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ABSTRACT

The equation of state and radiative opacities of partially ionized, strongly magnetized hydrogen plasmas,
presented in a previous paper for the magnetic field strengths, 8� 1011 GPBP 3� 1013 G, are extended to the
field strengths, 3� 1013 GPB � 1015 G, relevant for magnetars. The first- and second-order thermodynamic
functions and radiative opacities are calculated and tabulated for 5� 105 K � T � 4� 107 K in a wide range of
densities. We show that bound-free transitions give an important contribution to the opacities in the considered
range of B in the outer neutron star atmosphere layers. Unlike the case of weaker fields, bound-bound transitions
are unimportant.
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1. INTRODUCTION

Neutron star atmospheres differ from the atmospheres of
ordinary stars because of the high gravity and magnetic fields
present there. The majority of the known pulsars possess
magnetic fields B � 1011–1013.5 G (R. Manchester et al. 2003,
in preparation)2. Most popular models of the soft gamma
repeaters and anomalous X-ray pulsars assume they are
magnetars, neutron stars with superstrong magnetic fields,
B � 1014–1015 G (e.g., Thompson 2003).

The properties of matter are strongly modified if the electron
cyclotron energy f!ce ¼ feB=mec exceeds 1 a.u.—i.e., the field
strength B is higher than B0 ¼ m2

ec e3=f3 ¼ 2:3505� 109 G
(for a review, see Lai 2001). Shibanov et al. (1992) presented
the first detailed model of hydrogen atmospheres for neutron
stars with strong magnetic fields. Later it was developed and
used by many authors (e.g., Zavlin et al. 1995; Pavlov et al.
1995; Page, Shibanov, & Zavlin 1996; Zane et al. 2001; Ho &
Lai 2003; Özel 2003; and references therein). These works have
played a valuable role in assessing the observed spectra of
neutron stars. Despite the recognition of the possibility that the
absorption by atoms can significantly contribute to the
opacities, the atoms were not included in the atmosphere model
in a thermodynamically consistent manner in the listed works.

The theoretical equation of state for partially ionized hydro-
gen plasma with strong magnetic fields was developed by
Potekhin, Chabrier, & Shibanov (1999). The nonperturbative
effects of atomic thermal motion across the magnetic field
were taken into account and shown to be important. Based on
this theory, in a previous paper (Potekhin & Chabrier 2003,
hereafter Paper I), we performed extensive calculations of the
thermodynamic functions and calculated monochromatic and
Rosseland mean opacities, taking into account the bound-

bound and bound-free transitions. These calculations were
done at 11:9 � logB½G� � 13:5. In addition, we reevaluated
the free-free opacities, taking into account the motion of both
interacting particles, electron and proton, in arbitrary magnetic
fields.

Here we report an extension of the previous calculations of
the equation of state and opacities of a partially ionized hy-
drogen plasma to higher field strengths, 13:5 � logB½G� � 15.

2. THEORETICAL MODEL

A major complication when incorporating bound species in
the models of strongly magnetized neutron star atmospheres
arises from the strong coupling between the center-of-mass
motion of the atom and the internal atomic structure. If an atom
rests without motion in a strong magnetic field, there are two
distinct classes of its quantum states: at every value of the
Landau quantum number n and the magnetic quantum number
�s (n � 0, s � �n), there is one tightly bound state with
binding energy growing asymptotically (at B ! 1) as ðlnBÞ2,
and an infinite series of loosely bound states (numbered by
� ¼ 0; 1; . . .) with binding energies approaching the energies
of a field-free H atom (e.g., Canuto & Ventura 1977). The
Landau number n is not a good quantum number, in the
sense that the Coulomb interaction mixes different Landau
orbitals of a free electron, but this numbering is unambig-
uous and convenient at B3B0. The atom is elongated: its
size along the magnetic field B either decreases logarithmi-
cally (for the tightly bound states) or remains nearly constant
(for the loosely bound states), while the transverse radius
decreases as B�1=2. The radiative transition rates are different
for the three basic polarizations: the linear polarization along
the field and the two circular polarizations in the transverse
plane.

This simplicity is destroyed when atomic motion is taken into
account. The electric field induced in the comoving frame of
reference breaks down the cylindrical symmetry. Separating the
center-of-mass motion and choosing an appropriate gauge of
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the vector potential (Gor’kov & Dzyaloshinskii 1967; Vincke,
Le Dourneuf, & Baye 1992; Potekhin 1994), one comes to an
effective one-particle Schrödinger equation with an effective
Hamiltonian depending on the pseudomomentum K, which is
a conserved quantity related to the center-of-mass motion in a
magnetic field. If the component of K perpendicular to B,
K?, is finite, then not only n, but also s is not a good
quantum number; nevertheless, it is convenient to retain the
quantum level numbering, n, s, and �, specified above. In the
adiabatic approximation widely used in the past (Gor’kov &
Dzyaloshinskii 1967; Ipatova, Maslov, & Subashiev 1984), the
transverse part of the wave function is postulated to be the
same as for an electron without Coulomb interaction. We
perform calculations without this approximation, using the
techniques described by Potekhin (1994) for the discrete
atomic spectrum and by Potekhin & Pavlov (1997) for the
continuum. This technique uses the basis of Landau functions,
which represent the transverse parts of the wave functions of a
free electron in a magnetic field and are the same for the
solutions of the Schrödinger and Dirac equations. Therefore,
this technique can be used for the ordinary (f!ce < mec

2) as
well as superstrong fields (f!ce > mec

2), provided the atomic
binding energyTmec

2, which is always the case atBP1015 G.
An atom moving across the strong magnetic field acquires a

constant dipole moment perpendicular to B and K. Those
radiative transitions, which were dipole-forbidden for an atom
at rest because of conservation of the z-projection of the
angular momentum, become allowed and should be taken into
account in the atmosphere models. The binding energies
decrease with increasing K?. Asymptotically, at large K?, the
binding energies tend to e3B=ðcK?Þ.

The equation of state for partially ionized hydrogen in
strong magnetic fields was constructed and discussed by
Potekhin et al. (1999). The treatment is based on the free
energy minimization. The free energy model is in essence a
generalization of the nonmagnetic model of Saumon &
Chabrier (1991, 1992) to the case of a strong magnetic field.
We consider a plasma composed of Np protons, Ne electrons,
NH hydrogen atoms, and Nmol molecules in a volume V, the
number densities being nj � Nj=V . The Helmholtz free energy
is written as the sum

F ¼ Fe
id þ F

p
id þ Fneu

id þ FC
ex þ Fneu

ex ; ð1Þ

where Fe
id, F

p
id, and Fneu

id are the free energies of ideal gases of
the electrons, protons, and neutral species, respectively, FC

ex

takes into account the Coulomb plasma nonideality, and Fneu
ex

is the nonideal contribution that arises from interactions of
bound species with each other and with the electrons and
protons. Ionization equilibrium is given by minimization of F
with respect to particle numbers under the stoichiometric
constraints, keeping V and the total number N0 of protons
(free and bound) constant. The latter number is determined by
the total mass density �: n0 � N0=V � �=mH, where mH ¼
me þ mp. The formulae for each term in equation (1) are given
in Potekhin et al. (1999) and in Paper I. The employed
minimization technique is similar to the technique presented by
Potekhin (1996) for the nonmagnetic case.

Once the free energy is obtained, its derivatives over � and T
and their combinations provide the other thermodynamic
functions.

The atomic number fraction xH ¼ nH=n0 evaluated in the
course of the free energy minimization can be used in
calculations of atmospheric opacities. One should take into

account that the strong magnetic field affects the polarization
properties of radiation (e.g., Ginzburg 1970). At photon ener-
gies f! much higher than ð4�f2e2ne=meÞ1=2 � 28:7�

1=2
0 eV;

where �0 � �=ð1 g cm�3Þ, radiation propagates in the form of
two so-called normal modes. These modes have different
polarization vectors ej and different absorption and scattering
coefficients, which depend on the angle �B between the prop-
agation direction and B (e.g., Kaminker, Pavlov, & Shibanov
1982). The two modes interact with each other via scattering.
Gnedin & Pavlov (1973) formulated the radiative transfer
problem in terms of these modes.
Let the magnetic field be directed along the z-axis. At a fixed

photon frequency !, the absorption opacity �a
j ð�BÞ in each

mode j and scattering opacities �s
jj 0ð�BÞ frommode j into mode j0

can be presented as (e.g., Kaminker et al. 1982)

�a
j ð�BÞ ¼ m�1

H

X

1

�¼�1

jej;� ð�BÞj2�a
� ; ð2Þ

�s
jj 0ð�BÞ ¼

3

4

X

1

�¼�1

jej;� ð�BÞj2
�s
�

mH

Z �

0

jej 0;� ð�0BÞj
2
sin �0Bd�

0
B ;

ð3Þ

where � ¼ 0; 	1, ej;0 ¼ ej;z is the z-component of ej, and
ej;	1 ¼ ðej;x 	 iej;yÞ=

ffiffiffi

2
p

are the circular components. The cross
sections �� depend on !, but not on j or �B.
The total scattering opacity from mode j is �s

j ¼ �s
j1 þ �s

j2,
and the total extinction opacity is �j ¼ �a

j þ �s
j . According to

equations (2) and (3), we can write

�jð�BÞ ¼
X

1

�¼�1

jej;� ð�BÞj2�̂� ; ð4Þ

where �̂� (� ¼ �1; 0; 1) do not depend on �B. To within a
good accuracy, �̂� � ð�a

� þ �s
� Þ=mH.

In a partially ionized atmosphere, the opacity is contributed
by electrons, ions, and bound species. The scattering cross
section includes contributions from the electrons and protons:
�s
� ¼ �s;e

� þ �s;p
� . With a good accuracy, �s;e

� and �s;p
� are

described by simple analytical formulae (e.g., Pavlov et al.
1995). The absorption cross section �a

� includes contributions
from absorption by plasma electrons and protons (mainly by
free-free transitions due to the electron-proton collisions, �ff

� ),
transitions between discrete states of an atom (bound-bound
absorption, �bb

� ) and photoionization (bound-free, �bf
� ). Thus,

for the hydrogen atmosphere, we can write

�a
� � xHð�bb

� þ �bf
� Þ þ ð1� xHÞ�ff

� : ð5Þ

For the hydrogen atoms, electrons, and protons moving in a
strong magnetic field, the cross sections �bb

� were studied by
Pavlov & Potekhin (1995), �bf

� by Potekhin & Pavlov (1997),
and �ff

� in Paper I.
Ho & Lai (2003) presented convenient formulae for

jej;� ð�BÞj2 for a fully ionized, strongly magnetized electron-ion
plasma (taking into account vacuum polarization). However,
the bound species affect the dielectric tensor of the medium and
hence the polarization properties of the normal modes. For a
completely neutral hydrogen gas in a strong magnetic field,
polarization modes were studied by Bulik & Pavlov (1996), but
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for a partially ionized gas, the problem is not yet solved. For the
time being, we use the formulae of Ho & Lai (2003). Since the
neutral fraction is typically small, we expect that the resulting
error should not be large for the effective Rosseland mean
opacities presented in the tables.

3. RESULTS

3.1. Calculation of Tables

Since our model of the ionization equilibrium and equation
of state is computationally expensive, it is not possible to use
our computer code on-line in any practical application. The
alternative is to tabulate thermodynamic quantities covering the
density, temperature, and magnetic field domain of interest and
to rely on an interpolation of the tabular values. In Paper I, we
presented tables that cover a range of �, T, and B appropriate
for most typical neutron stars, such as isolated radio pulsars.
We used the fitting formulae for the binding energies, quantum
mechanical sizes, oscillator strengths, and electron collision
widths derived by Potekhin (1998). Calculations at Bk

1013:5 G were hampered by the absence of the relevant fits.
In order to overcome this difficulty, in the present work we

have calculated the tables of the required atomic quantities as
functions of the transverse pseudomomentum K? using the
computer code described by Potekhin (1994). A representative
grid of �50 equally spaced values of logK? has been used for
every relevant set of atomic quantum numbers and every
considered field strength. Handling of these tables is easier with
superstrong than with weaker fields, because the number of
involved discrete states is smaller. For example, there remain no
bound states with s ¼ 2 and s ¼ 1 at B > 2� 1013 G and B >
6� 1013 G, respectively. The latter point is illustrated by
Figure 1, which shows the energies of themost important atomic
transitions at K? ¼ 0 as functions of B. With increasing B, the
tightly bound levels s ¼ 3, 2, and 1 consecutively merge
with the continuum and cease to contribute to the bound-
bound spectrum; instead, they appear as autoionization
resonances. There still remain excited loosely bound states
(with s ¼ 0 and any �) at any B, but at the typical neutron
star atmosphere densities, most of them are destroyed by
interactions with surrounding particles.

We use a cubic interpolation across these precalculated tables
in our computer code for obtaining the number fractions of
atoms and molecules, thermodynamic functions, and cross
sections �bb

� . As previously, we employ the approximate
expression for �ff

� [Eq. (51) in Paper I] and numerical tables
of �bf

� as functions of K? and ! (x 4.2 of Paper I).
In this way we have calculated and tabulated thermodynamic

functions and opacities of the hydrogen plasma at 13:5 �
logB½G� � 15:0 (preliminary results for B ¼ 1014 G were
presented by Chabrier, Douchin, & Potekhin 2002). We have
also updated the FORTRAN program for the cubic-polynomial
interpolation of the tabulated data in the three-parameter space
of B, T, and �.3

As discussed by Potekhin et al. (1999), our model becomes
less reliable at relatively low T and high �, particularly
because the molecules and chains Hn are treated in an
approximate manner. In this domain, the partial number
fractions and thermodynamic quantities are strongly model-
dependent. The stronger the magnetic field, the higher the

temperature below which the molecules and chains dominate
(Lai 2001). Trying to avoid the domain of uncertainty, we
shifted the lower bound on the temperature in the tables, as
compared to the case of weaker fields (Paper I), from 2� 105

to 5� 105 K. On the other hand, the temperature at which the
atoms become thermally ionized increases with increasing B,
therefore we have shifted the upper temperature bound in the
tables from 107 to 4� 107 K. It would be meaningless to
consider still higher T, because hydrogen undergoes efficient
thermonuclear burning at such temperatures (Ergma
1986). The third input parameter in our tables, in addition to
B and T, is the ‘‘astrophysical density parameter’’ R ¼ �0=T

3
6 ,

where T6 ¼ T=106 K. In order to avoid the rather uncertain
region of possible phase separation (see below), we restricted
the public tables by logR � 3:4, although higher R values were
also considered. This range of R should be sufficient for
modeling the atmospheres of most neutron stars, except the
unusually cold ones mentioned below.

Along with the pressure, our tables contain internal energy,
entropy, specific heat, and the logarithmic derivatives of
pressure with respect to V and T. Other second-order
thermodynamic quantities can be calculated using the Maxwell
relations (Landau & Lifshitz 1993).

The format of the tables is the same as in Paper I. In addition
to the thermodynamic quantities, the tables contain the number
fractions of different chemical species and also the effective
Rosseland mean opacities for diffusion of radiation along and
across the magnetic field.

3.2. Ionization Equilibrium and Equation of State

A strong magnetic field generally increases the fraction of
bound species at a given T. Figure 2 illustrates this point. In
this figure, ionization equilibrium curves are plotted as
functions of density for different values of B and T. At the

Fig. 1.—Energies of radiative transitions for the H atom with K? ¼ 0 from
the ground state to the lowest tightly bound states (� ¼ 0, s ¼ 1, 2, 3; light
solid lines) and loosely bound state (s ¼ 0, � ¼ 1; dashed line), the
photoionization threshold (heavy solid line), and the energy of the proton
cyclotron resonance (dot-dashed line). The hatched region corresponds to the
bound-free transitions.

3 The tables and the program are available at http://www.ioffe.ru/astro/NSG/
Hmagnet/.
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lowest T and highest B shown in Figure 2, the molecular H2

fraction (dot-dashed line on the left panel) becomes significant
at �k 1 g cm�3. At the same T and B and higher density
� � 100 g cm�3, the H2 molecules disappear, but the Hn

chains and clusters (not shown in the figure) become
abundant. As mentioned above, our results are not well
justified under such conditions.

Figure 3 shows the domains of partial ionization in the T-�
plane at three values of B.With increasing B, the domains where
the atomic fraction is above a specified level expand
significantly toward higher temperatures.

Figure 4 shows pressure P as a function of � at T ¼ 106:5 K
and at different field strengths. At very low �, we have a nearly
fully ionized, almost ideal nondegenerate gas of electrons and
protons. The magnetic field does not affect the equation of
state in this case. With increasing density, at 102 g cm�3

P �P
103 g cm�3, the electrons become degenerate at B ¼ 0, but
remain nondegenerate at Bk 1012 G. This explains why the
dashed line in the figure (pressure at B ¼ 0) is higher than the
other lines in this regime. Meanwhile, because of the partial
recombination of atoms, the solid curves (P of the nonideal

magnetized plasma) are slightly lower than the dotted ones
(P of the ideal fully ionized plasma). At still higher density,
however, the atoms become pressure ionized; in this region, the
increase of P due to the increased number of free electrons and
protons competes with a negative nonideal contribution, which
is mainly due to the Coulomb term FC

ex in the free energy.
At sufficiently high B or low T, the Coulomb interaction leads

to a discontinuity, exemplified in Figure 4 by the line B ¼
1015 G. It occurs at T below the critical temperature Tc and at �
around the critical density �c � 143B1:18

12 g cm�3 (Potekhin et
al. 1999), where B12 ¼ B=1012 G. This phase transition is
directly related to the magnetic field assisted separation
between the condensed hydrogen and vapor discussed by Lai
& Salpeter (1997). Note that the density of the condensed phase
at zero pressure and zero temperature, estimated by Lai &
Salpeter (1997) as �s � 560B

6=5
12 g cm�3, scales with B

similarly to �c. At B ¼ 1015 G, this estimate gives �s � 2:2�
106 g cm�3, whereas we have numerically �s � 1:7� 106 g
cm�3 in Figure 4. However, in general, the validity of the free-
energy models in the framework of the chemical picture of
plasmas is questionable near the plasma phase transition. In

Fig. 2.—Neutral fraction of the H atoms in all quantum states (heavy lines) and in the ground state (dashed lines) as a function of density at the magnetic field
strength B ¼ 0, 1012.5 G, 1013.5 G, and 1014.5 G. The dot-dashed line shows the fraction of H2 molecules at the highest B. Left panel: T ¼ 5� 105 K; right panel:
T ¼ 2� 106 K. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Domains of partial ionization at logB½G� ¼ 14:0, 14.5, and 15.0. The contours delimit the domains where the atomic fraction exceeds 0.1% (dotted
lines), 1% (dashed lines), or 10% (solid lines). The hatched domain is where the H2 fraction exceeds 1%.
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order to study the matter properties near the phase transition,
one needs to consider accurately the interaction of Hnmolecules
in the gas phase and their interaction with the surface of the
condensed phase. This problem goes beyond the scope of the
present paper, although it certainly deserves a future study. If
this phase separation is real, it can be important for

interpretation of the emission of neutron stars with unusually
low T and/or high B, which in this case do not possess an
optically thick atmosphere above the condensed surface. This
hypothesis was suggested by Lai & Salpeter (1997); a possible
example of such a ‘‘naked neutron star’’ has been recently
considered by Turolla et al. (2003).

3.3. Opacities

Figure 5 shows the monochromatic extinction coefficients
k� ¼ ��̂� for the three basic polarizations � ¼ 0; 	1 at B ¼
1013:5 G, T6 ¼ 1or 4, and� ¼ 0:1 g cm�3 or 50g cm�3. Figure 6
demonstrates the same functions for 10 times higher magnetic
field and densities. These densities correspond to the outer and
inner layers of the atmosphere, where the optical depth is of the
order of 1 for ordinary (high-opacity) and extraordinary (low-
opacity) modes of radiation, respectively (see, e.g., Ho & Lai
2003). At the higher densities, the opacities are featureless,
except the proton cyclotron resonance at f!cp ¼ f!ceme=mp ¼
6:305B12 eV, because the plasma at such density is pressure
ionized. On the contrary, absorption features are clearly visible
at the lower density.

At the lower field strength (Fig. 5), one sees the broad
absorption feature for � ¼ 	1 (left and central panels) due to
the s ¼ 0 ! 1 bound-bound transition at f!P 0:3 keV. For
� ¼ þ1 (Fig. 5, left panel ), this absorption merges with the
strong proton cyclotron free-free resonance at lower energies
and with the photoionization continuum at higher energies.
This situation is rather special, because at this field strength
f!cp is rather close to the photoionization threshold, whereas
the limiting energy for the bound-bound transition falls in
between (see Fig. 1). Both the photoionization edge and the
absorption line are considerably broadened because of the
energy shifts due to the atomic motion (the magnetic broad-
ening; see Pavlov & Potekhin 1995; Potekhin & Pavlov 1997),
therefore they effectively merge together. On the other hand,
the free-free absorption coefficient at the lower T (Fig. 5, solid
curve) reveals the bumps at f!P 1 keV, which arise from the

Fig. 4.—Pressure isotherms (T ¼ 106:5 K) of partially ionized hydrogen in
the strong magnetic field (B ¼ 1012 , 1014 , and 1015 G; solid lines) compared
with the model of a fully ionized ideal electron-proton plasma (dotted lines)
and with the case of a hydrogen plasma at B ¼ 0 (dashed line). The vertical
lines correspond to the density above which excited Landau levels become
populated. The instability region at B ¼ 1015 G (discontinuity of the lower
solid curve) corresponds to a hypothetical plasma phase transition (see text).
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 5.—Monochromatic extinction coefficients for the three basic polarizations, k� ¼ ��̂� , � ¼ 0; 	1, at � ¼ 0:1 and 50 g cm�3, T ¼ 106 (solid lines) and
4� 106 K (dashed lines), B ¼ 1013:5 G. [See the electronic edition of the Journal for a color version of this figure.]
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opening of ionization channels with higher s values at higher
energies and from autoionization resonances just below these
partial ionization thresholds (Potekhin & Pavlov 1997). On the
right panel of Figure 5 (� ¼ 0, the polarization vector along B),
one notices only the photoionization edge at relatively small �
and T (lower solid line).

At the higher field strength (Fig. 6), all transitions changing s
belong to the continuum (see Fig. 1) and form a series of
resonances on the photoionization profile at the energies above
f!cp,which are particularly visible for � ¼ þ1 at low � and T
(left panel, lower solid line). Near the bottom of the photo-
sphere (� ¼ 500 g cm�3), the bound states are destroyed and
do not contribute to the spectrum.

4. CONCLUSIONS AND OUTLOOK

We have calculated the equation of state of fully and partially
ionized hydrogen plasmas in a wide range of densities,
temperatures, and magnetic fields expected for photospheres
of the magnetars. We have also calculated monochromatic
radiative opacities for three basic polarizations. The first- and
second-order thermodynamic functions, non-ionized fractions,
and effective Rosseland mean opacities are published in
electronic form at the Ioffe Phyisico-Technical Institute
Neutron Star Group EOS and opacities Web page.4

These results can be useful for construction of atmosphere
models and calculation of spectra of outgoing radiation from
warm neutron stars with superstrong magnetic fields. This
work is underway; some results have been published byHo et al.

(2003a, 2003b). However, there remain unsolved problems
that hamper an immediate application of our present results to
modeling accurate and reliable emission spectra of magnetars
with hydrogen atmospheres. First, vacuum polarization alters
the dielectric tensor of the medium and polarization of photon
modes (see Pavlov & Gnedin 1984). This effect is important for
magnetar atmospheres. In particular, the ‘‘vacuum resonance’’
phenomenon may lead, under certain conditions, to an
adiabatic mode conversion and ‘‘mode collapse’’ (Ho & Lai
2003 and references therein). In the latter case, the description
in terms of the two modes fails, and one has to solve more
general equations for the evolution of electromagnetic waves
(Lai & Ho 2003). Second, as noted in x 2, the presence of the
bound species also changes the dielectric properties of the
medium and the normal mode polarization, which necessitates
derivation of a polarization tensor for partially ionized,
strongly magnetized plasmas. Third, for relatively cold
neutron stars with strong magnetic fields, the phase separation
mentioned in x 3.2 should be studied in a thermodynamically
consistent way. We are planning to study these problems in the
near future.

We thank Dong Lai for useful discussions and Yura Shibanov
and Wynn Ho for valuable remarks. A. P. gratefully acknowl-
edges the hospitality of the theoretical astrophysics group at the
Ecole Normale Supérieure de Lyon and the Astronomy
Department of Cornell University. The work of A. P. is sup-
ported in part by RFBR grants 02-02-17668 and 03-07-90200.
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