ1 ¼ �ff�1) provide
the three 
ff� .

Near the electron cyclotron resonance (! � !ce, � ¼ �1),
the damping frequency ~��� approximately reproduces �e;� in
equation (38), which ensures the condition given by equa-
tion (40). Near the proton cyclotron resonance (! � !cp,
� ¼ þ1), the effective damping frequency is ~���!=!ce �
~���me=mp � �p;�, where

�p;� ¼ �ff ;p� þ �sp þ �pp� ; �ff ;p� 
 me

mp
�ff� : ð53Þ

Equation (53) is consistent with the requirement of
oscillator strength conservation for the proton cyclotron
resonance in polarization � ¼ þ1, fully analogous to
equation (40).

From the relations

�pp

�
ff ;p
�

¼ 1:78� 10�4T6
�pp

�ff
�

;
�pp

�sp
¼ 3:6�0

T
5=2
6

1� e�u

u3
�pp ; ð54Þ

we see that the proton-proton collisions can be safely
neglected at any T and � typical of outer envelopes of the
neutron stars.

For comparison, Figure 6 also shows the nonmagnetic
Coulomb logarithm �ff

cl (dotted lines), �
ff
� given by equation

(44) (long-dashed lines), which neglects the finite proton
mass, and the �e

� that would correspond to the calculation
of 
a� according to the traditional equation (45) (short-
dashed lines). It is easy to see the difference of equations (49)
and (51) from equation (45). The customary recipe (44)
misses the interference of the first two terms in each of equa-
tions (B22b) and (B22c) (related to transitions with chang-
ing Landau number n) with the terms in square brackets
(related to transitions that keep n constant). At ! < !cp, the
latter terms tend to compensate the former ones. A suppres-
sion factor �(!/!cp)

2, which follows from equation (51) at
!5!cp, is brought about by this interference. From the
classical physics point of view, it may be explained as fol-
lows: very slow (!5!cp) oscillations of the radiation elec-
tric field, perpendicular to the constant magnetic field, make
both particles, electron and proton, drift adiabatically with
the velocity ðc=B2ÞE � B, so that in the drifting frame of
reference they do not ‘‘ feel ’’ the electric field of the electro-
magnetic wave. The suppression of the free-free cross sec-
tions takes place for both circular polarizations.

As is well known, the Born approximation is accurate
only at �h! much larger than the binding energies. In order
to partly correct �ff

� beyond this approximation and to
recover the non-Born Gaunt factor �ggff at B ¼ 0, we multiply
�ff
� by the ratio of �ggff (Hummer 1988) to �ggffBorn ¼ ð

ffiffiffi
3

p
=�Þ�ff

cl .

5. OPACITIES

5.1. Fully Ionized Atmosphere

For a fully ionized atmosphere model, the monochro-
matic opacities calculated in the framework of the theory
outlined in x 2.3 do not differ much from the opacities used
in the previous models (e.g., Shibanov et al. 1992) at
! > !cp. However, the improved treatment of the free-free
contribution results in a considerable modification of the
opacities at ! < !cp. Figure 7 shows monochromatic opac-
ities for two polarization modes, j ¼ 1 (solid lines) and j ¼ 2
(dashed lines) for radiation propagating at three angles hB
with respect to the field lines. The atmosphere parameters
chosen for this figure can be expected near the bottom of a
magnetar photosphere: � ¼ 500 g cm�3, T ¼ 5� 106 K,
and B ¼ 5� 1014 G. An extension of our EOS for the super-
strong magnetic fields (work currently in progress; Chab-
rier, Douchin, & Potekhin 2002) indicates that the model of
a fully ionized atmosphere is adequate for this relatively
high value of �. At these parameters, the proton cyclotron
resonance at �h! ¼ 3:15 keV is quite prominent. At small hB,
the opacities of the two normal modes cross each other at
! � !cp, which is a well-known phenomenon (e.g., Shiba-
nov et al. 1992). Another mode crossing, which occurs at
�h! � 7:6 keV, is due to the vacuum resonance (e.g., Soffel et
al. 1983; Pavlov &Gnedin 1984; Shibanov et al. 1992). Near
the crossing points, the modes may become completely

2 We do not consider the electron-electron collisions. At B ¼ 0, they are
known to be unimportant for the bremsstrahlung, except for relativistic
energies (e.g., Bethe & Salpeter 1957). The magnetic field does not change
this conclusion, because the resonance, which appears at ! ¼ !ce for this
process, merges in the more powerful classical cyclotron resonance for the
usual free-free and Thomson processes.
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nonorthogonal (‘‘ collapse ’’) at certain angles, so that their
designation is ambiguous (Soffel et al. 1983).

The dotted curves in Figure 7 are obtained using equation
(45).We see that this traditional calculation strongly overes-
timates �1 at large hB, and overestimates both �1 and �2 at

B ¼ 0, if �h! is small enough.

Figure 8 shows the effective opacities �eff for the diffusion
of nonpolarized radiation along (k) and across (?) the
magnetic field (x 2.3), for the same plasma parameters as in
Figure 7. The peak at log �h!=eV ¼ 3:5 is due to the ion
cyclotron resonance, and the one at log �h!=eV ¼ 3:9 is due
to the vacuum resonance. The barely visible intermediate
spike at log �h!=eV ¼ 3:8 is the quantum resonance of the
Coulomb logarithm at the doubled proton-cyclotron
frequency (cf. Fig. 6).

We see that the improvement of the free-free cross section
discussed in x 4.3.3 is important for the effective opacities
shown in Figure 8 at ! < !cp. At !d0:3!cp, the difference
exceeds 1 order of magnitude. Moreover, it has an impact
on the Rosseland mean opacities, as discussed below.

5.2. Partially Ionized Atmosphere

As follows from x 3.2, the amount of neutral hydrogen in
neutron star photospheres can be significant at Td106 K.
For example, at � ¼ 0:1 g cm�3, T ¼ 105:5 K, and
B ¼ 2:35� 1012 G, 12% of protons are bound in the
ground-state H atoms. Monochromatic opacities for this
case are shown in Figure 9 for three basic polarizations. The
contribution of the fully ionized plasma component is
shown by dot-dashed lines, while dotted and dashed lines
show bound-bound and bound-free contributions, respec-
tively. The total opacities are plotted by the solid lines. We
see that the bound-free contribution is important for any
polarization, whereas the bound-bound opacity is impor-
tant for � ¼ �1 but unimportant for the longitudinal polar-
ization (� ¼ 0). This is because the dipole selection rule
forbids radiative transitions between different tightly bound
states with absorption of a photon polarized along B. Tran-
sitions to the odd hydrogen-like states (� ¼ 1, 3, . . .) are
allowed, but the corresponding occupation probabilities are
small, so that these upper levels are effectively merged into
the continuum. The absorption peak at log10 �h!=eV � 1:84
in the left panel corresponds to the transition from the
ground state to the state with s ¼ 1 for the centered atoms.
It would be a narrow spectral line without atomic motion.
In the middle panel (� ¼ �1), there would be no significant
bound-bound absorption at all, were the motion neglected.
However, the thermal motion of atoms across the field dras-
tically modifies the spectrum. There appears significant
absorption for � ¼ �1. The bump at �h! � 100 eV for
� ¼ þ1 is due to the transition to the second excited level
(s ¼ 2), which would be negligible for nonmoving atoms.
The magnetic broadening mentioned in x 4.2 smears the
photoionization edges at �h!e100 eV and extends the
bound-bound absorption frequency range down to �10 eV
for any polarization. The spikes near this low ! are
explained by the K? dependence of the transition energy
(Pavlov & Potekhin 1995). The spike at ! � !cp

(log10 �h!=eV � 1:17) appears because the transitions
between the decentered states whose quantum numbers s
differ by one (Ds ¼ 1) correspond to the energies ��h!cp,
almost independent of K? [it follows from eq. (14), since
E

k
s�ðK?Þ is small at large K?]. Another resonance occurs at a

frequency slightly below !cp, which corresponds to the mini-
mum distance between the states with Ds ¼ 1 (the avoided
crossings; cf. Potekhin 1994), because the energy difference

Fig. 8.—Effective opacities for diffusion of nonpolarized radiation along
(left panel) or across (right panel) the magnetic field, at the same plasma
parameters as in Fig. 7: new (solid lines) and old (dotted lines) results.

Fig. 7.—Monochromatic radiative opacities for the ordinary (dashed
lines) and extraordinary (solid lines) polarization modes in a plasma at
� ¼ 500 g cm�3, T ¼ 5� 106 K, and B ¼ 5� 1014 G, for 
B ¼ 0�, 10�, and
90�. Dotted lines show the opacities according to eq. (45). Here the opacity
is calculated assuming complete ionization.
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has zero derivative with respect toK there. These resonances
are smoothed by the electron impact broadening.

In general, we see that partial ionization must be taken
into account in the opacity calculations at these plasma
parameters.

Figure 10 shows the total extinction coefficients ��� for
different � and T at B ¼ 1013 G. The curves are truncated
from the left at ! ¼ !pl. At � ¼ 50 g cm�3, the opacities are
smooth functions of !, which reflects the fact that virtually
all excited atomic levels are merged into a continuum at
these � and B. At � � 2 g cm�3, however, the curves clearly
reveal the features due to the bound-bound and bound-free
transitions.

The opacities for the three basic polarizations, combined
with appropriate components of the polarization vectors,
provide the opacities in the two normal modes (x 2.3). For
example, Figure 11 shows the normal-mode opacities for
� ¼ 0:1 g cm�3 and B ¼ 1013 G, at three values of hB and
two values of T. At the lower T ¼ 5� 105 K, the features
arising from the bound-bound and bound-free transitions
are clearly visible at any hB.

5.3. RosselandMean Opacities

Along with the thermodynamic functions and number
fractions of species, our tables contain Rosseland mean
effective opacities for longitudinal (�

k
R) or transverse (�?R)

propagation of nonpolarized radiation. They are calculated
in a standard way (e.g., Armstrong & Nicholls 1972) from
the effective monochromatic opacities for the diffusion
approximation, �k and �?, defined in x 2.3.

The improvement of the free-free cross section substan-
tially affects �

k
R and �?R. For example, in the case of fully ion-

ized plasma shown in Figure 8, we obtain �
k
R ¼ 1:8� 10�4

cm2 g�1 and �?R ¼ 1:6� 10�4 cm2 g�1, in reasonable agree-
ment with the analytic fit in Potekhin & Yakovlev (2001)
(2:1� 10�4 and 1:7� 10�4 cm2 g�1, respectively). Since the
latter fit did not take into account the ion cyclotron reso-
nance, we conclude that this resonance is unimportant for
the Rosseland opacities in the given example. Meanwhile,
the traditional treatment of this resonance (eq. [45]) yields
effective opacities shown by the dotted lines in Figure 8,
whose Rosseland means are �

k
R ¼ 1:3� 10�3 cm2 g�1 and

�?R ¼ 1:0� 10�3 cm2 g�1, that is, about 6 times larger than
the accurate values.

Figure 12 illustrates the density dependence of the Rosse-
land opacities at two values of T for B ¼ 1012 G and
2� 1013 G. For comparison, the nonmagnetic OPAL opac-
ities (Iglesias & Rogers 1996) are shown.3 Dotted lines rep-
resent the effective Rosseland opacities in the model of a
fully ionized electron-proton plasma, according to the fit of
Potekhin &Yakovlev (2001).

As is well known, the strong magnetic field makes the at-
mosphere more transparent at given � and T, because of the
presence of large !ce in the denominators of equations (33)
and (49). At sufficiently large �, there is good agreement
between the opacity tables and the analytic fully ionized
plasma model. However, at �d1 10 g cm�3, there are large
differences, which reflect the contribution of bound-bound
and/or bound-free transitions in the effective opacities.
Remarkably, this difference is significant at T ¼ 105:5 K
even in the nonmagnetic case (the upper curve in the left
panel). As noted in Paper I, the contribution of bound spe-
cies increases with increasing B.

Fig. 9.—Monochromatic opacities for the basic polarizations (� ¼ þ1, left panel; � ¼ �1,middle panel; � ¼ 0, right panel) in a typical partially ionized neu-
tron star atmosphere at � ¼ 0:1 g cm�3, T ¼ 105:5 K, and B ¼ 2:35� 1012 G. Dot-dashed lines: opacities of fully ionized component; dashed lines: bound-free
opacities; dotted lines: bound-bound opacities; solid lines: total opacities.

3 See http://www-phys.llnl.gov/Research/OPAL/. As mentioned in
x 2D of Paper I, our model of partially ionized hydrogen plasma at
B ¼ 0 accurately reproduces the OPAL opacities.
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In the case of T ¼ 106:5 K (Fig. 12, right panel), the model
of fully ionized plasma is quite accurate at B � 1012 G.
However, this is not the case at the higher field strength
B ¼ 2� 1013 G, where the contribution from bound species
is again appreciable.

6. DESCRIPTION OF THE TABLES

The input parameters for our tables are B, T, and the
astrophysical density parameter R ¼ �0=T

3
6 . At present,

the tables are calculated for 11:9 � log10 B=G � 13:5

Fig. 10.—Monochromatic opacities for the same basic polarizations as in Fig. 9 at T ¼ 5� 105 K (solid lines) and 2� 106 K (dashed lines), � ¼ 0:05, 2, and
50 g cm�3, andB ¼ 1013 G.

Fig. 11.—Monochromatic opacities for the extraordinary (j ¼ 1, solid lines) and ordinary (j ¼ 2, dashed lines) modes at T ¼ 5� 105 K (upper curves) and
3� 106 K (lower curves), for � ¼ 0:1 g cm�3,B ¼ 1013 G, and 
B ¼ 1�, 10�, and 60�.
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with step D log10 B ¼ 0:1, 5:3 � log10 T=K � 7:0 with step
D log10 T ¼ 0:05, and �7:4 � log10 R � 3:6 with step
D log10 R ¼ 0:2.

The tables for different values of T and B have identical
structure. An example is shown in Table 1. The first
line contains log10 T=K and log10 B=G. Each row then
provides
1. log10 R;
2. log10 P, where P ¼ 106 dyn cm�2 is the pressure in

bars;
3. the dimensionless pressure parameter PV/(N0kBT),

where N0 is the total number of protons (free and bound) in
volumeV;
4. the dimensionless internal energy parameter U/

(N0kBT);

5. the dimensionless entropy parameter S/(N0kB);
6. the reduced heat capacityCV/(N0kB);
7. the logarithmic pressure derivative �T ¼ ð@ lnP=

@ lnTÞV ;
8. the logarithmic pressure derivative �� ¼ ð@ lnP=

@ ln �ÞT ;
9. the atomic fraction xH, that is, the total number of H

atoms with nondissolved energy levels, divided byN0;
10. the ground-state atomic fraction;
11. the molecular fraction (the number of H2 molecules

with nondestroyed levels, divided byN0);
12. the fraction of protons comprised in clusters and in

strongly perturbed atoms andmolecules;
13. log10 �

k, where �k is the effective Rosseland mean
opacity for transport of nonpolarized radiation along

Fig. 12.—Effective Rosseland mean opacities for diffusion of nonpolarized radiation along (solid lines) or across (dashed lines) the magnetic field, at
T ¼ 105:5 K (left panel ) and 106.5 K, forB ¼ 0, 1012, and 2� 1013 G. Dotted lines show the opacities of a fully ionized plasma (at each value ofB 6¼ 0, the lower
dotted curve corresponds to the transverse diffusion and the upper to the longitudinal one).

TABLE 1

Sample EOS and Opacity Table

Thermodynamic Functions Number Fractions log (opacities)
R

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

�7.40 ...... 0.8173 1.999 1.256 59.737 2.378 1.001 1.000 3.77E�04 7.15E�05 0.00E+00 7.81E�03 �4.896 �4.896

�7.20 ...... 1.0173 1.999 1.256 58.818 2.378 1.001 1.000 4.15E�04 8.30E�05 0.00E+00 8.85E�03 �4.872 �4.872

�0.20 ...... 7.9984 1.914 1.028 26.662 2.473 1.062 0.984 1.19E�02 8.10E�03 6.31E�11 9.91E�02 �1.242 �1.447

0.00 ......... 8.1949 1.898 0.977 25.736 2.501 1.074 0.980 1.33E�02 9.09E�03 1.77E�10 1.06E�01 �1.091 �1.295

0.20 ......... 8.3905 1.879 0.915 24.807 2.536 1.088 0.976 1.45E�02 1.01E�02 4.26E�10 1.13E�01 �0.954 �1.158

0.40 ......... 8.5853 1.857 0.841 23.873 2.575 1.105 0.971 1.51E�02 1.08E�02 8.15E�10 1.21E�01 �0.835 �1.039

0.60 ......... 8.7793 1.831 0.755 22.935 2.616 1.123 0.966 1.45E�02 1.09E�02 1.09E�09 1.32E�01 �0.738 �0.941

0.80 ......... 8.9721 1.801 0.654 22.000 2.658 1.142 0.963 1.23E�02 9.97E�03 8.36E�10 1.44E�01 �0.662 �0.866

3.00 ......... 10.9665 1.122 �1.917 11.401 2.765 1.935 0.692 0.00E+00 0.00E+00 0.00E+00 1.50E�02 2.207 2.039

3.20 ......... 11.1018 0.967 �2.457 10.364 2.836 2.276 0.670 0.00E+00 0.00E+00 0.00E+00 3.76E�03 3.083 2.904

3.40 ......... 11.2407 0.840 �3.068 9.334 2.900 2.651 0.734 0.00E+00 0.00E+00 0.00E+00 4.11E�04 4.248 4.055

3.60 ......... 11.4056 0.775 �3.736 8.301 2.946 2.906 0.975 0.00E+00 0.00E+00 0.00E+00 1.40E�05 5.782 5.574
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magnetic field lines in the diffusion approximation, in cm2

g�1; and
14. log10 �

?, where �? is analogous to �k, but for diffu-
sion of radiation in the direction perpendicular to B.

We have also written a Fortran program for the cubic
polynomial interpolation of the tabulated data in the three-
parameter space of B, T, and �.4

7. CONCLUSIONS

We have calculated the EOS and radiative opacities of
fully and partially ionized hydrogen plasmas in a wide range
of densities, temperatures, and magnetic fields typical for
photospheres of the strongly magnetized neutron stars. The
first- and second-order thermodynamic functions, nonion-
ized fractions, and effective Rosseland mean opacities are
published in electronic form.5

The opacities are calculated more accurately than in the
previous publications. In particular, we take into account
suppression of the free-free absorption below the proton
cyclotron frequency, which was overlooked previously. This
effect reduces the opacities of the ionized component of the

plasma by orders of magnitude at photon energies
�h!d0:3�h!cp � 0:02B12 keV, which necessitates a revision of
the previously published models of X-ray spectra of mag-
netars (Zane et al. 2001; Ho & Lai 2001, 2003; Özel 2001,
2003). On the other hand, the bound-bound and bound-free
absorption, neglected in the previous models of neutron star
atmospheres, increases the opacities by more than 1 order of
magnitude at �h! � 0:1 3 keV in the outer atmosphere layers
of the ordinary neutron stars with B � 1012 1013:5 G and
T < ð1 3Þ � 106 K, which can also significantly affect the
spectra.

One can expect that the effect of the bound species on the
EOS and opacities is as important for magnetars (despite
their supposedly higher temperatures) as for the ordinary
neutron stars. To check this, we need to extend our model to
higher B; preliminary high-B results (Chabrier et al. 2002)
support this anticipation.
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of Astronomy of Cornell University. The work of A. P. is
supported in part by RFBR grants 02-02-17668 and
00-07-90183.

APPENDIX A

PHOTOABSORPTION DUE TO PROTON-PROTON COLLISIONS

The general formula for the differential cross section of absorption of radiation by a quantum mechanical system is (e.g.,
Armstrong &Nicholls 1972)

d
 ¼ 4�2

!c
e x f jeffj jih ij j2� Ef � Ei � �h!

� �
d�f ; ðA1Þ

where i and f are the initial and final states of the system, d�f is the density of final states, e is the polarization vector,
jeff ¼ eik� x rj, j is the electric current operator, and k� is the photon wavenumber. For two charged particles in a magnetic field,

jeff ¼
eik� x r1q1p1

m1
þ eik� x r2q2p2

m2

� �
; ðA2Þ

where qi and mi are the particle charge and mass (i ¼ 1, 2), and pi is given by equation (3). Introducing, in the standard way,
the center-of-mass (R, P) and relative (r, p) coordinates and momenta of two protons and using the gauge AðriÞ ¼ 1

2B� ri, we
get

jeff ¼ eik� xR e

mp
P � e

c
B� Rþ iðk� x rÞ p� e

4c
B� r

� �h i
þO k� x r

� �2
: ðA3Þ

The first two terms do not contribute to the free-free absorption, because they do not contain the relative variables and, there-
fore, are decoupled from the Coulomb interaction. The remaining terms are similar to jeff relevant to absorption of radiation
by a particle with charge e/2 andmassmp, except for the factor k� x r, which is small at �h!5mpc2. The absorption cross section
can be written in the form of equation (46). The nonquantizing magnetic field, �p5 1, does not affect the effective collision fre-
quency � pp

� , which in this case does not depend on �. We have evaluated the proton free-free cross section in the nonrelativistic
Born approximation, using the technique of Fourier transforms (Bethe & Salpeter 1957, x 77). For two distinguishable
particles of equal massmp and charge e, the cross section is


pp	 ðpi; !Þ ¼
256�2

3

npe6

mpc�h!3

1

pi

pipf

ðmpcÞ2
þ 3

10

p2i þ p2f

ðmpcÞ2
ln

pf þ pi
pf � pi

����
����

" #
: ðA4Þ

Taking into account that the colliding protons are identical and have spin 1
2, one should calculate the matrix element in

4 The tables and the program are available at http://www.ioffe.rssi.ru/
astro/NSG/Hmagnet/.

5 See footnote 4.
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equation (A1) for symmetric and antisymmetric final states and sum up the cross sections with the statistical weights 1
4 and

3
4,

respectively (e.g., Landau & Lifshitz 1976). This leads to the equation


ppðpi; !Þ ¼ 2
 pp
	 ðpi; !Þ � 
 pp

� ðpi; !Þ ; ðA5Þ

where


pp� ðpi; !Þ ¼
128�2

3

npe6

mpc�h!3

1

pi

6

5

pipf

ðmpcÞ2
p4i þ p4f

ðp2i þ p2f Þ
2
þ �h!

c

� �2p4i þ p4f þ 0:8p2i p
2
f

ðp2i þ p2f Þ
3

ln
pf þ pi
pf � pi

����
����

" #
: ðA6Þ

In equations (A4) and (A6), p2f ¼ p2i þmp�h!, since the reduced mass equals mp/2. The Maxwell distribution for the
relative momenta is FppðpiÞ ¼ ð4=�1=2ÞðmpkBTÞ�3=2p2i expð�p2i =mpkBTÞ. Averaging of equation (A5) with this distribution
gives the cross section in the form (45) with �pp given by equation (47), where �pp is calculated by averaging the pi-dependent
factors of equations (A4) and (A6).

APPENDIX B

PHOTOABSORPTION DUE TO ELECTRON-PROTON COLLISIONS

In the case of photoabsorption due to the electron-proton collisions, the initial and final states in equation (A1) are the con-
tinuum states of the hydrogen atom described by equation (6). The wave function of the relative electron-proton motion can
be written as

 ðrÞ ¼  0ðrÞ þ  1ðrÞ;  0ðrÞ ¼
eik0zffiffiffiffi
L

p �nsðr?Þ ; ðB1Þ

where  0ðrÞ describes free motion with z-component of the relative momentum �hk0, L is the normalization length, and  1ðrÞ is
a perturbation due to the Coulomb interaction. Let us apply one-dimensional Fourier transformation:

~  ðr?; kÞ ¼
1ffiffiffiffi
L

p
Z L=2

�L=2

e�ikz ðrÞdz : ðB2Þ

In the limit of L ! 1, we will have ~  0ðr?; kÞ ! ð2�=LÞ�ðk � k0Þ�nsðr?Þ. Let us use expansion (11) for  1ðrÞ; then

~  1ðr?; kÞ ¼
X
n0s0

~ggn0s0 ðkÞ�nsðr?Þ : ðB3Þ

This is equivalent to replacing gn0s0 ðzÞ by L�1=2 expðik0zÞ�nn0�ss0 þ gn0s0 ðzÞ in equations (12) and (15). Then, applying the Fourier
transformation to equation (15) with r0 ¼ rc and treating ~  1 as small perturbation, in the first approximation we obtain

�h2

2l

 !
k2 � k20
� �

þ E?
n0s0 � E?

ns

" #
~ggn0s0 ðkÞ ¼ �L�1 ~VVns;n0s0 ðrc; k � k0Þ ; ðB4Þ

where

~VVns;n0s0 ðrc; kÞ ¼
Z 1

�1
e�ikzVns;n0s0 ðrc; zÞdz : ðB5Þ

Using equations (A3)–(A10) of Potekhin (1994), we can convert ~VVns;n0s0 ðrc; kÞ into

~VVns;n0s0 ðrc; kÞ ¼ �e2~vvns;n0s0
amK?ffiffiffi

2
p ;

ffiffiffi
2

p
amk

� �
; ðB6Þ

where

~vvns;n0s0 ð�; �Þ ¼ ð�1Þ sj j�sþ s0j j�s0ð Þ=2 Xn�þn0�

l¼0

ð�1Þl
Xminðn�;lÞ

m¼maxð0;l�n0�Þ
amn� sj jal�m;n0�; s0j j

ffiffiffiffiffi
~ss~ss0

p
~vv0~ss;0~ss0 ð�; �Þ ; ðB7Þ

and, assuming q � 0,

~vv0;s;0;sþqð�; �Þ ¼ ~vv0;sþq;0;sð�; �Þ ¼ �q
Xs
m¼0

amsq�
2m

Z 1

0

exp ��2

4

1� t

t
� �2t

� �
t2mþq�1ð1� tÞs�mdt : ðB8Þ

No. 2, 2003 ATMOSPHERES OF MAGNETIC NEUTRON STARS 971



In equations (B7) and (B8), we have defined

n� ¼ nþ s� sj j
2

; n0� ¼ n0 þ s0 � s0j j
2

; ðB9aÞ

~ss ¼ sj j þ sþ s0j j � s0

2
þ l; ~ss0 ¼ sj j � sþ s0j j þ s0

2
þ l ; ðB9bÞ

amns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ sÞ!

p
m!ðn�mÞ!ðmþ sÞ! ðB9cÞ

(n� and n0� are the radial quantum numbers of the Landau functions; e.g., Landau &Lifshitz 1976).
For fixed quantum numbers nf, sf, and a fixed sign of the z-projection of the relative momentum kf of the final state, d�f in

equation (A1) equals Ldkf =2� ¼ ðL=2�Þðl=�h2 kf
�� ��ÞdEf . Therefore, the cross section of photoabsorption by an electron-proton

pair with initial quantum numbers ni and si, longitudinal wavevector ki, and transverse pseudomomentumK? is


ðki;K?; ni; si; !Þ ¼
X

nf ;sf ;signkf

2�Ll

�h2 kf
�� ��!c e x f jeffj jih ij j2 : ðB10Þ

Here, the sum is performed over those nf and sf that are permitted by the energy conservation law,

E?
nf sf þ

�h2k2f
2l

¼ E?
nisi þ

�h2k2i
2l

þ �h! : ðB11Þ

A general expression for jeff has been derived by Potekhin & Pavlov (1997). In the dipole approximation, it reduces to

jeff ¼ e
p

me
þ P

mp

� �
; ðB12Þ

where p is defined by equation (9) and

P ¼ p� e

2c
B� r : ðB13Þ

The circular components of operators p andP, ��1 ¼ ð�x � i�yÞ=
ffiffiffi
2

p
and ��1 ¼ ð�x � i�yÞ=

ffiffiffi
2

p
, transform one Landau state

jn; si?, characterized by the function�nsðr?Þ, into another Landau state,6

�þ1jn; si? ¼ � i�h

am

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
jnþ 1; s� 1i? ; ðB14aÞ

��1jn; si? ¼ i�h

am

ffiffiffi
n

p
jn� 1; sþ 1i? ; ðB14bÞ

�þ1jn; si? ¼ � i�h

am

ffiffiffiffiffiffiffiffiffiffiffi
nþ s

p
jn; s� 1i? ; ðB14cÞ

��1jn; si? ¼ i�h

am

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ sþ 1

p
jn; sþ 1i? : ðB14dÞ

Since e x j ¼ eþ1j�1 þ e0j0 þ e�1jþ1, the matrix element with �+1 andP+1 contributes to 
�1, and vice versa.
In the first Born approximation, using equations (B4), (B11), (B12), and (B14), we obtain

f jeffj jih i0 ¼
e

Ll!
ðki � kf Þ ~VVnisinf sf ; ðB15aÞ

f jeffj jih i�1 ¼ � ie

Lam

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
nf þ 1

p
~VVnisi ;nfþ1;sf�1 �

ffiffiffiffi
ni

p ~VVni�1;siþ1;nf sf

með!þ !ceÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nf þ sf

p ~VVnisi ;nf ;sf�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ si þ 1

p
~VVni ;siþ1;nf sf

mpð!� !cpÞ

#
; ðB15bÞ

f jeffj jih iþ1 ¼
ie

Lam

" ffiffiffiffiffi
nf

p ~VVnisi ;nf�1;sfþ1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
~VVniþ1;si�1;nf sf

með!� !ceÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nf þ sf þ 1

p
~VVnisi ;nf ;sfþ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ si

p ~VVni ;si�1;nf sf

mpð!þ !cpÞ

#
: ðB15cÞ

Here, for brevity, ~VVnsn0s0 
 ~VVnsn0s0 ðrc; kf � kiÞ.

6 The square root factors in eqs. (B14c) and (B14d) were interchanged bymistake in the corresponding eq. (A3b) of Potekhin & Pavlov (1997).
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Equations (B10) and (B15) provide the partial cross sections for one electron-proton pair in a given state. Provided there are
ne electrons per unit volume, the number of electrons interacting with a given proton and having ki in the interval dki and rc in
the surface element d2rc is

dni ¼ neL d2rcFkðkiÞdkiFnisi : ðB16Þ

Here

FkðkiÞ ¼ �h 2�lkBTð Þ�1=2exp
��h2k2i
2lkBT

 !
ðB17Þ

is theMaxwell distribution of the continuum states over ki, and

Fnisi ¼ 1� e��e
� �

1� e��p
� �

exp �ni�e � ðni þ siÞ�p
� �

ðB18Þ

is the Boltzmann distribution over ni � 0 and si � �ni. Thus the total cross section is


ð!;T ;BÞ ¼ neL�a
4
m

X
nisi

Fnisi

Z 1

�1
FkðkiÞdki

Z 1

0

K? dK?
 ki;K?; ni; si; !ð Þ : ðB19Þ

For every polarization, let us write 
ð!;T ;BÞ in the form of equation (49). Then

�e
� ¼ 3

4

X
nisi

Fnisi

X
nf ;sf ;sign�f

Z 1

0

d�i

�f
�� �� exp � �e þ �p

� ��2i
4

� �
w�nisinf sf ð�f � �iÞ ; ðB20Þ

where, taking into account equation (B11), we have

�2f ¼ �2i þ 4ðni � nf Þ þ 4
me

mH
ðsi � sf Þ þ 4

mp

mH

u

�e
; ðB21Þ

and the functions w�nisinf sf ð�f � �iÞ in the integrand are defined according to equations (B6), (B15), and (B19) as

w0
nsn0s0 ð�Þ ¼�2

Z 1

0

� d� ~vvnsn0s0 ð�; �Þj j2 ; ðB22aÞ

w�1
nsn0s0 ð�Þ ¼

2

1þme=mp

� �2
Z 1

0

� d�
��� ffiffiffiffin0p

~vvns;n0�1;s0þ1ð�; �Þ �
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
~vvnþ1;s�1;n0s0 ð�; �Þ

þ me

mp

!� !ce

!þ !cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ s0 þ 1

p
~vvnsn0;s0þ1ð�; �Þ �

ffiffiffiffiffiffiffiffiffiffiffi
nþ s

p
~vvn;s�1;n0s0 ð�; �Þ

h i���2 ; ðB22bÞ

wþ1
nsn0s0 ð�Þ ¼

2

1þme=mp

� �2
Z 1

0

� d�
��� ffiffiffiffiffiffiffiffiffiffiffiffin0 þ 1
p

~vvns;n0þ1;s0�1ð�; �Þ �
ffiffiffi
n

p
~vvn�1;sþ1;n0s0 ð�; �Þ

þ me

mp

!þ !ce

!� !cp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ s0

p
~vvnsn0;s0�1ð�; �Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ sþ 1

p
~vvn;sþ1;n0s0 ð�; �Þ

h i���2 : ðB22cÞ
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