Contrib. Plasma Phy&3, No. 4-5, 397 —405 (2013)DOI 10.1002/ctpp.201200094

Electron screening effect on stellar thermonuclear fusion

Alexander Y. Potekhin*12 andGilles Chabrier23

1 loffe Physical-Technical Institute, Politekhnichesk& 194021 St. Petersburg, Russia
2 Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07,déran
3 School of Physics, University of Exeter, Exeter, UK EX4 4QL

Received 30 October 2012, revised 21 December 2012, adc2ptBecember 2012
Published online 13 May 2013

Key words Dense matter, stellar nucleosynthesis.

We study the impact of plasma correlation effects on nomasbthermonuclear reactions for various stellar
objects, namely in the liquid envelopes of neutron starg, the interiors of white dwarfs, low-mass stars,
and substellar objects. We examine in particular the efféelectron screening on the enhancement of ther-
monuclear reactions in dense plasmas within and beyondnéarImixing rule approximation as well as the
corrections due to quantum effects at high density. In @ditve examine some recent unconventional theo-
retical results on stellar thermonuclear fusions and stavthese scenarios do not apply to stellar conditions.
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1 Introduction

Thermonuclear reactions play a crucial role in stellar etioh. Nuclear fusion rates in stellar interiors can be
significantly enhanced over the binary Gamow [1] rates beeaf the many-body screening effect in the dense
plasma (first recognized by E. Schatzman [2]; for reviews,[3e4]).

In the envelopes of neutron stars (NSs) and interiors ofenditarfs (WDs), where the electrons are strongly
degenerate, the screening effect is usually treated uhdeagsumption that the electron gas can be considered
as a uniform “rigid” background, and the screening is predidolely by ions. On the other hand, in ordinary
stars this effect is often treated with Salpeter formulaicwhmplies Debye screening (see, e.g., Ref. [5] and
references therein). The latter approximation is appleaba gaseous phase. In the present article, we consider
the electron screening effect on nuclear fusion at arlyiteéectron degeneracy and arbitrary Coulomb coupling
of ions in gaseous and liquid plasmas.

The influence of the electron polarization on the enhancéwfemuclear reaction rates has been studied in
some detail in several papers [3,6-9]. At the time of thosdiss, uncertainties in the reaction rates due to
other factors, viz. quantum effects and deviations fromlitnear mixing rule in strongly coupled plasmas, as
well as theoretical uncertainties in the nuclear effectioéentials at short distances, were more important than
the electron-screening effects. For this reason, morentagerks were aimed at reducing these uncertainties
and mostly neglected the electron polarization (e.g., 120~ In this paper, we show, however, that the effect of
the electron-polarization on the enhancement factor ofitletear reaction rates is typically of the same order of
magnitude as the other recently proposed corrections.

In Sect. 2 we compare different approximations for the enbarent factors. In Sect. 3 we describe the results
of the application of the electron-screening correctiothonuclear reaction rates in stellar conditions. In Sect. 4
we discuss the origin of discrepancies between our resattsame other results published recently. Sect. 5 is
devoted to the conclusion.

2 Theory

A review of the theory of nuclear fusion in stars with exteesbibliography was given in the Nobel lecture
by Fowler [13]. One should discriminate between the reasti@lated to nuclear resonances and nonresonant
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reactions. We consider only the latter ones. It is custont@myrite the cross section of binary nuclear fusion
reactions in the form

o(E)=e *™S(B)/E, 1)
whereFE is the center-of-mass energy of the reacting nuclei “1” aigl

n=+\/ERr/E, Er = (Z1Z2€%)* m12/2h, 2

Zje is the charge of nucleug™, e is the elementary chargeyio = mims/(m1 + m2) is the reduced mass, and
S(F) is a function called “astrophysical factor.” Then the réattate (the number of fusion events per unit time
in unit volume) in the absence of plasma screening is given by

Ris = wia n1n2,/i/me—WS(E)w(E)dE//m w(E)VEdE, (3)
mi2 Jo 0

wheren; is the number density of the ions of typg';' w(E) is the statistical distribution function of the center-
of-mass energies of the reacting nuclei, and the fagtgraccounts for statisticav,s = % if nuclei “1” and “2”
are identical; otherwise;, = 1. With Boltzmann statisticsy(E) = wg(E) = T 'exp(—E/T), whereT is
temperature in energy units.

In order to take the plasma screening into account, it is eni@nt to write the radial pair-distribution function
forions in the form [14]

g12(r) = exp (— Z1Z2¢*/rT) exp [Hi2(r)/T], 4)

where the first factor is the Boltzmann formula for an ideal,gehile the second one shows how the probability
of separation of two chosen ions is affected by the surroynpliasma particles.
It is convenient to introduce parameters

1—‘12 == Z1Z2€2/a12T, a1 = (al + ag)/Q, T = 3(7T2ER/T)1/37 < = 3F12/T. (5)

wherea; = (3Zj/47me)1/3 are the ion-sphere radii, amd is the electron number density. As shown in Ref. [4],
under the conditiog < 1 the functionH2(r) slowly varies on the scale of the classical turning pointaise
and the nuclei behave as classical particles. Then theioaaette with allowance for the plasma screening is
approximately given byRs exp(h), whereh = Hy5(0)/T and R;» is expressed by Eq. (3) [6]. Furthermore,
one can prove [14-17] thdf,,(0) equals the difference between the excess free endrgidsefore and after an
individual act of fusion. Herel,, = F' — Fiq, I is the total Helmholtz free energy, aiig is the free energy of
the ensemble of noninteracting ions and electrons. In taiertbdynamic limit this gives the relation

0 0 0
h=|— = a4 ionJex BE evT ) 6
(52 + 5~ 7 ) ionen( {5}, ) ©
wheren;o, = Zj n; is the total number density of ions, including number dgnsitof composite nuclei, which
have charge numbéfs = Z; + Z5 and massns ~ my + ma, andfex = Fex/nion VT is the normalized excess
energy.

In the linear-mixing approximation,

Jex & flm({nj}anfzaT) = ijfj(nfsz)- (7)

Here,z; = n;/nion denotes the number fractions, afidn., T') is fex for a plasma containing only thgh type
of ions. In this approximation, the enhancement expohdrgcomes

hlm:fl(neaT)+f2(n67T)_f3(neaT)- (8)
In the model of a rigid electron background, this reduces to
Pimyii = fi(F1) + fil(P2) — fu(l'z), 9)
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where f;;(I) is the normalized excess free energy of the one-componasingl and’; = (Z;e)?/a;T are
coupling parameters of individual ion species. In the iomesp approximationf; (I') = —0.9T, and themyy,
becomes [6]

hs =0.9(T5 — Ty —Ty). (10)

The linear mixing rule works in strongly coupled Coulombsstes, i.e., af'; > 1[18,19]. In the opposite
limit T; < 1 (V4), the Debye-Huckel approximation is applicablByy = —V7T /127 D3, whereD is the
screening length:

VT
127 D3’

‘Fex"'tj

_ _ _ dme? One

D™? =kip+ D, Dign=— an,-zf, kg = 4me? o @D
J

where 1. is the chemical potential of the electron Fermi gas. Using [24) of Ref. [20], one can write

krr(ne, T) in an analytic form. In the two limiting approximations ofmtegenerate electronsi. — 4re®n./T)

and rigid backgroundi{rr — 0), Eqgs. (6) and (11) give the Salpeter formula [6]

hpu = Z1Z2e?/DT. (12)

Salpeter and Van Horn [21] proposed a simple interpolatietwben the Debye-Hiickel and strong-coupling
limits:
hevy = —ShoH
VhE+ hiy
wherehg andhpy are given by Eqgs. (10) and (12), respectively. A more elaledrapproximation for the en-
hancement factor between the Debye-Huickel and stronghoguimits was constructed for the rigid background
model in Ref. [12].
These analytic approximations can be compared to the decuasult. We write the normalized excess free
energy in the fornfex = fim+ fmix, Wherefi, is given by Eq. (7), andi,ix is the correction to the linear-mixing.
Then Eq. (6) gives

(13)

dfmix(xl +€,I2 +€,I3 - 6)
dg e=0

wherehy,, is given by Eq. (8). The right-hand side of Eq. (14) can betemiin an analytic form using our fitting
formulae for fex(ne, T) and fmix({z; }, {Z;}; ne, T') (see [22] and references therein).

Equation (14) is obtained assuming tiat; () ~ H12(0), which is true for small values of the parameger
defined in Eq. (5). When this condition is not satisfied, tlzssical enhancement exponggnshould be corrected
for the quantum effects. We denote this corrected valueAlastuey and Jancovici [24] showed titat < o and
developed a perturbation expansiorhgfin powers of¢. More recently, Militzer and Pollock [25, 26] performed
simulations of the contact probabilities in the quantummegand extended numerical results beyond the appli-
cability range of the perturbation theory [24]. Chugunod &eWitt [11] found that the quantum effects can be
described in the linear-mixing, rigid-background approation by substitution di“j =TI';/t12 instead of'; into

Eq. (9), wherg 1, = [1+ c1¢ + c2¢? + ¢3¢ Y3 el = 0.013 22, ¢ = 0.406 2014, ¢5 = 0.062 2019 + 1.8/T2,
andz = 47,75 /(Z, + Z2)%. An analogous correction is not known for the polarizablekgaound. Fortunately,
the quantum effects are important only in the domain of highsities and relatively low temperatures, whereas
the deviations from the linear-mixing and rigid-backgrdwapproximations are most important in the opposite
case. Therefore, in order to take all these effects intowttgcave multiply the classical expression (14) by factor
q= Blmyﬁ/hlmyﬁ, whereh, ;i andﬁlm_,ﬁ are given by Eq. (9) with'; andfj, respectively.

ho = him + (14)

3 Reaults

3.1 Degenerate stars

The electron-screening effects on the enhancement faatatrsgnition curves for carbon and oxygen fusion
reactions in the liquid layers of WDs and NSs were studiedeh R7]. Under the typical conditions in these
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Fig. 1 Plasmaenhancement exponents for deuterium fu-Fig. 2 Physical conditions (at two ages) and enhancement
sion in hydrogen medium as a function of mass density exponents (in two approximations) at the centers of LMSs
atT = 10° K (upper panel) and0°® K (lower panel)  and SSOs with the solar abundance of heavy elements. In
in different approximations. Three lines show results for all three panels solid and dashed lines are drawn at the
classical nuclei: 1) ho in the linear-mixing, rigid back-  ages 5 Gyr and 100 Myr, respectively. The top and middle
ground approximation [Eq. (9)] (dotted lines2) (.o for panels reproduce, respectively, the central temperatare a
the linear mixing with polarizable electron background density along the LMS-SSO mass range. The bottom panel
[Eqg. (8)] (dot-dashed lines),3] ho beyond the linear- shows the normalized enhancement expongitsyvu for
mixing approximation with a polarizable electron back- the deuterium burning along these temperatures and densi-
ground [Eg. (14)], the most general classical approxima-ties with (upper pair of curves) and without (lower pair of
tion] (short dashes). The other two lines take into accountcurves) account of electron polarization.

guantum corrections4j the fit of Ref. [11] forhq (long

dashes), andbf the approximatiorhy = gho (with ¢ de-

fined in the text), which includes both the ionic and elec-

tronic screening contributions and takes both the quantum

effects and the deviations from the linear-mixing rule into

account (solid lines).

layers, the electron screening proved to increase the erhamt exponerit by several to tens percent, which
translates into a factor of a few for the reaction rate”. The deviations from the linear-mixing approximation
have the opposite effect of a similar magnitude. Therefithre corrections beyond the linear mixing [12] must
be considered only together with the electron polarizatioisome cases the two effects nearly compensate each
other.

All the discussed corrections, except the quantum one,gorde have almost no effect on the positions of
the carbon and oxygen ignition curves. In the WDs, the headyred by the nuclear reactions is evacuated
by neutrino emission. In this case, the position of the ignitturves may be even stronger affected by the
current uncertainties in the neutrino reaction rates irsdgrlasma environment than by the departures from the
linear-mixing approximation or by electron-polarizaticorrections. In the NSs, the heat is not only taken away
by neutrinos, but also effectively sinks through the enpeloln the latter case, the one-zone approximation of
the heat diffusion is often applied to the analysis of stgbdf the nuclear fusion (e.g., Refs. [28,29]). We
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Fig. 3 (@) Ratios of the deuterium burning rates with account of etecscreening to the rates in the rigid-background model
at the same temperatures and densities as in Fig. 2. Theslmags the absolute reaction rates per one nucleus with accou
of electron screening (solid line for age 5 Gyr, dashed lorelD0 Myr) and for the rigid background (dotted line)) The
same for lithium burning.

have found [27] that it is more important to go beyond the pare approximation than to introduce all other
corrections mentioned above. In magnetars (NSs with stppagsmagnetic fields of0'4—10'° G) an account
of the magnetic modification of the heat transport coeffisiénequally significant.

3.2 Low-mass objects

As another astrophysical example, let us consider therelesicreening effect on nuclear fusion in low-mass
stars (LMSs) and substellar objects (SSOs; see Ref. [304 f@view). Important indicators of the ages and
masses of these objects are the so called lithium and dentéests, which are based on depletion of lithium and
deuterium by nuclear burning.

Figure 1 displays the enhancement exporigntormalized with respect thgyy, for the reactiop + d —
3He+, in different approximations. The accurate result is coregdo the result of application of the linear-
mixing approximation in the cases of polarizable electrackground according to Eq. (8) and rigid background
according to Eq. (9), with and without the quantum corrawio

We note that the simple Salpeter — Van Horn approximatioi) f&8forms surprisingly well: its accuracy in
the LMS-SSO conditions, as we see in Fig. 1, is within a fevg fgrcent. We recall thatin WD-NS conditions its
accuracy is still better, typically a few percent [27]. Theagtum effects in Fig. 1 are significant onlysat> 103
g cm—3. From the lower panel of Fig. 2 we see that such densitiesa@reeached in the LMS-SSO conditions,
therefore the quantum effects do not play role in theorktimalels of nuclear fusion in LMSs and SSOs (unlike
the NS-WD case [27]).

Figure 2 shows the dependences of LMS-SSO central dersitteeemperatures at two characteristic ages of
these objects (the two lower panels, from Ref. [30]), togettith the respective normalized enhancement expo-
nentsh/hgvy with and without the rigid-background approximation. Agyiously, we see that the corrections
beyond the Salpeter — Van Horn approximation are of the saagmitude for the rigid and polarizable electron
backgrounds (te- 30% in this case), but of different sign.

This difference can translate into factors of a few for thact®n rateR;, « e” in the objects of very small
mass, because they are relatively cool and therefore haaga factorh = H12(0)/T in their central parts.
Figure 3a demonstrates this for the SSO deuterium fusionmasses\/ ~ 10~2M,, the minimum mass for
D-fusion [30], where)M, is the solar mass, the electron polarization effect chaigedy a factor of 1.5-2.
This change does not significantly affect the deuterium etepi curves and therefore is unimportant for the
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mass-age deuterium test. As seen from the inset in Fig. I;diresponding corrections are of the order of a
fewx 10~* M, which is astrophysically negligible.

Figure 3b shows the rates of the reactiam+p — 2*He. This case is similar to the previous one, with the
difference that the latter reaction takes place for moresma®bjects. At very small masses the difference in the
reaction rates calculated with and without the allowancétfe electron polarization is huge, but astrophysically
unimportant, because these rates are so low that one magchégk reaction altogether. At contrast, far ~
0.07 Mg, this reaction is crucially important for stellar diagnaestibut in this case the polarization correction is
smaller, and it translates into a negligible correctiontfa mass-age relation.

4 Remarkson some controversial approaches

4.1 Yukawa potential

For an arbitrary degree of degeneracy (but at not too strangothb coupling; see [23]), the screened interaction
between ions is approximately described by the Yukawa pialei¥; Z2¢?/r) exp(—r/D), whereD is given
in Eq. (11). Pollock and Militzer [25] studied the contacbpabilities of Yukawa systems with the intention
to simulate the electron-screening effect (see also Ré}).[1Based on these simulations, they arrived at the
conclusion that electron screening “reduces the enhanaszffect,” in obvious contradiction with our findings
above and with the earlier results [3, 8,9, 14, 21].

We note, however, that the Yukawa model corresponds to tlen@l-Fermi limit,e(k) ~ 1 + (ktr/k)?,
for the static dielectric functiom(k), which is only justified att < krr (see, e.g., [31]). Therefore, this
model is inappropriate at short distances (i.e., large wman®ersk). In particular, it is not applicable for the
evaluation of the screening potential at zero separafiin(0). Therefore, a Yukawa system cannot correctly
reproduce the effect of electron polarization on the nudiesion rates. This fact was recognized by Ichimaru
[4], who mentioned two opposite effects of electron scregnifirst, the binary repulsive potentials between
reacting nuclei are reduced by electrons (“short-rangeef, which increasefl;»(0); second, the reduction of
particle interactions by the screening affects the manyylomrrelation function in such a way that it decreases
H15(0) (“long-range effect”). In real electron-ion plasmas (with the Yukawa approximation) the first effect
overpowers the second one. The Yukawa model grasps thedseffent, but misses the first, dominant one.

4.2 “Quantum tail” in energy distribution

Starostin and coworkers [32—36] noted that in dense plasmasldition to the potential lowering that results in
the enhancement factor discussed above, there is anotéetr @ipable to modify the reaction rates. Because a
state with definite momentum has a finite lifetime, its momendistribution (or, equivalently, the distribution
of kinetic energies) is broadened due to Heisenberg unagriarinciple. Therefore the probability to find a pair
of nuclei in a state with a high center-of-mass energy isdatigan predicted by the Boltzmann statistics. These
use in Eq. (3), instead afs (F), a modified distribution function

Wimod (Ep) = /000 wp(FE) ¢(E, E,) dE, (15)

where¢(E) describes the quantum broadening of the kinetic energyetéthrough the particles’ momenia
The authors suggest to use for this broadening the speatretién [37, 38]

(B, Ey) = (v/7) | [(E — E, — A)* ++7], (16)

wherey = v(p) = hveon is a collisional widthy.y is an effective collision frequency, anl is the collisional
energy shift, which is inessential for our discussion anlillvé suppressed. The use of the Lorentz profile (16)
in Eq. (15) implies the necessary conditipn< 7', which is satisfied in all examples discussed hereafter. For
Coulomb scattering of a light particle with chargee, momentunp and velocityv from ambient heavy particles
with chargesZ,e, the collision frequency iscon = n2(oconv) = [4mns(Z1Z2€?)? /p?v] A(p), whereoy is

an effective collisional cross section andp) is a Coulomb logarithm. For estimates we will use this foranul
for any particle masses and adopt the nonmagnetic nomistatilimit of the transport Coulomb logarithm from

(© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Www.cpp-journal.org



Contrib. Plasma Phy&3, No. 4-5 (2013) / www.cpp-journal.org 403

||||\|\||||||||||||||||||||

40 ~ o
L 120 Tt
r classic s 5]
[ — — — — modified 10° g em b
230 F e neutrino -
g L
0 -
T
n L
jol1)
o L
O
< L Fig. 4 Power of the carbon fusion reaction as func-
=] . . .
S - tion of temperaturd” at constant density according
r A to the conventional calculation (solid lines) and with
I 01 g cm-? statistical averaging over momenta including “quan-
o~ 7=~ -7 0.

tum tails” in their distribution according to Eq. (15)

(dashed lines). For comparison, neutrino emission

TR BN R R power is shown by dotted lines. The upper line of each

8 8.5 9 9.5 10 type corresponds tp = 10% gcm 2 and the lower
log T (K) linetop = 0.1 gcm 3.

Ref. [39]: A(p) = 0.5 In(1+u) —0.5u/(1+u), whereu = [(D2 + (2a;/3)*) "' + k3] (h/2p)? (numerically,
A ~ 1-10 in the examples below).

Inthe limity — 0, the functiony turns into a Dirac delta function, and the Boltzmann disttiin is recovered.
However, for finitey and for energies much higher than the thermal energy, so that

Ep/T > In(nE} /4T), (17)

the exponential decay afs (E) is overpowered by so called “quantum taif;, (E,) — +T'/7E2. For nonrela-

tivistic Coulomb particlesy (p) o E, */?, therefore the tail decays as,; x E, />

This approach was criticized by Bahcall et al. [5] and by Zekg41]. Bahcall et al. merely state that the term
d®*p1d®p, in the quantum-mechanical expressiinoc [ [ d*p1d3ps exp(—E/T) |(f|H]|i)|? for the reaction
rate represents the density of states and should not besaahfuith the expectation values of particle momenta,
distributed according ta.,.q(E,). While the statement is certainly true in general, the ampuinmisses the
point because it says nothing abdyit /i), which needs not be just a first-order perturbation matexnent.
Indeed, the kinetic Green function derivation of the dimttion (15) [34, 38] implies that multiple scattering is
taken into account in addition to the fusion matrix elemgsritse. Thus one may say that(F) is effectively
contained in(f|H|i)|? in the above expression fdt.

Zubarev [41] put forward another argument. He noted thapthtusion rates calculated withvg (E) and
with w04 (E) differ by three orders of magnitude for the Sun, and conalutiat in the second case “one has
neglected the coupling between the various probabilitylantes of velocity which is introduced by the quantum
uncertainty.” These statements are refuted in [36], butefé were indeed such a large difference, the second
(nonstandard) method of averaging must have a flaw. Indeedgreement between the current stellar evolution
theory and observations does not leave room for such a hugeyefof the basic reaction rates.

Let us consider the fusion reactidfiC+'2C — 2*Mg, which plays a crucial role in the theory of WDs, red
giants, and accreting NSs. We calculate the astrophysic#ifS(F) for this reaction using the most recent
effective potential model [42] derived from laboratoryuks. In Fig. 4 we show thermonuclear heat ratgs.
per unit volume as functions @f at densitiep = 10® g cm~3 and 0.1 g cm®, calculated with using the classical
statistical weightvg (E) and the modified weighiy,oq4(E). The conventional results show steep decrease with

1 The authors [36] obtaimg; o< E;4, because they replaece= /2E,/m12 by 1/2E/m1 in (oconv), which introduces an error
in Eq. (15) atE}, > T'. However, this difference in the power index does not gatiitly change any results or conclusions. We note in
passing that the parallel to Kimball's power law 8 [40], drawn in [33—36], appears ungrounded, because théb&liim result is specific
to the distribution of fast particles scattered by a pogntith asymptotic behavior »—! atr — 0, whereas the collisional broadening is
present for any scattering potential [37].
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decreasing temperature bel@w< 10° K. At contrast, the modified calculation gives a minimuniag, 10° K

and then an increase of the rate with decreaginghe origin of this behavior is mathematically obvious. éwl

T, the denominator in Eq. (3) remains determined by the Batampart ofw(E) and provides the normalization
/T, while the largest contribution to the numerator comes ftbaintegration ofSe—2"" with the weight

w ~ wq Over the energies above the Coulomb barrier, which is teatpex-independent. Thus the ratio becomes
o T~1/2. The latter dependence is well discerned in Fig. 4fog 10° K andp = 0.1 gcm 3. At p = 108

g cm 3, there is a stronger increase®f,,. with decreasing’, caused by the increase of the faatbr

From the physics point of view, this enhancement of nucleargr at low1" is unacceptable. For example, it
is incompatible with the existence of carbon WDs. To show,thve have additionally plotted in Fig. 4 neutrino
emission rateg),, calculated following Ref. [43] as the sum of the power @raway by neutrino emission
due to annihilation of electron-positron pairs, plasmocaygeand bremsstrahlung. The intersectigh. = Q.
is theignition point, beyond which nuclear burning becomes unstable. We seeavitiathe modified statistical
averaging the intersection is absent, i.e., the burningnays unstable. If it were true, all carbon WDs should
have exploded, but they do exist. The modified calculatiso @redicts cold fusion at the normal conditions,
which does not happen.

What is the basic flaw of the “quantum-tail” calculation? Aancbe seen, for example, from Ref. [34],
Eqg. (15) is related to a perturbation correction of the orddteto the Maxwellian distribution. Different forms
of this correction can be equivalent to the same order. Famgke, the original Wigner expansion of his prob-
ability function in powers ofi? [44] can be rewritten in several wayscp(—E,/T) [1 + h2gsE,/T* + ...] ~
exp[—E,/T + h%2g2E,/T* + ...] ~ exp[—E,/(T + h?g2/T? + ...)] (cf. [45], § 33). Here g, is a coefficient
involving average products of derivatives of the interattpotential. These different forms, however, are not
equivalent ifA?g2 E,,/T* is large, which indicates that applicability of this cotien is restricted to relatively
low energies or high temperatures. However, the “quantifheontribution to the numerator of Eq. (3) at low
T comes mainly from high energies, whose difference ffbrexceeds the collisional width by many orders
of magnitude. Therefore we think that such evaluation of @Bj.falls beyond the applicability range of the
distribution (15).

The quantum uncertainty of particles’ momenta is conjugatee quantum uncertainty of their coordinates.
The thermonuclear fusion enhancement and the cold (pyahesm) fusion due to these quantum uncertainties
are well known (e.g., [21]). However, these effects are irtaott only at very high densities (e.g., at> 10°
g cm3 for the carbon fusion [10]).

5 Conclusions

We have studied the effects of electron screening on theualear reactions in dense plasmas and compared
different approximations to determine plasma enhanceffaetars for the nuclear fusion rates. The electron
screening always increases the enhancement effect. Thsitgponclusion may come from using the Yukawa
potential model, which is inappropriate to calculate thataot probability for fusing nuclei. The method of
taking quantum uncertainties in particles’ momenta by avohrion of Boltzmann and Lorentz distributions,
suggested in some publications, leads to physically unredsie results. We argue that it may be a consequence
of violation of applicability conditions of underlying tbey.

Although the electron polarization correction can incesagusion rate by orders of magnitude, we find that it
does not significantly affect theoretical models of WDs, N3éSs, and SSOs.
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