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ABSTRACT

Context. There is observational evidence that central compact objects (CCOs) in supernova remnants have moderately strong magnetic
fields B ∼ 1011 G. Meanwhile, available models of partially ionized hydrogen atmospheres of neutron stars with strong magnetic fields
are restricted to B � 1012 G. Extension of the applicability range of the photosphere models to lower field strengths is complicated by
a stronger asymmetry of decentered atomic states and by the importance of excited bound states.
Aims. We extend the equation of state and radiative opacities, as presented in previous papers for 1012 G � B � 1015 G, to weaker
fields.
Methods. We constructed analytical fitting formulae for binding energies, sizes, and oscillator strengths for different bound states of
a hydrogen atom moving in moderately strong magnetic fields and calculate an extensive database for photoionization cross sections
of such atoms. Using these atomic data, in the framework of the chemical picture of plasmas we solved the ionization equilibrium
problem and calculated thermodynamic functions and basic opacities of partially ionized hydrogen plasmas at these field strengths.
Then plasma polarizabilities were calculated from the Kramers-Kronig relation, and the radiative transfer equation for the coupled
normal polarization modes was solved to obtain model spectra.
Results. An equation of state and radiative opacities for a partially ionized hydrogen plasma are obtained at magnetic fields B,
temperatures T , and densities ρ typical for atmospheres of CCOs and other isolated neutron stars with moderately strong magnetic
fields. The first- and second-order thermodynamic functions, monochromatic radiative opacities, and Rosseland mean opacities are
calculated and tabulated, considering partial ionization, for 3×1010 G � B � 1012 G, 105 K� T � 107 K, and a wide range of densities.
Atmosphere models and spectra are calculated to verify the applicability of the results and to determine the range of magnetic fields
and effective temperatures where the incomplete ionization of the hydrogen plasma is important.
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1. Introduction

Thermal or thermal-like radiation has been detected from sev-
eral classes of neutron stars, which are characterized by differ-
ent typical values of magnetic field B. Particularly interesting
are isolated neutron stars with clearly observed thermal emis-
sion in quiescence, whose thermal X-ray spectra formed on the
surface are not blended with emission from accreting matter or
magnetosphere (see the list of their properties in Viganò et al.
2013). Most of them have surface magnetic fields in the range
1012 G � B � 1015 G, but one class of sources, so called cen-
tral compact objects (CCOs) have B ∼ a few × (1010−1011) G
(Halpern & Gotthelf 2010; Ho 2013). These fields are strong
enough to radically affect properties of hydrogen atoms and
strongly quantize the electrons in the neutron-star atmosphere,

� Tables of thermodynamic functions, atomic number fractions,
opacities, and plasma polarizability coefficients are only available at
the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A69

but they are below the field strengths available in the previ-
ously developed models of strongly magnetized, partially ion-
ized hydrogen atmospheres of neutron stars, which are currently
included in the XSPEC package (Arnaud 1996) under the names
NSMAX (Ho et al. 2008) and NSMAXG (Ho 2014). A construc-
tion of neutron-star photosphere models for moderately strong
magnetic fields has, therefore, become a topical problem. In this
paper we construct such models for 3 × 1010 < B < 1012 G.

We use the theoretical model of a partially ionized hydrogen
plasma (Potekhin et al. 1999; hereafter Paper I) that was pre-
viously used for opacity calculations at 1012 G � B � 1015 G
(Potekhin & Chabrier 2003, 2004; hereafter Papers II and III, re-
spectively). However, the present task is more arduous, because
the field strength is closer to the atomic unit B0 = m2

e c e3/�3 =
2.35 × 109 G. Accordingly, the dimensionless magnetic field
parameter γ = B/B0 is smaller, and the adiabatic approxima-
tion for atomic wave functions, which is valid at γ → ∞, be-
comes less adequate, which entails the need to include more
terms than previously in the wave-function expansion beyond
this approximation.
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In addition, with decreasing B, the energy spectrum of the
bound states of a magnetized atom becomes denser, which ne-
cessitates inclusion of more such states in the consideration.
Meanwhile, since γ � 1, the center-of mass motion of the atom
noticeably affects the atomic properties. In order to cope with
the problem, we construct analytical fitting formulae for atomic
energies, sizes, and main oscillator strengths as functions of B,
discrete quantum numbers of initial and final states, and pseu-
domomentum K⊥, which corresponds to the state of motion of
an atom across the field. These analytical expressions are valid
for γ ∼ 10–1000 and supplement the previously available fits
for larger γ (Potekhin 1998). For bound-free transitions, we cal-
culate extensive tables of cross sections as functions of K⊥ and
photon frequency ω for a number of bound states at every given
B and interpolate across these tables to calculate the opacities in
the same way as in Papers II and III.

In Sect. 2 we recall the main properties that characterize
the motion of a hydrogen atom in a magnetic field. In Sect. 3
we describe the solution of the ionization equilibrium problem.
Section 4 contains the summary of the theoretical methods used
to calculate the opacities and polarization vectors of normal elec-
tromagnetic modes in a magnetized plasma. Results of numeri-
cal calculations are presented and discussed in Sect. 5. In Sect. 6
we formulate conclusions. In the Appendix we present analyt-
ical approximations to the results of numerical calculations of
the characteristics of a hydrogen atom moving in a strong mag-
netic field (binding energies, quantum-mechanical sizes, bound-
bound transition oscillator strengths) that are used to solve the
ionization equilibrium problem and to calculate the opacities.

2. Hydrogen atom in a strong magnetic field

Motion of charged particles in a magnetic field B is quantized
in discrete Landau levels. In the nonrelativistic theory, the en-
ergy of the Nth Landau level equals N�ωce (N = 0, 1, 2, . . .),
where ωce = eB/mec is the electron cyclotron frequency. The
wave functions that describe an electron in a magnetic field have
a characteristic transverse scale of the order of the “magnetic
length” am = (�c/eB)1/2 = aB/

√
γ, where aB is the Bohr radius.

In a hydrogen atom, the Landau quantization affects motion
of both charged particles, electron and proton. For a nonmoving
atom in a strong magnetic field, there are two distinct classes of
its quantum states: at every value of the Landau quantum number
N and the magnetic quantum number −s (N ≥ 0, s ≥ −N), there
is one tightly bound state (with “longitudinal” quantum number
ν = 0), with binding energy growing asymptotically as (ln γ)2,
and an infinite series of loosely-bound states (ν = 1, 2, . . .) with
binding energies below 1 Ry. The sum N + s corresponds to
the Landau number for the proton. At B � 109 G, the electron-
proton binding is possible only for N = 0. Therefore we drop N
from the bound-state labeling hereafter. Although the Coulomb
interaction mixes different electron and proton Landau orbitals,
this numbering is unambiguous and convenient at B � B0 (see
Potekhin 1994).

The binding energy of a hydrogen atom can be written as

Esν = E‖sν − �ωcps, (1)

where so called longitudinal binding energy E‖sν is positive and
corresponds to the relative electron-proton motion along B,
while the term −�ωcps diminishes the total binding energy due
to transverse quantum excitations by multiples of the proton cy-
clotron energy �ωcp = �eB/mpc = 6.305 (B/1012 G) eV. The

atom is elongated: its size along the magnetic field B either de-
creases logarithmically with increasing γ (for the tightly bound
states) or remains nearly constant (for the loosely bound states),
while the transverse radius decreases as γ−1/2.

The astrophysical simulations assume finite temperatures,
hence thermal motion of particles. The theory of motion of a
system of point charges in a constant magnetic field was re-
viewed by Johnson et al. (1983). The canonical center-of-mass
momentum P is not conserved in a magnetic field. A relevant
conserved quantity is pseudomomentum, which for the H atom
equals K = P − (e/2c) B × r, where r connects the proton and
the electron. Early studies of the effects of motion were done
by Gor’kov & Dzyaloshinskiı̆ (1968), Burkova et al. (1976),
Ipatova et al. (1984). Vincke & Baye (1988) and Pavlov &
Mészáros (1993) developed a perturbation theory for the treat-
ment of atoms moving across the magnetic field at small trans-
verse pseudomomenta K⊥. Numerical calculations of the energy
spectrum of the hydrogen atom with an accurate treatment of the
effects of motion across a strong magnetic field were performed
by Vincke et al. (1992) and Potekhin (1994).

At small K⊥ the binding energy is

Esν(K⊥) = Esν(0) − K2⊥
2msν

, (2)

where msν is an effective “transverse mass”, which is larger
than the true atomic mass mH. When K⊥ exceeds some critical
value Kc, the atom becomes decentered. Then the electron and
proton are localized near their guiding centers, separated by dis-
tance r∗ = (a2

B/�)K⊥/γ. At K⊥ → ∞, E‖sν(K⊥) ∼ e3B/(cK⊥).
More precisely (Potekhin 1994),

E‖sν(K⊥) =
2 Ry√

r̂∗ + (2ν + 1)r̂3/2
∗ + εsν(r̂∗)

, (3)

where r̂∗ ≡ r∗/aB = (aB/�)K⊥/γ and εsν(r̂∗) ∼ O(r̂∗). The trans-
verse atomic velocity equals ∂E/∂K. Therefore with increasing
K⊥ the velocity attains a maximum at K⊥ = Kc and then de-
creases, while the average electron-proton distance continues to
increase. For the states with s � 0, Esν(K⊥) can become negative
due to the term −�ωcps in Eq. (1). Such states are metastable. In
essence, they are continuum resonances. In the transition region
at K⊥ ≈ Kc, the atomic wave function is a complex superposition
of several orbitals, which describe neighboring states outside this
region.

The width of the range of K⊥ around Kc, where the decen-
tering proceeds, decreases with decreasing B. At γ � mp/me
this width is large, and the transition to the decentered state
is smooth, but at B � 1012 G the width is small compared to
Kc, so that a tightly-bound atom becomes decentered almost
abruptly. For this reason, the previous fitting formulae for the
K⊥-dependences of the binding energies and other characteris-
tics of the H atom were restricted to γ > 300 (Potekhin 1998).
In the Appendix we present a new set of fitting formulae, appli-
cable at 10 � γ � 103. In the overlap region 300 < γ � 103

both sets of fitting expressions describe the atomic characteris-
tics sufficiently well for the use in the opacity modeling.

Figure 1 illustrates the K⊥-dependences of binding energies
at B = 3.16 × 1010 G, B = 1011 G, and 1012 G. The re-
sults of numerical calculations, performed by the method de-
scribed in Potekhin (1994), are compared with the fitting for-
mulae for 5 lowest tightly bound and 5 lowest loosely bound
quantum states. The gaps in the series of calculated points for
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Fig. 1. Binding energies of different states (s, ν) of a hydrogen atom as functions of pseudomomentum K⊥ at B = 3.16 × 1010 G (left), B = 1011 G
(middle), and B = 1012 G (right). Numerical calculations (dots) are compared with the analytical approximation presented in Appendix A.1 (solid
lines). For comparison, the fit previously developed for B � 1012 G (Potekhin 1998) is shown by the dashed lines in the upper right panel.

some states are related to a numerical instability in the transi-
tion region around Kc, where no single Landau orbital is clearly
leading and the energy levels experience anticrossings (see dis-
cussion in Potekhin 1994). In these cases the analytical fits are
more reliable for calculations of the ionization equilibrium and
opacities, which involve integrals over K⊥ (see below). In the
case of tightly bound states at B = 1012 G, the previous fit for
γ > 300 (Potekhin 1998) is also shown. Appreciable differences
between the two fits are observed only in the transition region
K⊥ ∼ Kc, where the anticrossings occur. For the loosely-bound
states, the two fits nearly coincide at this field strength.

3. Ionization equilibrium and equation of state

For photosphere simulations, it is necessary to determine the
fractions of different bound states, which affect the spectral fea-
tures via bound-bound and bound-free absorptions. Solution to
this problem is laborious and ambiguous. The principal difficulty
in the chemical picture of plasmas is the necessity to distinguish
the bound and free electrons and “attribute” the bound electrons
to certain nuclei (see, e.g., Rogers 2000, and references therein).
Current approaches to the solution of this problem are based,
as a rule, on the concept of so called occupation probabilities
of quantum states. In the case of strong magnetic fields, the oc-
cupation probabilities depend not only on the discrete quantum
numbers, but also on the transverse pseudomomentum K⊥.

The momentum projections on the magnetic field have the
usual Maxwellian distributions at thermodynamic equilibrium
for all plasma particles. For transverse motion, however, we
have the discrete Boltzmann distribution over Landau numbers
for electrons and protons, whereas the transverse momenta of
H atoms in a state (s, ν) have a distribution psν(K⊥), which is
not known in advance. We adhere to the definition of psν(K⊥) in
Paper I, so that 2π

∫ ∞
0

psν(K⊥) K⊥ dK⊥ = 1. Ionization equilib-
rium is given by minimization of the Helmholtz free energy F
with respect to particle numbers, keeping volume V and the total
number density of protons (free and bound) n0 = ρ/mH constant,
and the number of electrons equal to that of protons because of
the overall electrical neutrality. The free energy is written as

F = Fe
id + Fp

id + Fex + Fat, (4)

where Fe
id, Fp

id are the free energies of ideal gases of the elec-
trons and protons, respectively, and Fex takes into account
the Coulomb plasma nonideality and the nonideal contribution
which arises from interactions of bound species with each other
and with the electrons and protons. Finally, Fat is the contribu-
tion of the atomic gas, including the kinetic and internal degrees
of freedom. The formulae for each term in Eq. (4) are given in
Papers I and II. In particular,

Fat = TV
∑

sν

nsν

∫ ∞

0
ln

[
nsνλ

3
H
wsν(K⊥)

exp(1)Zsν

]
psν(K⊥)2πK⊥dK⊥,

(5)

where nsν is the number density of the H atoms with given dis-
crete numbers s and ν (any K⊥), wsν(K⊥) are the occupation
probabilities, λH = [2π�2/(mHT )]1/2 is the thermal wavelength
of the atom, and

Zsν =
1

mHT

∫ ∞

0
wsν(K⊥) eEsν(K⊥)/T K⊥dK⊥ (6)

is the partition function, which includes the continuous distribu-
tion over K⊥. In all mathematical expressions, temperature T is
in energy units. As in Paper I, we supplement Eq. (4) by addi-
tional terms due to the molecules Hn (n ≥ 2) using approximate
formulae for the characteristics of Hn from Lai (2001). Since the
latter do not take full account of the motion effects, the results
are reliable only when the abundance of Hn is small, which re-
stricts our treatment to T � 105 K.

Once the free energy is obtained, its derivatives over ρ and T
and their combinations provide the other thermodynamic func-
tions. However, the atomic partial number fractions xsν = nsν/n0
that are evaluated in the course of the free energy minimization
cannot be used directly to calculate opacities. At the consid-
ered conditions, interactions between different plasma particles
give rise to a significant fraction of clusters. Such clusters con-
tribute to the equation of state similarly to the atoms, lowering
the pressure, but their radiation-absorption properties differ from
those of an isolated atom. Therefore we should not count them
in the fraction of atoms xH that contribute to the bound-bound
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Fig. 2. Fractional abundances of different nondissolved bound states (s, ν) with respect to the total number of electrons (free and bound), nsν/n0,
as functions of mass density ρ, for B = 1011 G and T = 2 × 105 K (left panel), B = 1011 G and T = 5 × 105 K (middle panel), and B = 1012 G and
T = 5 × 105 K (right panel). The fractional abundances of tightly bound states (ν = 0) are plotted by dot-dashed lines, and loosely bound states
(ν ≥ 1) by dashed lines. The solid lines show the total fractional abundance of the atoms that contribute to bound-bound and bound-free opacities.

and bound-free opacities. Analogously, at low ρ we should not
include in xH the highly excited states that do not satisfy the
Inglis & Teller (1939) criterion of spectral line merging, being
strongly perturbed by plasma microfields. Such states form the
so called optical pseudo-continuum (e.g., Däppen et al. 1987).
Thus, we discriminate between the atoms that keep their iden-
tity and the “dissolved” states that are strongly perturbed by the
plasma environment. This distinction between the “thermody-
namic” and “optical” neutral fractions is inevitable in the chem-
ical picture of a plasma (see, e.g., Potekhin 1996, for discus-
sion). The fraction of truly bound atoms is evaluated with the
use of the occupation probability formalism. At every s, ν, and
K⊥, we calculate the “optical” occupation probability wo

sν(K⊥),
replacing the Inglis-Teller criterion by an approximate criterion
based on the average atomic size (Eq. (14) of Pavlov & Potekhin
1995). The fraction of weakly perturbed atoms, which contribute
to the bound-bound and bound-free opacities, constitutes a frac-
tion wo

νs(K⊥)/wνs(K⊥) < 1 of the total number of atoms. Here,
wνs(K⊥) is the “thermodynamic” occupation probability derived
from the free energy, which enters the generalized partition func-
tion (6).

Figure 2 illustrates the dependences of the fractional abun-
dances of different weakly perturbed atomic states on ρ, T ,
and B. The left panel shows the case of B = 1011 G and rela-
tively low temperature T = 2 × 105 K. With increasing density,
abundance of the bound states first increases at low ρ according
to the Saha equation and then decreases at higher ρ because of
pressure ionization. The middle panel demonstrates the case of a
higher temperature T = 5 × 105 K. In this case, all bound states
are less abundant because of the thermal ionization. The right
panel demonstrates the case of T = 5 × 105 K and a stronger
field, B = 1012 G. Here, the abundance of the atoms increases
compared to the middle panel because of the larger binding en-
ergies. Pressure ionization starts at larger ρ, because the atomic
sizes decrease with increasing B. The number of tightly bound
states on the right panel is limited to ten (0 ≤ s ≤ 9), the number
of states with ν = 1 to two (s = 0, 1), and all states with ν ≥ 2

have s = 0, because the states with nonzero s and ν ≥ 2 are
merged into continuum at B = 1012 G.

4. Polarization modes and opacities

4.1. Polarization modes

Propagation of radiation in magnetized plasmas was discussed
in many papers and monographs (e.g., Ginzburg 1970). In coor-
dinates with the z-axis along B, the plasma dielectric tensor is
(Ginzburg 1970)

ε = I + 4πχ =

⎛⎜⎜⎜⎜⎜⎜⎝
ε⊥ iε∧ 0
−iε∧ ε⊥ 0

0 0 ε‖

⎞⎟⎟⎟⎟⎟⎟⎠ , (7)

where I is the unit tensor, χ = χH + iχA is the complex po-
larizability tensor of plasma, χH and χA are its Hermitian and
anti-Hermitian parts, respectively. This tensor becomes diago-
nal, χ = diag(χ+1, χ−1, χ0), in the cyclic (or rotating) coordinates
with unit vectors e±1 = (ex ± iey)/

√
2, e0 = ez.

At photon energies �ω much higher than

�ωpl =

(
4π�2e2ne

me

)1/2

= 28.7 ρ1/2 eV, (8)

whereωpl is the electron plasma frequency and ρ is in g cm−3, ra-
diation propagates in the form of extraordinary (hereafter labeled
by j = 1) and ordinary ( j = 2) normal modes. These modes
have different polarization vectors e j and different absorption
and scattering coefficients, which depend on the angle θB be-
tween the photon wave vector k and B (e.g., Kaminker et al.
1982). The two modes interact with each other via scattering.
Gnedin & Pavlov (1974) formulated the radiative transfer prob-
lem in terms of these modes.

At a fixed photon frequency ω, the absorption opacity κaj(θB)
in each mode j and scattering opacities κsj j′(θB) from mode j into
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mode j′ can be presented as (e.g., Kaminker et al. 1982)

κaj(θB) =
1

mH

1∑
α=−1

|e j,α(θB)|2 σa
α, (9)

κsj j′(θB)=
3
4

1∑
α=−1

|e j,α(θB)|2 σ
s
α

mH

∫ π

0
|e j′,α(θ′B)|2 sin θ′B dθ′B, (10)

where α = 0,±1, e j,0 = e j,z and e j,±1 = (e j,x ± ie j,y)/
√

2 are the
components of e j in the cyclic coordinates. The cross sectionsσα
depend on ω and α, but not on j or θB. The total scattering opac-
ity from mode j is κsj = κ

s
j1 + κ

s
j2, and the total extinction opacity

is κ j = κ
a
j + κ

s
j.

4.2. Scattering

Scattering cross-sections in neutron-star photospheres are well
known (Ventura 1979; Kaminker et al. 1982; Mészáros 1992).
For α = −1, the photon-electron scattering has a resonance at
ωce. Outside a narrow (about the Doppler width) frequency in-
terval around ωce, the cross sections for the basic polarizations
α = 0,±1 are

σs,e
α =

ω2

(ω + αωce)2 + ν2e,α
σT, (11)

where σT = (8π/3)(e2/mec2)2 is the nonmagnetic Thomson
cross section, and νe,α are effective damping factors (see below).

The photon-ion scattering cross section looks analogously,

σs,i
α =

(
me

mp

)2
ω2

(ω − αωcp)2 + ν2i,α
σT. (12)

The resonance at ωcp due to the scattering on ions can be impor-
tant in superstrong fields.

In each case, the damping factor νe,α or νi,α is equal to the
half of the total rate of spontaneous and collisional decay of the
state with energy �ω (see discussion in Potekhin & Lai 2007).
The spontaneous decay rates are

2νse =
4
3

e2

mec3
ω2, 2νsi =

4
3

e2

mpc3
ω2. (13)

For the proton-electron plasmas, the damping factors that in-
clude the scattering and free-free processes can be approxi-
mately written as (Paper II)

νe,α = ν
s
e + ν

ff
α(ωce), νe,α = ν

s
e + (me/mp)νffα(ωcp), (14)

where νffα(ω) is the effective free-free frequency given by
Eq. (17) below.

4.3. Absorption

4.3.1. Cyclotron absorption

Without magnetic field, absorption of a photon by a free elec-
tron is impossible without involvement of a third particle, which
would accept the difference between the values of the total mo-
mentum of the electron and the photon before and after the ab-
sorption. In a quantizing magnetic field, a photon can be ab-
sorbed or emitted by a free electron in a transition between
Landau levels. In the nonrelativistic or dipole approximation,

such transitions occur between the neighboring levels at the fre-
quency ωce. In the relativistic theory, the multipole expansion
leads to an appearance of cyclotron harmonics (Zheleznyakov
1996). Absorption cross-sections at these harmonics were de-
rived in the Born approximation by Pavlov et al. (1980) and rep-
resented in a compact form by Suleimanov et al. (2012).

4.3.2. Free-free absorption

The quantization of electron motion gives rise to cyclotron har-
monics in the nonrelativistic theory. Pavlov & Panov (1976) de-
rived photon absorption cross-sections for an electron, which
moves in a magnetic field and interacts with a nonmoving point
charge. This model is applicable at ω � ωcp. A more accurate
treatment of absorption of a photon by the system of a proton
and an electron yields (Paper II; Potekhin 2010)

σffα(ω) =
4πe2

mec

ω2 νffα(ω)

(ω + αωce)2(ω − αωcp)2 + ω2ν̃2α(ω)
, (15)

where νffα is an effective photoabsorption collision frequency and
ν̃α is a damping factor. In the electron-proton plasma, taking
into account the scattering and free-free absorption, we have
(Paper II)

ν̃α = (1 + αωce/ω)νi,α(ω) + (1 − αωcp/ω)νe,α(ω) + νffα(ω). (16)

We see from (15) that σff−1 and σff
+1 have a resonance at the fre-

quencies ωce and ωcp, respectively. The effective free-free ab-
sorption frequency can be written as

νffα(ω) =
4
3

√
2π

meT
ne e4

�ω
Λffα(ω), (17)

where Λffα(ω) is a dimensionless Coulomb logarithm (Λffα =
(π/
√

3)gffα , where gffα is a Gaunt factor). Without the magnetic
field, Λffα is a smooth function of ω. In a quantizing magnetic
field, however, it has peaks at the multiples of ωce and ωcp for
all polarizations α. An accurate calculation of Λffα(ω) (Potekhin
2010) demonstrates that, unlike the electron cyclotron harmon-
ics, the ion cyclotron harmonics are so weak that they can be
safely neglected in the neutron-star atmosphere models.

In addition to the free-free absorption due to the electron-
proton collisions, in Paper II we also considered the free-free
absorption due to the proton-proton collisions. The results re-
vealed that at T � 107 K and �ω/T � 10 the corresponding pho-
toabsorption cross section is much smaller than the usual free-
free absorption due to the proton-electron collisions, whereas at
larger �ω it is smaller than the scattering cross section. Therefore
the proton-proton collisions can be neglected in the opacity cal-
culations.

4.3.3. Bound-bound absorption

Bound-bound transitions of the H atom moving in a strong
magnetic field were studied by Pavlov & Potekhin (1995). In
the dipole approximation, the cross section of an atom in a
state (s, ν) for absorption of a photon with frequency ω and po-
larization α with a transition to a state (s′, ν′), averaged over the
atomic states of motion, reads

σα;sν;s′ν′ (ω) =
2π2e2

mec

(
1 − e−�ω/T

) 1
Asν

∫ ∞

0
2πK⊥dK⊥

×wo
sν(K⊥) exp(Esν(K⊥)/T )

×wo
s′ν′ (K⊥) fα;sν;s′ν′(K⊥) φsν;s′ν′(K⊥,Δω), (18)
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Fig. 3. Analytical approximations (lines) and results of calculations (symbols) for oscillator strengths of transitions from the ground state to
different bound states (s, ν) marked near the respective curves with absorption of a photon with polarization α = −1 (dot-dashed lines and empty
circles), α = 0 (solid lines and crosses), or α = +1 (dashed lines and filled dots) at B = 1011 G (left panel), 3.16 × 1011 G (middle panel), and
1012 G (right panel).

where

Asν =

∫ ∞

0
2πK⊥dK⊥wo

sν(K⊥) exp(Esν(K⊥)/T ) (19)

is the normalization integral,

fα;sν;s′ν′(K⊥) =
�ω

Ry

∣∣∣∣∣ 〈s
′, ν′,K⊥|r−α|s, ν,K⊥〉

aB

∣∣∣∣∣
2

, (20)

is the oscillator strength in the dipole approximation, r0 = z,
r±1 = (x ± iy)/

√
2,

Δω = ω − [Esν(K⊥) − Es′ν′(K⊥)] /�, (21)

and φsν;s′ν′ (K⊥,Δω) describes a normalized profile of the spec-
tral line at a fixed K⊥,

∫
φsν;s′ν′ (K⊥,Δω)dΔω = 1. The latter pro-

file is assumed Lorentzian with width Γα;sν;s′ν′ (K⊥), determined
by electron-atom collisions (see Pavlov & Potekhin 1995). In
practice the collisional broadening plays minor role compared
to the magnetic broadening due to the dependence of Δω on
K⊥, except for stationary frequencies [Esν(K⊥) − Es′ν′(K⊥)] /�
for which dEsν(K⊥)/dK⊥ = dEs′ν′ (K⊥)/dK⊥ – in particular,
[Esν(K⊥) − Es′ν′(K⊥)] /� at K⊥ → 0, (s′ − s)ωcp at K⊥ → ∞, and
a small frequency corresponding to anticrossings at K⊥ ∼ Kc.
The magnetic broadening exceeds by orders of magnitude the
usual Doppler broadening, which allows us to neglect the differ-
ence between the pseudomomenta in the initial and final states
in Eqs. (18) and (20). The spectral profile of the bound-bound
opacities becomes continuous in a wide frequency range, re-
sembling a reversed bound-free profile. We calculate the inte-
gral (18) using analytical approximations for the electron col-
lision widths Γα;sν;s′ν′(K⊥) suggested in Potekhin (1998) and
the approximations for binding energies Esν(K⊥) and oscillator
strengths fα;sν;s′ν′ (K⊥) presented in the Appendix.

Examples of the oscillator strengths are shown in Fig. 3,
where the results of numerical calculations by the method de-
scribed in Potekhin (1994) are compared with the analyti-
cal approximations (Appendix A.3). The figure shows oscilla-
tor strengths for the main dipole-allowed transitions from the

ground state to excited discrete levels as functions of K⊥. Since
the atomic wave functions are symmetric with respect to the z-
inversion for the states with even ν, and antisymmetric for odd ν,
only the transitions that change the parity of ν are allowed for the
polarization along the field (α = 0), and only those preserving
the parity for the circular polarizations (α = ±1). For an atom
at rest, in the dipole approximation, due to the conservation of
the z-projection of the total angular momentum of the system,
absorption of a photon with polarization α results in the change
of s by α. This selection rule for a nonmoving atom manifests
itself in vanishing oscillator strengths at K⊥ → 0 for s � α. In
an appropriate coordinate system (Burkova et al. 1976; Potekhin
1994), the symmetry is restored at K⊥ → ∞, therefore the tran-
sition with s = α is the only one that survives also in the limit
of large pseudomomenta. But in the intermediate region of K⊥,
where the transverse atomic velocity is not small, the cylindri-
cal symmetry is broken, so that transitions to other levels are
allowed. For this reason the corresponding oscillator strengths
in Fig. 3 have maxima at K⊥ ∼ Kc.

4.3.4. Bound-free absorption

The theory of photoionization of the H atom in a strong magnetic
field with allowance for motion and a method of calculation of
the cross sections was described by Potekhin & Pavlov (1997),
who adapted the R-matrix formalism (Wigner & Eisenbud 1947;
Seaton 1983) to the case under study. Since this numerical treat-
ment is computationally involved, we first compose a set of
tables of the photoionization cross sections σbf

α;sν(ω,K⊥), and
then calculate the bound-free opacities using interpolation across
these tables. At a given B, for each of the three basic polariza-
tions α, we calculate σbf

α;sν(ω,K⊥) on a predefined grid, as in
Papers II and III. Now we have refined the grid in photon energy,
with log10 �ω [eV] ranging from 0 to 5 with step 0.01, and modi-
fied the grid of log10 K⊥. In order to avoid large numerical errors
due to strong coupling of the orbitals at K⊥ ∼ Kc, we exclude a
range of K⊥ around Kc and use two separate grids for K⊥ below
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and above the excluded region. Each of these grids has, as previ-
ously, an equal step in log K⊥. The size of the excluded region is
determined ad hoc, from numerical tests at different K⊥ values.
The employed modification of the grid is justified by a compar-
ison of the results in the overlap range of B ∼ 1012 G, which
reveals virtually no difference between the opacities calculated
with the old and new tables of the bound-free cross sections.

As in Papers II and III, we filter out spurious outliers, which
appear because of the Beutler-Fano resonances, whose widths
are smaller than the step of our grid in logω, using the 3-point
median filter at every K⊥. The photoionization threshold is de-
termined independently for every K⊥, using the analytic fits to
the binding energies given in Appendix A.1.

In addition to the bound-bound and bound-free atomic tran-
sitions, in a plasma environment there are transitions from
bound states to the highly perturbed atomic states discussed in
Sect. 3. These perturbed levels effectively dissolve and merge
in a pseudo-continuum, which lies below the photoionization
threshold. In order to take into account the radiative transi-
tions into this pseudo-continuum, we employ a technique of
below-threshold extrapolation, which is usual in the zero-field
case (Däppen et al. 1987; Stehlé & Jacquemot 1993; Seaton
et al. 1994). The details of this technique for the case of an
atom moving in a strong magnetic field are given in Paper II.
As previously, the precalculated, filtered and extrapolated pho-
toionization cross sections are averaged over K⊥ with statistical
weights wo

sν(K⊥) exp[Esν(K⊥)/T ].

4.4. Polarization vectors

In the coordinate system (x′, y′, z′) rotated with respect to (x, y, z)
so that z′ is along the wave vector k and B is in the (x′, z′) plane,
the electromagnetic polarization vectors e j (Sect. 4.1) can be
written as (Ho & Lai 2001, 2003)

(e j,x, e j,y, e j,z) = (1 + K2
j + K2

z, j)
−1/2 (iK j, 1, iKz, j), (22)

where

Kj = β

⎧⎪⎪⎨⎪⎪⎩1 + (−1) j

[
1 +

1
β2
+

m
1 + a

sin2 θB

β2

]1/2⎫⎪⎪⎬⎪⎪⎭ , (23)

Kz, j = −
(ε′⊥ − ε′‖)Kj cos θB + ε∧

ε′⊥ sin2 θB + ε
′
‖ cos2 θB

sin θB, (24)

β =
ε′‖ − ε′⊥ + ε2∧/ε′⊥ + ε′‖m/(1 + a)

2 ε∧
ε′⊥
ε′‖

sin2 θB
cos θB

, (25)

ε′⊥ = ε⊥ + a, ε′‖ = ε‖ + a + q.

Here, the parameters Kj and Kz, j are expressed in terms of the
complex dielectric tensor of a plasma (7), dielectric tensor of
vacuum 4πχvac = diag(a, a, a+ q), and the inverse magnetic per-
meability of the vacuum μ−1 = I+diag(a, a, a+m). We calculate
the plasma dielectric tensor using the relation between the polar-
izability coefficients χα and the opacities (Potekhin et al. 2004)

χH
α (ω) =

cρ
4π2ω

{∫ ω

0

[
κα(ω + ω

′) − κα(ω − ω′) ]dω′

ω′

+

∫ ∞

2ω

κα(ω′)
ω′ − ω dω′ −

∫ ∞

0

κ−α(ω′)
ω′ + ω

dω′
}
. (26)

The vacuum polarizability and permeability coefficients a, q, and
m can be neglected at the relatively weak field strengths consid-
ered here, but in general they have been fitted by elementary
functions (Potekhin et al. 2004).

5. Atomic signatures in the opacities and spectra

5.1. Basic opacities

Figure 4 shows examples of the basic cross sections σα in
Eqs. (9), (10) at T = 3.16×105 K and different values of B and ρ.
The left panel shows the case of B = 3.16×1010 G and relatively
low density ρ = 10−3 g cm−3. In this case, the number fraction
of the atoms is small, xH = 0.0025. Nevertheless, we observe
prominent absorption features due to bound-bound transitions
between the neighboring tightly-bound states (s− 1, 0)→ (s, 0),
which are allowed in the dipole approximation for α = +1
for a nonmoving atom. We see also the features correspond-
ing to the transitions (s − 1, 0) → (s + 1, 0) (s = 1, 2), which
are dipole-forbidden for an atom at rest but become noticeable
for moving atoms. Since the energy difference between the ini-
tial and final levels is smaller at K⊥ � 0 than at K⊥ = 0
(cf. Fig. 1), the maxima of the spectral lines are shifted to the
left from the corresponding arrows in the figure, which are plot-
ted at �ω = Es+1,0(0) − Es−1,0(0). For the longitudinal polariza-
tion α = 0, there are narrow spikes, marked 1a, 2a, 3a, to the
left of the energy E00(0), which are due to the transitions from
the tightly-bound states to the lowest loosely-bound states of the
same s-manifold, (s, 0) → (s, 1), with s = 0, 1, 2, respectively.
At higher energies, we see the peaks that are due to the absorp-
tion at the cyclotron fundamental frequency ωce and its harmon-
ics. The harmonics are not seen, however, in the total cross sec-
tions (solid lines in the left panel), because they are dominated
by scattering at these energies and plasma parameters.

The quantum cyclotron harmonics become visible in the to-
tal cross sections at higher density ρ = 0.1 g cm−3 (the middle
panel), because of the larger free-free absorption. Although the
abundance of the atoms is also larger, xH = 0.021, the atomic
absorption features are merged into the free-free continuum.
The absorption features due to transitions between neighboring
tightly-bound states reappear at a stronger field B = 3.16×1011 G
(the right panel), partly because of a higher abundance of the
atoms (xH = 0.053), but mainly because of the lowering of the
continuum level for α = −1 with increasing B. In the latter case,
the cyclotron-absorption harmonics are again submerged under
the scattering. The signatures of bound-bound transitions with
absorption of a photon polarized along B (α = 0) are not visible
in the middle and right panels, because the loosely-bound states
are destroyed by pressure ionization and form quasicontinuum
at this density.

The ground-state photoionization jump above the free-free
continuum at �ω = E00 is small at B = 3.16 × 1010 G in the left
panel of Fig. 4 and virtually absent in the middle panel, because
the product xHσ

bf
α is smaller than σffα in these cases. However,

it is clearly visible at the higher field strength (the right panel).
This jump is smoothed by the magnetic broadening and by pho-
toionization of excited tightly-bound states, as seen from a com-
parison with the model where the excited states are neglected,
which is plotted by the dotted lines.

5.2. Opacities for the normal modes

The basic opacities obtained in Sect. 5.1 have been used to cal-
culate plasma polarizabilities and polarization vectors of the nor-
mal modes (Sect. 4.4).

Figure 5 illustrates the effect of incomplete ionization on
the opacities for the two normal modes (Sect. 4.1). Here, the
atomic features analogous to those in Fig. 4 are also seen.
The features marked by numbers 2 through 5 arise from the
bound-bound radiative transitions from excited tightly bound
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Fig. 4. Logarithms of total basic cross sections σα (solid lines), α = −1, 0,+1 marked “(−)”, “(0)”, and ”(+)”, respectively. For comparison, the
logarithms of cross sections without contribution of excited bound states (dotted lines) and free-free cross sectionsσffα (dashed lines) are plotted.
The three panels correspond to three sets of plasma parameters ρ, T , and B marked on the plots. The arrows correspond to different characteristic
transition energies for a nonmoving H atom (see text for discussion): 0 – E0,0 (the principal photoionization threshold), 1 – (E0,0 − E1,0), 1′ –
(E0,0 − E2,0), 1′′ – (E0,0 − E3,0), 2 – (E1,0 − E2,0), 2′ – (E1,0 − E3,0), 3 – (E2,0 − E3,0), 4 – (E3,0 − E4,0), 5 – (E4,0 − E5,0); 1a – (E0,0 − E0,1), 2a –
(E1,0 − E1,1), 3a – (E2,0 − E2,1). The arrows marked c0, c1, c2, c3, c4 correspond to cyclotron harmonics energies (N + 1)�ωce with N = 0, 1, 2, 3, 4,
respectively.

Fig. 5. Opacities κ j of the normal polarization modes j = 1, 2 (the lower and upper curve of each type, respectively) in a magnetized plasma at
ρ = 0.1 g cm−3 and T = 105.5 K, for B = 1011 G and θB = 10◦ (left panel), B = 1011 G and θB = 60◦ (middle panel), and B = 1012 G and θB = 60◦
(right panel). Accurate opacities (solid lines) are compared with the approximation of the cold, fully ionized plasma (dashed lines). The arrows
correspond to different characteristic transition energies and are marked in the same way as in Fig. 4.

states, which were not included in the previous opacity calcu-
lations (Potekhin et al. 2004). In addition to the bound-bound,
bound-free, and free-free absorption, we have also included the
cyclotron absorption beyond the cold plasma approximation, fol-
lowing Suleimanov et al. (2012). The latter absorption gives
rise to the high and narrow peaks, marked “c1” and “c2” in
the left and middle panels. These peaks correspond to the syn-
chrotron harmonics (Zheleznyakov 1996) and thus they present
a manifestation of an effect of special relativity. For comparison,
we plot by dashed lines the opacities calculated in the approxi-
mation of cold, fully ionized plasma. In the latter approximation,
the atomic features are absent because of the full ionization, and

the peaks at the cyclotron harmonics are much smaller. The latter
difference demonstrates that, despite the smallness of the rela-
tivistic parameters T/mec2 and �ωce/mec2, the relativistic effects
substantially change the opacities at the cyclotron harmonics fre-
quencies, in agreement Suleimanov et al. (2012).

Figures 4 and 5 show that photoionization becomes substan-
tial at relatively strong magnetic fields. The contribution of the
bound-bound transitions into the opacities also increases with
field increase, but the bound-free absorption grows faster and be-
comes more important. This tendency continues at higher fields,
so that the bound-bound transitions becomes unimportant for
magnetars, at contrast to the bound-free ones (Paper III).
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Fig. 6. Local spectrum of a neutron star with magnetic field B = 1011 G,
normal to the surface, and with effective temperatures Teff = 106 K,
5×105 K, and 2×105 K (marked near the curves). The partially ionized
atmosphere spectrum (solid lines) is compared with the fully ionized
atmosphere model (dashed lines) and with the nonmagnetic atmosphere
model (dotted lines).

5.3. Spectra

We have included the calculated opacities in the equations of ra-
diative transfer for the two normal modes and solved it numeri-
cally with the equations of hydrostatic and energy balance, using
the numerical method developed by Ho & Lai (2001). Examples
of the resulting atmosphere spectra are shown in Figs. 6 and 7.

Figure 6 shows a spectrum of a neutron star with magnetic
field B = 1011 G and effective temperatures Teff = 106 K,
5 × 105 K, and 2 × 105 K, calculated using the models of fully
and partially ionized hydrogen atmospheres. In these examples,
we assumed gravity g = 2 × 1014 cm s−2, which corresponds,
for example, to a neutron star with mass M = 1.4 M� and ra-
dius R = 10.9 km. For realistic neutron-star equation of state
BSk21 (Goriely et al. 2010; Potekhin et al. 2013), this g corre-
sponds to M = 1.8 M� and R = 12.5 km. The first and second
values of the effective temperatures fall in the range of current
observational estimates for a number of thermally emitting neu-
tron stars (Viganò et al. 2013), albeit the hot spots observed on
CCOs have T > 106 K. The third value, Teff = 2 × 105 K,
has not been observed. Indeed, thermal radiation of such cold
neutron star is difficult to measure because of the low thermal
flux. However, this value of Teff is also plausible, and if there
are such neutron stars at distances within ∼100 pc, their ther-
mal spectra may be measured in the future. For the partially
ionized models with Teff ≥ 5 × 105 K, one can notice the
absorption feature at E = 26 eV, which corresponds to the transi-
tion between the ground state and the lowest excited state of the
H atom, but otherwise the spectrum is smooth and close to the
one in the fully ionized plasma model. The atomic features are
rather small and less significant than the cyclotron harmonics. At
Teff = 2 × 105 K, more atomic spectral features are discernible.
At this field strength, they lie at rather low energies E � 0.1 keV.

Figure 7 presents a comparison of the spectra for B = 1011 G
and 3.2 × 1011 G at Teff = 5 × 105 K, calculated using the

Fig. 7. Local spectrum of a partially ionized atmosphere of a neutron
star with effective temperature Teff = 5 × 105 K, with magnetic fields
B = 3.16 × 1011 G (dot-dashed line), 1011 G (solid line) and 0 G (dot-
ted line). Blackbody spectrum (short-long-dashed line) and spectra of a
magnetized, but fully ionized, atmosphere are also shown.

models of fully and partially ionized hydrogen atmosphere. At
the stronger field, the atomic absorptions make a noticeable con-
tribution to the spectrum at energies �ω ∼ 10−100 eV, but even
in this case they are not well pronounced. We conclude that the
atomic absorption is not very important for the atmosphere spec-
tra at B � 1011 G, provided that Teff � 5 × 105 K.

In Figs. 6 and 7 we also show the spectra in the model of
partially ionized nonmagnetic H atmosphere (for details of this
calculation, see Ho & Heinke 2009). In the latter model, there
are no cyclotron lines, atomic absorption features are very weak
(barely discernible) because of a high degree of plasma ioniza-
tion, and the spectral maximum is shifted to higher energies by
∼10% compared with the case of B = 1011 G. For comparison,
in Fig. 7 we plot the blackbody model, which strongly underes-
timates the peak energy and overestimates the peak flux.

6. Conclusions

We have developed new analytical approximations for energies,
sizes, and oscillator strengths of a H atom moving arbitrarily in
moderately strong magnetic field 3 × 1010 G � B � 1012 G.
Using these approximations and extensive numerical calcula-
tions of the bound-free absorption cross sections, we calculated
the ionization equilibrium, equation of state, and opacities at
the moderate fields. The tables of the thermodynamic functions,
atomic fractions, and Rosseland opacities, previously available
online for B = 1012−1015 G (Papers I and II), are supplemented
by the field interval B = 3 × 1010−1012 G.

The calculated spectral opacities are implemented in calcu-
lations of the neutron-star atmosphere models. The results show
that at B � 1012 G and Teff � 5 × 105 K the atomic absorp-
tion features in the spectra are small. Bound-bound features at
such field strengths are more significant than bound-free ones,
but they occur at low energies, which are difficult to observe.
Moreover, the distribution of the magnetic field over the sur-
face should additionally smear these features and make them
less significant, as has been demonstrated in the case of the
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stronger fields by Ho et al. (2008). On the other hand, despite the
smallness of the characteristic thermal and photon energies com-
pared to the electron rest energy, the relativistic cyclotron har-
monics are clearly visible in the spectra at these field strengths,
in agreement with the results previously reported by Suleimanov
et al. (2012) and Ho (2013).
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Appendix A: Analytical approximations for atomic
energies, sizes, and oscillator strengths

A.1. Binding energies

For the tightly bound states of a nonmoving H atom (any s,
ν = 0, K⊥ = 0), we use the analytical approximations for bind-
ing energies from Potekhin (2014). For the loosely bound states
of a nonmoving H atom (ν ≥ 0, K⊥ = 0), we use the analytical
approximations from Potekhin (1998). Both sets of approxima-
tions are valid for many quantum states at γ � 1.

For moving atoms (K⊥ > 0) we use different approxima-
tions for the centered states, E(<)

sν (K⊥), and decentered states,
E(>)

sν (K⊥), and replace the inflection point at Kc by the inter-
section of these two functions. For the centered states, we use
Eq. (2) with

msν = mH [1 + (γ/γsν)
psν ] (A.1)

where γsν and psν are dimensionless parameters, which are ap-
proximated as functions of s and ν:

γs0 = 6 × 103/(1 + 2s)2, ps0 = 0.9,

γsν =
110

n2 (2 − s + s2)
, n =

ν + 1
2
, psν = 1.65 (odd ν),

γsν =
55

n2 (1 + s + s2)
, n =

ν

2
, psν = 1.2 (even ν ≥ 2).

For the decentered states with ν = 0, we use Eq. (3) with

εs0 = r̂∗/(5 + 3s) + (2Ry/E‖s0)2. (A.2)

For the decentered states with ν ≥ 1, we find that the formulae
used previously for the binding energies at any K⊥ for γ > 300
(Potekhin 1998) remain valid at smaller γ for K⊥ > Kc.

These approximations are sufficiently accurate for modeling
neutron star photospheres. The differences between neighboring
energy levels are determined by these formulae with an accu-
racy of a few percent (except the K⊥ ranges near anticrossings)
at 10 � γ � 1000. Examples of calculated and fitted binding
energies are shown in Fig. 1.

A.2. Atomic sizes

For the centered states, the electron cloud is cylindrically sym-
metric at γ � 1, except for the ranges of K⊥ near level anticross-
ings. The root-mean-square (rms) sizes of this cloud transverse
to the magnetic field are

lx = ly = aB

√
(s + 1)/γ, l⊥ = aB

√
2(s + 1)/γ. (A.3)

The atomic size along the field is given at K⊥ = 0 by the approx-
imation (Potekhin 1998)

l(0)
z =

aB√
2
+

aB

ln[γ/(1 + s)]
Ry

E‖s0(0)
(ν = 0), (A.4)

l(0)
z = 1.6 aB( Ry/E‖sν(0)) (ν ≥ 1). (A.5)

This size remains almost constant for the centered states of a
moving atom. For the decentered states (K⊥ > Kc), our approxi-
mation of the longitudinal size reads

lz =

[
a2

B (ν + 1/2)
√

r̂3∗ + (4.3 + 7ν2) r̂2∗ +
(
l(0)
z

)2
]1/2

(A.6)

Unlike the case of γ > 300 (Potekhin 1998), at smaller γ we do
not smooth the transition between Eqs. (A.5) and (A.6).

Although the electron cloud is mostly cylindrically symmet-
ric, the atom is not, because the proton and electron are not
centered at the same axis. The atom acquires a constant dipole
moment proportional to the mean electron-proton separation x̄,
which is considerably smaller than r∗ for the tightly bound states
at K⊥ < Kc and approaches r∗ for the loosely bound or decen-
tered states. At γ � 10, the fractional difference between x̄ and
r∗ can be approximately described by expressions

1 − x̄
r∗
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1 + 0.0014(1+ s)2 γ0.77

(ν = 0, K⊥ < Kc),

1
1 + (γ/55)3/2

(ν = 1, 2, K⊥ < Kc),

(
17 ln(1 + γ) (1 − (1.5 + 2s)−1)

γr̂∗

)3

(ν = 0, K⊥ > Kc),

0 otherwise.

(A.7)

Then the total rms size that is used for calculation of the occu-
pation probabilities (Paper I) is given by

(
x̄2 + l2x + l2y + l2z

)1/2
.

A.3. Oscillator strengths

In this section we present analytical approximations to the oscil-
lator strengths fα;sν;s′ν′(K⊥), discussed in Sect. 4.3.3. It is suffi-
cient to retain only the transitions with ν′ = ν ± 1 for α = 0 and
with ν′ = ν for α = ±1, because the other oscillator strengths are
very small due to the smallness of the wave-function overlap in-
tegral implied in the matrix element in Eq. (20). As can be seen
in Fig. 2, the loosely-bound states are populated very weakly
compared to the tightly bound states, therefore we can restrict
the consideration by initial states with ν = 0. Furthermore, the
symmetry relation fα;sν;s′ν′ = f−α;s′ν′;sν allows us to consider only
the cases where s′ ≥ s. Thus we are left with oscillator strengths
f (α)
s,Δs = fα;s,0;s+Δs,0 for α = ±1 and f (0)

s = f0;s,0;s,1 for α = 0.
In the dipole approximation for the nonmoving atom, the

only nonzero oscillator strengths are those with s′ = s + α. The
corresponding oscillator strengths can be approximated as

f (0)
s (0) =

(
1 − 0.584

1 + 2.64 γ1.076

)
1 + 6 × 10−6 γ

1 + 0.247γ0.381
, (A.8)

f (1)
s,1 (0) =

(
1 − 0.584

1 + 12γ1.43

)
1 + 9.8 × 10−5(s + 1)γ

1 + 1.585γ0.713

× [1 + 2s/(1 + γ/30)]−1/4. (A.9)

Equation (A.8) reproduces Eq. (21) of Potekhin (1998), but
with a fixed typo, and Eq. (A.9) additionally generalizes it to
nonzero s.

For the moving atom and α = ±1, we keep only transitions
with Δs = s′ − s < 4, because the oscillator strengths strongly
decrease with increasing Δs. First we define a field-dependent
characteristic scale of K⊥,

K1 = 42.9 [1 + γ/2.4 + (γ/84)2 + (γ/380)3]0.17mee2/�. (A.10)
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Then our approximation for the longitudinal polarization reads

f (0)
s (K⊥) = f (0)

s (0) exp
[
−(c1K⊥/K1)2

]
+

exp[−(c2K⊥/K1)−c3]

1 + 0.5
√

K1/K⊥
,

(A.11)

where

c1 =
4

1 + γ/1200
, c2 =

0.89
1 + γ/104

, c3 = max(1, 10 − ln γ).

For the main transition with circular polarization, viz.
α = Δs = 1, first we introduce two functions describing f (1)

s,1 (K⊥)
at small and large K⊥, respectively,

f (<)
s (K⊥) = 1 − p1 (K⊥/K1)2, p1 = (1 + γ/800)−1/2,

f (>)
s (K⊥) = 2(s + 1)

me

mp

[
1 − p1 (K1/K⊥)2

]
,

and truncate (replace by 0) the negative values of these functions.
At any K⊥, our approximation reads

f (1)
s,1 (K⊥) = f (<)

s (K⊥) X(K⊥) + f (>)
s (K⊥)

[
1 − X(K⊥)

]
, (A.12)

where

X(K⊥) =
1

1 + (K⊥/K1)p
, p =

83
1 + [ln(1 + γ/90)]2

· (A.13)

The oscillator strengths for the other considered transitions are

f (1)
s,Δs(K⊥) = ps,Δs(K⊥/K1)2Δs−2 max(0, 1 − qK⊥/K1), (A.14)

q = 0.72 + 0.12 ln(1 + γ/400),

ps,2 =
0.012 [1+ 2s/(1 + γ/30)]3/4

1 + (γ/320)3/4
,

ps,3 = 0.0016+
0.0055

1 + (19/γ)1.8 + (Γ/1270)4
,

f (−1)
s,Δs (K⊥) =

p′s,Δs(K⊥/K1)2Δs+2

1 + p′′s,Δs(K⊥/K1)5Δs+5
, (A.15)

p′s,1 =
5 × 10−5

1 + 110/γ

[
1 +

2s
1 + γ/40

]2

,

p′s,3 = 3.5 × 10−4
[
1 + (230/γ)2/5

]5/2

p′s,2 =
3.3 × 10−5

1 + (400/γ)1.2

[
1 +

2s
1 + γ/30

]2

,

p′′s,1 =
[
1 + 6s/(1 + γ/40)

]−1 ,

p′′s,2 = (p′′s,1)2, p′′s,3 = 1.
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