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We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields,
B~10%-10'* G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-
mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the
field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical
calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic
states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits
for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to
construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into
account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration
technique. lonization degrees, occupancies, and the equation of state are calculated. [S1063-651X(99)01308-2]

PACS number(s): 52.25.Kn, 05.70.Ce, 95.30.Qd, 97.60.Jd

I. INTRODUCTION

Magnetic fields B~10'2-10" G typical of isolated neu-
tron stars qualitatively modify many physical properties of
matter (see Refs. [1,2] for reviews). In this paper we calcu-
late the thermodynamic properties of a strongly magnetized
hydrogen plasma at temperature T~10%°-10%% K, which
may compose outer neutron-star envelopes [3-5]. As we
shall see, the plasma under these conditions can be partially
ionized, and the quantum-mechanical properties of both free
electrons and bound species (primarily hydrogen atoms) are
strongly modified by the field, which thereby affects the ther-
modynamics.

The motion of charged particles in a magnetic field is
quantized into Landau orbitals. The magnetic field is called
strongly quantizing if the free electrons populate mostly the
ground Landau level [2]. This is the situation which we are
especially interested in. It occurs when the electron cyclotron
energy fw.=feB/(ms) (where %, e mg, and c are the
Planck constant, electron charge, electron mass, and speed of
light, respectively) exceeds both the thermal energy kgT and
the electron Fermi energy er—that is, for temperatures T
<Tg and densities p<pg, Where

Tg=3.16x10°y K, pg=0.809y%2 gecm™3 (1)
(see Sec. IlIA1). Here, the parameter y=~7°B/(mice®)
=B/(2.35x10°G) is the electron cyclotron energy in
atomic units.

We will refer to a strong magnetic field when y>1. A
number of studies of the equation of state (EOS) of matter in
strong magnetic fields were based on various modifications
of the Thomas-Fermi approximation [6—-9]. This approxima-
tion works reasonably well at large p and for large ion charge
Z; . Abrahams and Shapiro [8] estimate its validity range as
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p>peZ V2. We consider Z;=1 and lower densities, for
which atoms are present in the plasma and contribute to the
EOS.

The atom in a strong magnetic field y>1 is compressed
in the transverse directions to the size of the ‘‘magnetic
length’”:

ap=(ficleB)P=ay,y 12, 2

where ay=7%2%/(m.e?) is the Bohr radius. The ground-state
binding energy grows logarithmically with B and exceeds the
ground-state energy of the field-free atom by order of mag-
nitude at B~10'G [1]. lonization equilibrium of atoms in
strong magnetic fields was first discussed by Gnedin et al.
[10] and Khersonskii [11]. Khersonskii [12] considered also
dissociation equilibrium of H,* species. However, these pio-
neering works neglected modifications of the atomic proper-
ties caused by the thermal motion of the atoms across the
field.

The motional modifications of quantum-mechanical char-
acteristics of the atom arise from the coupling between the
center-of-mass motion across the field and the relative
electron-proton motion [13-17]. The role of these effects
was appreciated by Ventura et al. [18], who, however, did
not treat them quantitatively. An increase of the nonionized
fraction caused by the motion effects was mentioned by Pav-
lov and Meészaros [16], who used perturbation theory appli-
cable to atoms only slightly distorted from their rest-state
cylindrical shape. Quantum-mechanical calculations of bind-
ing energies and wave functions of hydrogen atoms in any
states of motion in the strong magnetic fields have been car-
ried out only recently [15,17].

Lai and Salpeter [19,20] evaluated the effects of motion
on the ionization equilibrium using an approximation for the
binding energies of moving atoms which does not apply to
the so-called decentered states, for which the electron-proton
separation is large [14,15,17]. Nonideality effects were in-
cluded in the ionization equilibrium equation only as a
pressure-ionization factor for p>102gcem™3. As a result,
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this equation contains a factor which diverges (and becomes
even negative) at sufficiently high temperatures.

Recently, Steinberg et al. [21] calculated the second virial
coefficient of the proton-electron plasma in arbitrary mag-
netic field and constructed an EOS at low densities. The
bound states were included using the Planck-Larkin partition
function. This approach yields correct EOS at the low den-
sity where the virial expansion holds [22]. However, the
Planck-Larkin formalism fails at higher densities, where one
has to resort to the chemical picture of the plasma, as dis-
cussed in detail, e.g., by Dappen et al. [23]. In addition,
atomic binding energies were calculated in [21] using ap-
proximations [19] which have very restricted applicability as
shown in [24].

In this paper we use new fitting formulas to atomic ener-
gies and sizes [24] based on a previous numerical study [17],
valid for any state of atomic motion. The molecular H, frac-
tion is evaluated following the approach of Lai and Salpeter
[20] but with a modified treatment of nonideality. Our
knowledge of the quantum-mechanical properties of mol-
ecules in a strong magnetic field is still incomplete, but an
evaluation of the molecular fraction is useful to determine
the validity domain of our EOS at relatively low tempera-
tures (where the molecules dominate).

The next section presents a simple thermodynamic model
of the hydrogen plasma. The model is tested in the nonmag-
netic case by comparison with more elaborate models, and is
shown to provide sufficient accuracy at high T where the
molecular fraction is small. In Sec. 111, we consider a fully
ionized plasma in a strong magnetic field. The partia ioniza-
tion and dissociation are discussed in Sec. IV, where an ana-
lytic model of the plasma free energy is constructed and the
ionization equilibrium equation is derived. Numerical results
are presented and discussed in Sec. V.

II. THERMODYNAMIC MODEL: THE ZERO-FIELD CASE
A. Chemical picture of the plasma

A theoretical description of partially ionized plasmas can
be based either on the physical picture or on the chemical
picture of the plasma [22]. In the chemical picture, bound
species (atoms, etc.) are treated as elementary entities along
with free electrons and nuclei. In the physical picture, nuclei
and electrons (free and bound) are the only fundamental con-
stituents of the thermodynamic ensemble. The relative merits
of the two approaches have been discussed, e.g., in [25,26].

We use the so-called occupation probability formalism in
frames of the chemical picture. Occupation probabilities,
which ensure convergence of the internal partition functions
(IPF), were first introduced by Fermi [27], who has demon-
strated their immanent relation to a nonideal contribution in
the Helmholtz free energy. Various approaches to the con-
struction of the occupation probabilities have been reviewed
by Hummer and Mihalas [28]. The approach adopted by Mi-
halas and co-workers [28—30] (hereafter MDH) is based on
the Inglis-Teller criterion of Stark broadening conventional
for plasma spectroscopy, which gives optical spectra consis-
tent with available experiments (see, e.g., Ref. [23]). How-
ever, the equation of state derived by MDH is unrealistic at
p=10"2gcm2 (see [31]), and the approximations made in
its derivation are lacking in self-consistency [32]. An alter-
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native EOS was derived in a self-consistent manner by Sau-
mon and Chabrier [26,31,33,34] (hereafter SC) from effec-
tive pair potentials between plasma particles, but with
neglect of the Stark broadening. The ionization degree de-
duced by SC strongly differs from that by MDH. The origin
of the discrepancy is rooted in the fact that strongly per-
turbed atoms, whose spectral lines disappear due to the Stark
merging, may still contribute to the EOS as bound species
[35]. Thus the approaches of MDH and SC are reconciled by
an approximate treatment of the atoms perturbed by plasma
ions as quasi continuum atomic states, which contribute to the
EOS as atoms athough they do not show atomic spectral
lines [32].

The chemical picture faces a principa difficulty in cases
where the interaction between nuclei and electrons in a
bound state is comparable to the interaction between a bound
object and neighboring plasma particles. This situation oc-
curs when pressure ionization is important or when high
atomic levels are appreciably populated. In these cases, a
special term should be included into the free-energy model,
in order to distinguish between bound and free states. For
instance, MDH constructed an ad hoc ‘*‘pressure ionization
term’’ in the free energy [29], SC introduced hard cores with
fixed diameters in the effective potentials for bound species
[34], and exponential ‘‘unbinding’’ occupation probabilities
were used in [32]. The latter approach has been justified by
considering an excluded volume of the bound objects at rela-
tively low density, assuming an uncorrelated distribution of
the plasma particles. At high density, the strong correlations
of the positions of the particles must be taken into account.
Their approximate treatment in the hard-sphere model (e.g.,
by SC) appears to be practical for this purpose.

In the case of the strong magnetic field, the model of the
plasma cannot be as detailed as, e.g., the SC nonmagnetic
model, because the effective potentials (partly derived from
high-pressure experiments in the zero-field case) are not
available. Therefore we use a simple hard-sphere picture de-
scribed below. In order to check the validity of this model,
we apply the same assumptions to the well-studied zero-field
case and compare the results with those of more elaborated
models.

B. Free-energy model

Consider a plasma consisting of electrons, protons, and H
atomsin avolume V. Let us write the Helmholtz free energy
as F=F;q+F¢, Where

Fig=Fi§ +FI§ + Fie'+ F g (€)

is the sum of the ideal-gas free energies of the electrons,
protons, neutral species, and photons (thermal radiation), re-
spectively, and F, is the excess (nonideal) part.

1. Ideal part of the free energy

We consider nondegenerate protons and neglect their spin
statistics both in bound and free states (this amounts to an
additive constant in the entropy that affects neither ionization
equilibrium nor the EOS, provided the total number of free
and bound protons, N, is fixed). Then

BFHIN,=In(np\3)—1, (4)
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where B=(kgT) 1. Here and hereafter, N,, n,, and \,
=(27BH%m,)Y? denote, respectively, the total number,
number density, and thermal wavelength of particles of type
a with mass m,, .

For the ideal gas of electrons, we use the identity [36]

Fi((?):/-LeNe_ PeV, 5

where u, and P, are the chemical potential and pressure of
the ideal Fermi gas, respectively, which can be obtained as
functions of ne and T from the equations

BT
Pe:ﬁ 3 l32(Bree), (6)
4
nezm I sz(ﬁl"e)- (7)
Here,
B ®)
0 eXp(x—2z)+1

is the Fermi integral. With the use of Pade approximants to
the functions 1,(z) and their inverse functions [37], F($ is
expressed as an analytic function of N, V, and T.

In the zero-temperature limit, one may replace |1 ,(Bue)
by (Beg)’ Y (v+1), which gives, in particular, the well-
known expression

2

€r (37%ng) %3 9)

- 2m,
The Fermi temperature is defined as Tp=ep/kg~3
X 10°p?2K, where p=1.6735n,/(10%*cm™3) is the mass
density of the electron-proton plasmain g cm™ 2. In the non-
degenerate limit T>Tg, the ideal Boltzmann gas relations
are recovered, ue=KkgT IN(NAY2) and Po=nkgT.

For the atoms, one has

Fli=keTX N[In(nA¥g0—1-Bx.], (10

where k enumerates quantum states with statistical weights
0, and binding energies x, .

It should be noted that, although nonideality effects are
not included in F;4 explicitly, they do affect the equilibrium
value of F;4 through particle numbers. In particular, the dis-
tribution of N, in Eqg. (10) is not assumed to obey the ideal-
gas Boltzmann law.

Finally, the radiation term (which can be important only
at low p or very high T) reads

Froq=— (40/3c)VT4, (12)
where o= 7?kg/ (60%°3c?) is the Stefan-Boltzmann constant.

2. Excess free energy

The excess free energy is conventionally written as

Feoc=FS +FI (12)
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where ng is the excess free energy of the ionized part of the
plasma and Fg" accounts for interactions of neutral species
with electrons, protons, and other neutral species. The Cou-
lomb term

Fo=Fii+FeetFic (13)

includes contributions from the exchange and correlation in-
teractions of electrons F ., Coulomb interactionsin the one-
component plasma (OCP) of ions F;;, and ion-electron
(screening) interaction F;,. These contributions have been
calculated by various procedures, e.g., by solving a set of
hypernetted-chain equations or Monte Carlo simulations
[38-42]. We make use of the fitting formulas to the results
of such calculations, obtained in [39] for F. and in [41] for
Fi; and F,.. These formulas express the electron-ion plasma
free energy as an analytic function of the electron density
parameter

r<=ag/ay~139% 3 (14)
and Coulomb coupling parameter
I'=pBe?/a,~0.227p*3 Tg, (15)

where a,=(47nJ/3) Y2 is the mean interelectron distance
and Tg=T/10°K.

The nonideal part of the atomic free energy, F5e", can be
written as [33,34]

Foo'=Fust Fpet, (16)

where Fys is the reference free energy, treated in the hard-
sphere approximation, and F . is the perturbation part that
accounts for the attractive (van der Waals) interactions. To
calculate these contributions, an elaborate model has been
developed by SC [33,34]. Its simplified analytic version for
weak electron degeneracy has been constructed in [32]. In
the so-called van der Waals one-fluid model [43], a free en-
ergy of the hard-sphere mixture is represented by the
Carnahan-Starling formula [44]

BFus/Nig=(47—37%)/(1- ), (17)

where N;,.=2,N,, is the total number of particles,

__ T 3
n= GNMVQE NN, d® (18)

!
a

is the effective packing fraction, and d,, are the hard-
sphere interaction diameters. In our case, the subscript «
enumerates atomic quantum states described by quantum
numbers « and takes on a single value p for the free protons.
In the following, we compare two versions of the model:
(i) the full version, in which F,y and d,, are given by
approximations of [32], with one exception (adopted from
[34]) that d,,,» cannot be smaller than a certain limit dioc)k, ,
and (ii) the simple version, in which long-range atomic in-
teractions are disregarded. In the latter case, Fe;=0 and
d,ar =d(a°;, . Furthermore, we adopt the simplest choice

d =1+, d9=1,, (19)
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where |, is the root-mean-square proton-electron distance in
the quantum state « [45]. For the interactions among charged
particles, we define d,, .- =0, because this type of interaction
is aready included in the Coulomb part of the free energy.
Note that in the second (simple) version of the model, Fys
turns into the unbinding term F,, of Ref. [32] in the low-
density limit (#<€1). Thus the unbinding term is now incor-
porated in F5, which allows us to approximately take into
account the correlation effects.

C. Equilibrium conditions

Thermodynamic equilibrium is given by the minimization
of F(V,T,{N,}) with respect to the particle numbers N,
under stoichiometric constraints. The condition of the extre-
mum of F can be written in the form of the Saha equation
corrected for nonideality and electron degeneracy:

Np= NN 3(m, /my)¥%(Z,/2)e?, (20)
where
A=BoF 1IN~ In(nA3/2) (21)
allows for electron degeneracy and
Zy=2, 9w, e (22

is the modified |PF which includes the occupation probabili-
tiesw,, defined according to [32]:

kT e,
Bl IMWe=5N, T N,

(23)

To solve Eqg. (20), one must add the electroneutrality condi-
tion ne=n, and the mass conservation condition ny+n,
=ny, where ng=p/my=(p/11.293gcm ) a, 3.
The Boltzmann distribution of the atoms, corrected for
nonideality, reads
n,=nyo,w,.e’x«/z, . (24)
The minimum of the free energy is sought by solving Egs.
(20)—(24) iteratively [32]. First, one defines starting w,’s

0

and calculates the number densities from Egs. (20) and (24).
Then thew,’s are refined using these number densitiesin Eq.
(23) [46].

The molecules H, can be easily included in this proce-
dure. The dissociation-recombination equation reads

N, =NEONV2) 20 1 Z3, (25)

where Z,, is the molecular IPF, modified by multiplying
each «th term by an occupation probability Wiz [32], given
by

IF o
IN,

OF o
N

<9Fex)

kgT InWE2=2< e
e

(26)

For simplicity, we do not include molecules in the present
versions of the model, because the fraction of H, is small in
the range of p and T which we are interested in.

After the equilibrium distribution of plasma particles is
found, the pressure P, internal energy U, and entropy S are
calculated from the relations

P=—(dFIV)t Ny, U=[d(BF)Blvyn,y. (27)
S=(U—F)/T. The higher-order thermodynamic quantities
are obtained by differentiation of P,U,S without keeping N,
fixed [36].

D. Results of comparison

The ionization curves given by different versions of the
model are compared in Fig. 1 for T=10*°K. Although the
neglect of the perturbation terms introduced in the simple
version is most perceptible at such relatively low tempera-
tures, the *‘full’” and ‘‘simple’’ versions of the model yield
practically identical atomic fractions fy=ny/ng.

The results of SC [31] qualitatively agree with the present
model. Quantitatively, they differ in the pressure-ionization
region at p>0.1gcm™ 3, where the theoretical uncertainty is
largest (see Sec. I1A). The difference in the low-density re-
gime p<10~*gcm 3 is due to highly excited states. If both
the effective diameter d and statistical weight g, are propor-
tional to n? (n being the principal quantum number), then the
neutral fraction should asymptotically decrease at low den-
sity as fycp¥2. Our present model exhibits this asymptotic
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FIG. 2. Comparison of two present versions of the EOS of par-
tially ionized atomic hydrogen (see text) with Refs. [31] (SC) and
[32]. The EOS of ideal fully ionized gas is aso shown.

behavior; the dependence fopY® seen at low p in the SC
data might result from a choice d«n.

The long-dashed curve represents the fraction of atoms
satisfying the Inglis-Teller criterion: fi;=2n,W,/ny. Here,
W, is the probability that a given atom is not strongly per-
turbed by plasma microfields; it is estimated from Eq. (31) of
Ref. [32]. Using f|r, we have calculated monochromatic
opacities of the plasma and compared them with the OPAL
monochromatic opacities [47] (at p<10Tg gcm™° where the
OPAL data exist). Along the isotherm shown in Fig. 1, our
results agree with OPAL within 12% in the photon energy
range from 13.6 eV to 500 eV where the opacity is domi-
nated by bound-free atomic absorption. For comparison, hy-
drogen opacities calculated in [48] differ from OPAL by up
to 37% (in the same range of energy and density at the same
T).

Figure 2 demonstrates that the EOSs obtained with the
full and simple versions of our model practically coincide. In
the region of weak degeneracy, they also coincide with the
model presented in [32]. Moreover, there is a good agree-
ment with the SC model [31]. Small differences occur only
in the regions where the SC model predicts an appreciable
amount of molecules, as explained in [32].

As is well known, the second-order quantities are more
sengitive to the details of the thermodynamic model than the
first-order ones. The adiabatic temperature gradient

Va=(InT/dInP)g (28)

is shown in Fig. 3. There are only tiny differences between
the full and simple versions. For comparison, we aso show
V4 from other models. In its validity region (i.e., at low
density), the model [32] approximately agrees with the
present one. The differences with predictions of SC are
somewhat larger. In al models, the isotherms ‘‘wiggle’’ in
the region of consecutive pressure destruction of excited
atomic states. Such wiggles are absent in the OPAL data
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FIG. 3. Two adiabatic gradient isotherms given by different
EOS models in the domain of partially ionized atomic hydrogen.

[49], based on the physical picture of the plasma and also
shown in Fig. 3. Compared to SC, the present data tend to be
closer to the OPAL data. We conclude that the simplifica-
tions introduced above are acceptable to describe the thermo-
dynamics of atomic hydrogen. In Sec. IV, we generalize the
model to the case of the strong magnetic field.

1. FULLY IONIZED PLASMA IN A STRONG MAGNETIC
FIELD

In this section, we describe effects of quantizing magnetic
fields on the fully ionized proton-electron plasma. We as-
sume that the field B is uniform and directed along the z axis.

A. ldeal gas
1. Electrons
The electron energy in a magnetic field reads [50]

en(P,) =N wc+p2/(2my), (29)

where p, is the longitudinal momentum and N=0,1,2. .. is
the Landau quantum number. All levels except the lowest
one are double degenerate with respect to the spin projection.
Strictly speaking, the anomalous magnetic moment of an
electron leads to a splitting of the levels N=1 by
0.001 16# w. , which takes off the double degeneracy. How-
ever, this splitting cannot affect the thermodynamics at p
<pg, Where kgT should be at least comparable to % w. for
an appreciable population of the excited Landau levels.

The thermodynamic functions of the electron gas in the
magnetic field are easily derived from the first principles
[36]. Taking into account the fact that the number of quan-
tum states of an electron with fixed discrete quantum num-
bers in volume V per longitudinal momentum interval Ap,
equals VAp,/(4m?a2#) [50], the thermodynamic potential
Q=—PV can be written as
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)

VkgT o .

Q=— 2772a2ﬁ 2 ng In(1+ ePlre=en(Pl)dp,
where gy is the statistical weight (gg=1 and gy=2 for N
=1). Hence the electron pressure and number density are
given by the equations

kgT
7T3/232)\ 2 anl w2 Bin), (30)
1 o0
”e:m@ On! - 12 Bien) (31)

where un=we— Nfiw.. The Helmholtz free energy is given
by Eg. (5), where u, can be found by inversion of Eq. (31)
(e.g., using an algorithm described in [51]).

In the nonquantizing magnetic field Tg<T, where many
Landau levels are populated, the sum over N in Egs. (30),
(31) may be approximated by an integral, and integration by
parts reproduces Egs. (6), (7).

In the domain of strong magnetic quantization, T<Tg and
p<pg, One may retain only the term N=0. In that case,
replacing | _1,»(Be) by 2+/Ber in Eq. (31) (by analogy with
Sec. 11 B) yields the Fermi energy

2712

€= (a2 ne)2. (32)

e

By definition, p=pg a e=fw,. Hence plpg
=37(2yr2)~%2, from which Eq. (1) follows. A comparison
of Egs. (9) and (32) reveals that the Fermi energy changes by
a factor (4/3)%%(p/pg)*3. Thus the degeneracy is strongly
reduced at p<pg.

In the nondegenerate regime T>Tg, one has | ,(Bue)
~exp(Bu)l'(v+1); therefore Egs. (30), (31) reduce to P,
= nekBT and

Bue=In(nA3/2)—Inu+In(tanhu), (33)

where u=Bhw /2=Tg/(2T). This yields an explicit ana-
lytic form for F{&). In the nonquantizing field, Tg<T, the
last two terms in Eq. (33) cancel out, and the classical ex-
pression (Sec. |l B) is recovered. In the strongly quantizing
regime p<pg and Te<T<Tg, the last term of Eq. (33)
vanishes, which yields

F(®=NgkgT[IN(27a2\ene) —1]. (34)

2. Protons

The transverse motion of protons is quantized in Landau
orbitals with the elementary excitation egual to the proton
cyclotron energy % wcp,=(Me/mMy)hiw.. The energy spec-
trum is given by Eq. (29) when replacing m by m, and o,
by w¢, . Unlike the case of electrons, the double-spin degen-
eracy of the Landau levelsis taken off by the abnormal mag-
netic moment of the proton.

In our analysis, the protons are always nondegenerate, so
that by analogy with Eq. (34) we have

BF&IN,=In(2mai A np) +In[1—e Fhec]—1. (35)
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Here, for sake of brevity, we drop the zero-point energy

ﬁwcp and the spin energy + 4gpﬁ o, Where g,=5.585 is
the proton spin gyromagnetic factor [50]. We suppress these
terms also for atoms and molecules. Taking them into ac-
count yields an additive contribution to the total free energy
of the system, equal to

1
AF=No >hwcy—KsTIN[2 COSN(BYpfi wcyl4) 1 (36)

(No=N, in the case of full ionization). Since Ny is constant,
AF affects neither ionization equilibrium nor pressure, but it
does affect the internal energy and specific heat; therefore we
take it into account in Sec. V.

B. Nonideal Coulomb plasma

According to the Bohr—van Leeuwen theorem, a magnetic
field does not affect the thermodynamics of classical charged
particle systems (see, e.g., Ref. [52]). Thus the classical ionic
OCP excess free energy F;;(I") does not depend on B at any
I'. The classical regime for the electron-proton plasma cor-
respondsto rg>1 and I'<<1, where the excess Coulomb free
energy is given by the Debye-Huckel formula ng
= —NgkgT+/8T'%/3. Indeed, it is easy to check that this law
holds independent of B [8].

A magnetic field, however, affects quantum-mechanical
contributions to FS, . These effects have been studied only in
low-temperature or low-density regimes.

The ground-state exchange energy of the electron gas in
the strongly quantizing field [7,53] behaves as
—2.25(yr3) " In(y3)—0.457+---]e?/a, (per electron),
compared to — 0.757~ *(97/4) Y3 *e?/a, in the nonmag-
netic case [54]. Thus the exchange energy at T<Tf is sup-
pressed by a factor ~0.2036+r2/[In(yr2)—0.457]. Note that
the condition of strong magnetic quantization requires 7r§ to
be large.

A general low-density expansion for the free energy of a
Coulomb plasma in an arbitrary magnetic field up to order
p°? has been derived by Cornu [52]. The coefficients of this
expansion are not available in explicit analytic form but re-
quire numerical evaluation, which has not been done yet. In
the particular case of the OCP, a Wigner-Kirkwood-type ex-
pansion in powers of # is available [52]. The lowest-order
term of the latter expansion (quantum diffraction term of
order 72) has been obtained by Alastuey and Jancovici [55]:

2

2 2 1
8r¢|utanhu ?+§’ (37)
with u defined asiin Eq. (33). The square brackets in Eq. (37)
goto 1 at u—0, recovering the well-known zero-field result,
and to 1/3 at u>1, reflecting the fact that two of three de-
grees of freedom for the electron mation are frozen out in the
strongly quantizing field. Equation (37) is valid in the low-
density regime, where r>max(I',T'™Y). In this regime the
correction (37) is smaller than the classical OCP corrections
to the Debye-Huckel formula. In the electron-ion plasmas,
F i is canceled because of the local neutrality relation [52].

In this paper, we are mainly interested in the case where
(I'rg) "1=3.16Ts=1. In this case, a high-temperature expan-
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FIG. 4. Contribution to the electron-gas non-
ideal free energy fee=BFce/Ne beyond 95 =
—T%%v3 at three values of the magnetic field
parameter y and three values of the density pa-
rameter r (indicated). The scaled fit (solid lines;
see text) is compared with the high-temperature
expansion up to orders e? and e* (dotted and
dashed lines, respectively) and with the classical
OCP (dot-dashed lines).
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sion [56], which can be written as an expansion in powers of
two small parameters s;=\T'/r and s,= T/rs, is relevant
at low densities. The lowest-order correction is the Hartree-
Fock term «#2e2. Steinberg et al. [21] have recently ob-
tained an analytic result for this term in a magnetic field:

BFue 307
N_e__B_rSfl(u)’ (38)

where the function

. _ cosh(2u) [tanhu] arctanh(y1—u™ " tanhu)
W= "cos?u | U Vi—u~Ttanhu

(39)

goes to 1 at small u, reproducing the zero-field result [56],
and to In(4u)/u at very large u.

Steinberg et al. [21] have also calculated the corrections
xfe* (the Montroll-Ward and exchange terms). For the elec-
tron gas, they can be written in the form

BF4 B 3\/; 1"'5/2

Ne 16

where f5%(u) and f§°(u) go to 1 at u—0, reproducing the
zero-field result [56], and decrease at large u.

In order to incorporate these results into the analytic free-
energy model, we employ a simple scaling procedure. In the
fit for foe(6,I') = BFee/N, derived in [39], where 0=T/T¢
is the degeneracy parameter, we replace the zero-field value
0o=2(97/4) 23 IT by

[£55(u)+f55(u)In 2], (40)

1+ 6,0/ 6,

0*:60 —1 -
1+ f1(u)(Om/ ) exp(— 6,,7)

(41)

Here, 6,=8v?r2/(97°T)=0.1666,yr+ is the value of the
degeneracy parameter in the strongly quantizing field.

The scaling (41) reproduces limiting cases: (i) at rg>1,
the classical OCP expression is recovered, independently of
other parameters; (ii) in the nongquantizing regime yr§< 1,

-1

log,, T

we get the nonmagnetic value 6* = 6y; (iii) in the strongly
quantizing degenerate regime yr§>1 and 6,,<1, the correct
vaue of the degeneracy parameter 6* = 6, is recovered; and
(iv) in the strongly quantizing nondegenerate regime yrg
>1 and 6,,>1, the fit reproduces Eq. (38) in its range of
validity.

Figure 4 demonstrates the validity of the adopted modifi-
cation of Fg at I'<<1, for three values of rg, for which the
quantum contributions to FecX could appreciably affect our
results. We plot departures of F., from the OCP Debye-
Huckel function F95", normalized to Nokg T and divided for
convenience by I'?. The dot-dashed line shows the classical
OCP free energy [41], the dotted line displays the e? correc-
tion (38), and the dashed line results from inclusion of the e*
corrections (40).

The left panel presents the nonmagnetic case. The solid
line shows the fit to F.. [39]. The region of approximate
coincidence of the fit with the high-T expansion can be
adopted as the region of validity of the latter. At largers, it
is regtricted by the condition s,<1(I"<r %), while at small
rs, the condition s;<< 1(I‘<r§) is more restrictive.

The middle and right panels show the modifications of
F e @ two values of the magnetic field strength. One can see
that the scaled fit satisfactorily reproduces the expansion in
the validity range of the latter. Surprisingly, athough the
scaling is based on the lowest-order e term (38), the e*
terms (40) are also well reproduced.

For the electron-ion plasma, the screening contribution
Fie should be taken into account. At B=0, it has been cal-
culated in a number of papers (e.g., Refs. [39-41]) and fitted
by analytic expressions [41]. In a strongly quantizing mag-
netic field, this contribution has been analytically evaluated
only for a dense plasma at zero temperature using the linear
response theory [7]. Comparison with the analogous zero-
field result [57] shows that the strongly quantizing magnetic
field increases the screening energy at high density by factor
0.8846y%rZ. To our knowledge, there were no relevant cal-
culations at arbitrary degeneracy. In the regime of low de-
generacy and weak Coulomb coupling, integral representa
tions of the low-density expansion coefficients have been
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obtained [21,52]. The contribution of order e* is given by
Egs. (20), (21) of Ref. [21]. It is reproduced if to replace r
by rs/(f5P)2 in the nonmagnetic expression [56]. Here, 5P
can be approximated (within 0.5%) as
0.6
1 0_9<';\rctanh[(1—t) 1

ep_ _
f2 2+t 2(1_t)0'6 ’ (42)

where t=tanh(0.4u)/(0.4u). We apply the scaling rg
—r14/(f5P)? to the formula for Fi.(rs,I") given in [41].

IV. PARTIALLY IONIZED PLASMA
A. Hydrogen bound species in the strong magnetic field
1. Atoms

Only a brief summary of the properties of the hydrogen
atom in a strong magnetic field is given below. See, e.g., Ref.
[17] for details and references.

The motion of an atom in a magnetic field B can be con-
veniently described using the pseudomomentum K, the
guantum-mechanical constant of motion related to the aver-
age center-of-mass velocity v=V¢E, where E is the total
energy of the atom. If there were no Coulomb attraction, the
energy would be E=Ej +K2/(2my,), where

Ens=NAwc+ (N+9)fiwg, (43)

is the energy of the transverse excitation, N is the electron
Landau number, s is the z projection of the relative proton-
electron angular momentum, and Kﬁ/(ZmH) is the kinetic
energy of motion along the field. The Coulomb interaction
mixes the Landau orbitals. Nevertheless, it is convenient to
keep the quantum numbers N and s for enumerating the
guantum states at y> 1. Then the energy of the atom can be
decomposed as follows:

Ens(K)=Ens, (K ) +ExstKZ(2my), (44
where E},(K,)<O0 is the ‘‘longitudina’’ energy, and the
guantum number v enumerates the longitudinal excitations.
At y>1, the states with N+ 0 or large s are subject to auto-
ionization. Therefore we put N=0 and suppress this quan-
tum number hereafter. The binding energy is

Xsu(KL)=EL(K, )| —Shog,. (45)

In accordance with Sec. Il A 2, the zero-point and spin
terms are subtracted from Eq. (43) and absorbed into Eq.
(36). Note that Eq. (36) is valid for the partialy ionized
plasma provided that the IPF's for atoms with opposite pro-
ton spin projections are identical. It is true under the assump-
tion that the autoionization processes with proton spin flip
may be neglected on the plasma relaxation time scale. We
adopt this assumption, because the plasma under consider-
ation is rather dense and nonrelativistic. Otherwise, states
with binding energy xs,(K,)<gphwcy/2 should be ex-
cluded from the IPF for atoms with the negative proton spin
projection.

At K=0, the atom is axially symmetric, and its sizes
transverse to the magnetic field can be approximated [1,24]
as ly=Iy~anys+1, while the longitudina size is much

POTEKHIN, CHABRIER, AND SHIBANOV

PRE 60

larger: 1,~ag/Iny for the tightly bound states (v=0) and
| ,~ayv? for the hydrogenlike states (v=1). Longitudinal
energies of the former states grow as E'« (In 7)?, whereas the
energies of the latter states are relatively small, |E'|
~(e*lag)(2n?) 1, where n is the integer part of (v+1)/2.

An atom moving across the field acquires a constant di-
pole moment in the direction opposite to its guiding center
re=c(eB?) " BxK. When K, is small enough, the dipole
moment is also small, and E' is increased by K2/(2mg,).
Here, my, is the so-called effective transverse mass, which
exceeds my, and grows with field strength. In this case the
average transverse velocity is v, =K, /m,. When K, ex-
ceeds some critical value K~ 10%%/a,, the atom becomes
decentered: v, reaches a maximum and starts to decrease,
while the electron-proton separation approaches r.. Thus,
for the decentered states, the transverse pseudomomentum
K, characterizes electron-proton separation rather than ve-
locity.

In the limiting case of K, > y(v+ 1/2)%%/a,, the longitu-
dinal energies approach the asymptote E'~ —e?/r.. Note
that only the states with s=0 may remain bound if they have
such large values of K| . Indeed, since E' is small for large
K, , the binding energy (45) becomes negative for s=1.
However, a s=0 and arbitrarily large K, , there still re-
mains an infinite number of truly bound states (enumerated
by v), as has been strictly proved in [17].

Since rc=a§K L Iyh, the decentered states have huge
sizes at y<1; hence they are expected to be destroyed by
collisions with surrounding particles in the laboratory and in
white-dwarf atmospheres [58]. In neutron-star atmospheres
a y=10°, however, the decentered states may be signifi-
cantly populated, as we shall see below.

Accurate numerical dependences of the atomic binding
energies ys,(K,) and sizes I,(K,) for 300<y=<10* and
any K, have been obtained in [17,24]. In Ref. [24], analytic
fits have been constructed for these quantities as functions of
vand K, , as well as for the critical pseudomomentum K,
and transverse mass my, as functions of v, for various s and
v. These fits are more suitable for studying the thermody-
namics of hot plasmas than previous approximations [19],
which were accurate only for the centered ground state (s
=p=0and K, <K,.).

2. Other bound species

At sufficiently low T or high B, there may exist a consid-
erable amount of molecules and ions in the hydrogen plasma.
The molecular ion H," has been thoroughly investigated at
B<10% G, including the dependence of binding energies of
various electron-vibrational-rotational levels on the angle be-
tween the ion axis and the magnetic field direction [59]. For
stronger fields, only the parallel configuration has been con-
sidered [12,60—62]. Theions H,* have negligible abundance
in the strong field, owing to the small binding energy, com-
pared to the atoms and H, molecules [12,20]. The same is
probably true for H™ ions [20].

H, molecules have been studied in detail at various field
strengths [60,61,63]. An interesting result is that the ground
state is unbound at 0.18< y<<12.3 [63]. Fitting formulas for
the dissociation energies in the parallel configuration for y
=10°% have been given in [20,61]. At such fields, the disso-
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ciation energy grows o(Inv)?, approximately at the same
rate as the atomic ground-state energy. The equilibrium in-
ternuclear distance decreases as 1/Iny, being as small as
1/4a, at B=10"G, again roughly proportional to the longi-
tudinal size of the atom.

Moreover, strong magnetic fields stabilize polymer chains
Hy aligned with B, as first suggested by Ruderman [64] and
later confirmed by Hartree-Fock calculations [60]. The spe-
cific qguantum-mechanical properties of these species (e.g.,
their excitation spectra) are poorly known.

Motional effects on the molecules and chainsin the strong
magnetic fields have not been studied. Therefore, one cannot
construct areliable EOS in the domain of p, T,B where these
species are expected to dominate. For instance, Lai and Sal-
peter [20] estimated the effective transverse mass of Hy as N
times the atomic effective mass, Nmg,, and used it in the
dissociation equilibrium equation. However, since the
heavier molecule has lower velocity at a given K, it is ex-
posed to a weaker electric field in the comoving frame.
Therefore, one could expect its energy levels to be less per-
turbed and its effective mass to be closer to the zero-field
value, Nmy.

Because of these uncertainties, we do not include Hy in
our study but restrict ourselves to the atomic phase. Never-
theless, we include ground-state H, molecules in order to
determine the validity domain of our results.

B. Free-energy model

Our free-energy model is a straightforward generalization
to the magnetic case of the model presented in Sec. Il B:

F=F&+FP+F+F gt FS+FR. (46)

The ideal electron and proton free energies F{ and F{%) are
derivedin Secs. [11 A1 and |11 A 2, respectively. F, o isgiven
by Eq. (11). The Coulomb part FS, has been discussed in
Sec. |11 B. Now let us consider the ideal and nonideal con-
tributions Fiy" and Fe" brought about by the bound species.

Since the quantum-mechanical characteristics of an atom
in a strong magnetic field depend in a nontrivial way on the
transverse pseudomomentum K , the distribution of atoms
over K, cannot be written in a closed form, and only the
distribution over K, remains Maxwellian. Let pg, (K, )d?K |
be the probability to find an atom with given (s,v) in an
element d?K, near the point K, of the transverse pseudo-
momentum plane. For the Maxwell distribution, we would
have pe,(K,)=(27h) 2\ exp[—K?/(2my)]. In the gen-
eral case, the number of atoms in an eement dK of the
pseudomomentum space is

BK?

2my

Ay (
dN(K)=Ng,=——-exp| —

SVZ’N'ﬁ ) pSV( KJ_ ) d3K ’ (47)

where Ng,= [dN,(K) is the total number of atoms with the
specified discrete quantum numbers. The distribution
Ns,Ps, (K ) isnot given in advance but should be calculated
self-consistently by minimization of the total free energy,
including nonideal terms.
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It is convenient to introduce deviations from the Maxwell-
Boltzmann distribution through the occupation probabilities

WSV( KL):

Ay | 2w, (KL )expl Bxs,(K
psV(KL>=(2;ﬁ) We (K.) ZIOS[BX Kl g
NSV/NH:ZSV/ZW’ (49)

where

\Z (=
Zs":27'rﬁ2 fo WSV(KL)eﬁst(KL)KLdKL ) (50)

Zy= SE Zs,. (51)

The number of atoms per unit phase-space cell equals
[dN(K)/d®K](27#)3/V. Caculation of (U—TS) for this
distribution gives

FlikaTS N, [ (027 7 (K. )]
=1 Bxs, (K )}Psi( K, )d?K,

W, (K
—kgT>, NS,,f In 3 Ws(K1)
Sv

2
HEXp(l)ZS,, pSV(KL)d KL .

Ng, A

(52)

The contribution of molecules should be added to this ex-
pression. We estimate it taking into account only the mol-
ecules in their ground state. This is an acceptable approxi-
mation at B= 10" G, because the energies of different types
of molecular excitations are not much smaller than the elec-
tronic excitations of the atoms[61] (contrary to the zero-field
case), so that excited levels cannot give a large contribution
to the molecular IPF at those relatively low temperatures
where the molecular fraction is large [20]. We also neglect
the (unknown) motional modification of the molecular spec-
trum, as noted in Sec. IV A 2.

Thus, we include in the ideal free energy of the bound
species Fig" the term

Fii2= NszBT[In(nHZ)\ﬁz) —1-xn,l, (53)

where XH,= 2x00(0) +Q, is the molecular binding energy,

and Q, is the dissociation energy fitted as function of y in
[20,61].

The nonidea part F¢" is calculated in the hard-sphere
approximation using Egs. (17)—(19), where the composite
atomic number is k= (svK,) and the obvious generalization
of 3, includes [ps,(K,)d?K, . The effective atomic size
I.=ls,(K,) is given by fitting formulas [24]. The effective
size of the H, molecule in the ground state is estimated as
Iy, =[2a5+12 1", where the longitudina size is I,
~|,0+rqo. Here 1,5 is the longitudina size of the ground-
state H atom fitted in [24], and r = 12.7(In y) 2?2 is the equi-
librium internuclear separation given in [20].
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C. Equilibrium conditions

The thermodynamic equilibrium for the free-energy
model (46) is given by a generalization of the equations in
Sec. Il C, taking into account the fact that the atomic IPF Z,,
now includes integration over K, . In particular, dF o /IN
in Eq. (23) is replaced by a functional derivative.

In the conditions studied here, neutral atoms can exist
only in the regime of strong magnetic quantization and weak
degeneracy. Therefore it is convenient to write the general-
ized Saha equation using Eq. (34) and describe the devia-
tions from it by a separate factor A. For the ideal free energy
of protons, we use Eq. (35), and the one for the atoms is
given by Eq. (52). Thus the generalized Saha equation reads

Nphe(27ad)?
Ny=n ne—eks—"‘[l exp(— Bhocy) 1Z,e’,

(54)

where

IP,
-—— (59

A= ,8,ue—|n(27ra )\eneH'Balnn .

alows for deviations of the exact value of F{$ from that
given by Eq. (34) due to electron degeneracy and population
of excited Landau levels. The distributions of atoms over the
discrete quantum numbers and over the transverse pseudo-
momenta are given by Egs. (49) and (48), respectively.

The occupation probabilities can be presented as a prod-
uct of two terms that arise from FS, and Fg:

We, (K, ) =wewES(K ). (56)

Hereafter, we exclude N, from our formulas by explicit use
of the electroneutrality condition N.=N,. Then the Cou-
lomb factor reads

C C
g Ifg
aInT  dlnrg

aFC c 2
Inw® ,8 =2fg+ 3

) ., (57)

Wherefex(rs,A) ﬁF /(2Np) is described in Sec. 11l B. In
the Debye-Hiickel limit, wC is given by [32]

V8mn,(Be’)°. (58)

The hard-sphere factor reads

Cc _

(1- 7/2)InwO (K, ) —57°+37°
(1—1n)°

where Inw(o) (91 Np— 3l IN,)[ 4N 7] is the low-density
limit of Inw"S and # |sthe packing fraction (18). Explicitly,

InwHS(K )=

. (59)

Inwg) (K, )=~ —{(nH+np>| KD+ 16 (K + 1,2

+ 3041, (K )12 +13,(K ()T}, (60)
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7= 3y INBCI2)+ 30200+ NN(12)+ N (1)

+3(12) 1, + 3(IE %) + NN IR +4NE 1R T,
(61)

where

1
<|k>EN—HSE Nsz I (KD)p(K)AK, . (62)

The dissociation equilibrium is given by Eqg. (25), where
Zy is replaced by wy, exp(xy,) and Z,, is modified accord-
ing to Egs. (50) and (51). From Eq. (26) we obtain Wh,
= (W)?wiS, where

(1= 7/2)Inw) — 157+ 97°
(1-79)° ’

InwiP= (63)

4
Inwid) = = —=[nK(3(1%)1,

+3(NE, = (13) + (Nt np+6ny)IE 1. (64)

A solution of Egs. (54)—(64), supplemented by the sto-
ichiometric constraint n,+ny+2n =no, yields the equi-
librium abundances and the free-energy value. The solution
is sought by an iteration procedure, in analogy with the zero-
field case described in Sec. Il C, and the EOS is obtained
from Eq. (27). In the strongly quantizing magnetic field and
in the nondegenerate regime, the EOS is a sum of three ana-
lytic terms: the ideal term Piq=Nks T+ (4073¢) T4, the con-
tribution due to the Coulomb nonideality given by derivation
of the fit described in Sec. Il B, and the hard-sphere contri-
bution Pus=47(1— 7/2)(1— 7) *niks T.

V. RESULTS

A. Digtribution of plasma particles
1. Occupation numbers

Figure 5 displays the distribution of the atoms over quan-
tum states given by Eq. (49) at B=10? G and 10 G, T
=10% K, and a two relativdly low densities p
=0.001gcm 2 and 0.1 g cm™ 3. The left panel shows the
relative occupation numbers for the tightly bound states v
=0, for different quantum numbers s. The distribution is
broader for higher density. This apparently surprising feature
is easily explained by the presence of the third quantum pa
rameter K, , in addition to s and v. At low density most
atoms reside in the states with large values of K| because of
the large statistical weight of such states, which all have s
=0 (Sec. IVA1). At higher density, these strongly decen-
tered states are removed by excluded-volume effects, and the
distribution over s grows broader. Conversely, on the neigh-
boring panel we observe a narrower distribution over v
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at higher density, because the excluded-volume effects elimi-
nate the hydrogenlike states. In the next section we shall see
that ultimately, at still larger densities, only the ground-
centered state survives (s=v=0, K, <K_).

The right two panels demonstrate the effect of increasing
B to 101 G. Due to the larger binding energies, the distribu-
tion at p=0.1gcm 3 has become narrow, with more atoms
concentrated in the ground state. However, at the lower den-
sity, the distribution over v has changed weakly, since the
increase of binding energies is accompanied by a decrease of
the atomic size (and hence a decrease of the nonideality ef-
fects).

2. lonization equilibrium

Figure 6 shows the ionization curves at three values of T
for B=10"G. The heavy solid lines represent the total frac-
tion of atoms fy=ny/ny in al quantum states, calculated
according to Eq. (54). Thin solid lines show the fraction fyq
of atoms in the ground state (s=v=0, but any K ), and the
dashed lines show the fraction of atoms in the centered states
(K, <K, any s and v). For reference, triangles display the
zero-field atomic fraction given by Eq. (20).

We see that a strong magnetic field generally increases
the neutral fraction. At low densities, the excited atoms con-
tribute significantly. Since their effective size is proportional
to K, , the integration (50) gives roughly Zg,<ng 23 there-
fore fy, decreases asymptotically as né”’. Because of the
broadening of the v distribution (roughly, max vecng jJﬁ), the
low-density wing of the curve for the total neutral fraction
has a slope fHocnéje, which is very moderate compared to
fyoc n(l)/2 in the nonmagnetic case (triangles).

The centered atoms, whose pseudomomentum is limited
from above by the critical value K., have a nearly density-
independent | PF at low p. Therefore their fraction behaves as
feen®Ng, and they disappear much faster at low p and espe-
cialy at high T (compare the dashed lines in the upper and
lower panels).

At high densities, on the contrary, the decentered states
become depleted due to the excluded-volume effects, so that
the dashed line in the figure merges with the solid one at p
=10gcm 3. At till higher densities p=10°gem ™3, all ex-
cited states disappear, and only the state s=v=0 survives.

- log,,B=13 | log,,B=13 A

FIG. 5. Distribution of atomic occupation
numbers at T=10°K for the magnetic field
strengths B=10" G and 10 G (indicated). For
each value of B, the distribution over the quan-
tum number s a »=0 and over v a s=0 is
shown for two density values: p=0.001gcm 3
(hatched histograms) and 0.1 g cm™3 (shaded his-
tograms).

The  pressure ionization  proceeds around p
~10%°-10% gcm 3. The excluded-volume and Coulomb non-
ideal effects favor pressure ionization [both w™S and w€ in
Eq. (56) are less than unity], whereas finite electron degen-
eracy hampers it (A>0). Because of the reduced atomic
volume, the pressure ionization occurs at densities orders of
magnitude larger than for the zero-field case [34]. At T
=10>°K, the molecular fraction becomes non-negligible at
p~102gem™3,

Not all of the neutral atoms that contribute to the EOS
may be identified spectroscopically. Because of their pertur-
bation by plasma microfields, the atoms that do not satisfy
the Inglis-Teller criterion form ‘‘optical continuum.”” An ap-
proximate estimate of the fraction of atoms below the optical
continuum is given by a generalization of the optical occu-
pation probabilities W, (Sec. Il D) to the case of the strong
magnetic field according to Eq. (14) of Ref. [65]. This ‘‘IT"
fraction is shown by the long-dashed lines. Their rapid de-
crease indicates that the atomic spectral features disappear
around p~10gcm™3, long before pressure ionization.

The approximation of Lai and Salpeter [20], also shown
in the figure (dotted line), clearly underestimates the neutral
fraction at low density and overestimates it at high density,
especialy at high temperature. At low density, the discrep-
ancy arises mainly from an underestimation of the decen-
tered states because of an incorrect fitting formula to their
binding energies. From a comparison with the dashed line in
Fig. 6, we see that the fraction of centered states can be
estimated by the approximation [20] a p<<0.1gcm 2 and
T<10°K. At higher T or larger p, the atomic abundance is
overestimated in [19,20] because of neglecting nonideal ef-
fects. Although the neutral fraction is very significant, it
never dominates the plasma at the values of T and B shown
in Fig. 6, contrary to the prediction of Ref. [20]. (At T
=10°°K, the maximum is f;=0.41 at p~5gcm3)

Figure 7 shows the ionization curves for a stronger field,
B=10"G. Under this condition, the neutral fraction still
increases. At T=10>° K (top panel), f, exceeds % at p
>0.1gcm™ 3, reaching the maximum of 85% at p~ 10. Most
atoms in this regime reside in the centered ground state. On
the other hand, at T=10°°K and p~10°-10°gcm ™3, the
molecules are the dominant species; hence our present model
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FIG. 6. lonization isotherms at B= 10" G and three values of T
(indicated): total fraction of atoms fy;=ny/ny (heavy solid lines)
and the fractions of ground-state atoms (thin solid lines), the cen-
tered atoms (short-dashed lines), and the optically identifiable
(Inglis-Teller) atoms (long-dashed lines). The dot-dashed lines
show the molecular fraction fH2= 2nH2/n0, which is below the
frame in the bottom panels. For comparison, f,, in the zero-field
case (triangles) and in the approximation of Lai and Salpeter (dotted
lines) is also shown.

N

may be not accurate in this p-T domain.

A comparison with the result by Lai and Salpeter is not
performed for T=10%°K (the bottom panel of Fig. 7) be-
cause the approximations (3.11), (3.12) of Ref. [20] yield a
negative |PF in this case.

At T=10>°K and p=300gcm 3, there appears thermo-
dynamic instability (dP/dp<0) leading to a phase transi-
tion. The stability is recovered at p=8000gcm ™3, where the
plasma is fully ionized. This phase transition is a complete
analogue to the plasma phase transition (PPT) predicted in
the zero-field case by several theoretica models [34,66] but
not yet confirmed in experiment. It is caused by a strong
Coulomb attraction between pressure-ionized plasma par-
ticles, which contributes negative pressure that cannot be
compensated at low temperature until the degeneracy setsin.
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FIG. 7. Thesame asin Fig. 6 for B=10"G. Theverticd linein
the top panel separates the region of thermodynamic instability.

There is no confidence in the reality of the PPT because of
its model dependence. In our case, an additional uncertainty
is introduced by the simplified treatment of molecules.

The B dependence of the atomic fraction at two values of
T and two values of p is shown in Fig. 8. The total f is
drawn by solid lines and the ‘‘optical’’ (Inglis-Teller) frac-
tion by dashed lines. Triangles in the left panel show the
total fraction of atoms at B=0 (it is negligible at p
=10gcm™2 on the right panel). Dotted lines correspond to
the approximation [20] at T=10>°K.

It was found previously [10,11] that the ionization degree
decreases with growing B above ~102G only a T<5
X 10°K but, in contrast to the present results, increases at
higher T. This behavior was attributed to two effects: de-
creasing phase space occupied by a plasma particle with
growing B, which favors ionization, and increasing binding
energy, which disfavors it. Our present result arises from the
motiona perturbations of the atoms, neglected in [10,11]:
first, increasing B increases the effective mass m* and thus
the statistical weight of the centered atoms, and second, at
low densities the atomic |IPF is further increased due to the
decentered states.
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FIG. 8. Dependence of the atomic fraction f,
(solid lines) and the fraction of the optically iden-
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strength at two values of p (indicated in the fig-
ure), T=10°°K (upper curves) and 105K
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B. Equation of state

Figure 9 presents four pressure isotherms obtained using
the free-energy model described in Sec. IV. For comparison,
we aso show the fully ionized ideal-gas EOS (Sec. Il A)
and the nonmagnetic EOS (Sec. I1). The vertica line bounds
theregion p<pg. Let usfirst discuss the low-density regime
p=10gcm 3 At T=10°K, all three EOS reduce to P
=ngkgT. At lower temperatures, the pressure deviates from
this law because of the partial recombination of atoms. As
discussed in the previous section, a strong magnetic field
increases the neutral fraction; therefore the pressure is re-
duced more significantly compared to the B=0 case.
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FIG. 9. EOS of partidly ionized atomic hydrogen a B
=10 G (solid lines) compared with the EOS of fully ionized ideal
electron-proton plasma (dotted lines) and the EOS of partially ion-
ized hydrogen at B=0 (dashed lines). The temperature logarithms
are (from top to bottom) log T[K]=6.5, 6.0, 5.5, and 5.0. The ver-
tical line corresponds to pg, above which excited Landau levels
become popul ated.

log,, B (Gauss)

In the intermediate-density range 10gcm < p=<pjg, the
differences among the three considered cases are most im-
portant. For B=0, the plasma is fully ionized in this region,
and the electrons become partially degenerate, making the
EOS dtiffer. In a strong magnetic field, the electron degen-
eracy isreduced (Sec. 111); hence the ideal-gas EOS is softer,
except for densities approaching pg, where the degeneracy
setsin and pressure grows rapidly. Partial recombination and
Coulomb nonideality lead to a still further decrease of P. The
pressure ionization discussed above has two opposite effects
on the pressure: the positive ideal-gas contribution of free
electrons appearing in the course of the ionization and the
positive nonideal pressure of neutral species compete with
the negative Coulomb contribution. At low T, these effects
may cause the thermodynamic instability mentioned above,
which we observe on the isotherm T=10°K. The second
lowest isotherm in the figure is slightly overcritical for this
PPT. The dependence of the critical temperature T, and den-
sity p. on B can be fitted by simple power laws T,=3
x10°B%® K and p.=143B1;® gcm 3, where By,
=B/(10?G). These fits provide an accuracy of a few per-
cent in the considered range of the field strengths 7
X 10" G<B<3x 102G,

At higher density p=pg, excited Landau levels become
populated due to the increase of the Fermi energy. Eventu-
aly, a p>pg, the nonmagnetic EOS is recovered.

Figure 10 demonstrates the effects of the strong magnetic
field on the density exponent x,=(JInP/dInp);. Although
the pressure approaches the nonmagnetic value at p> pg, the
effects of magnetic quantization remain quite prominent for
the derivative x,, as shown by the curve B=10"G in the
figure. Consecutive population of excited Landau levels
causes the oscillations of y, and other second derivatives of
F around their nonmagnetic values. The regime where these
oscillations are significant is called weakly quantizing [2].

The effects of a strongly quantizing magnetic field on the
reduced heat capacity Cy=Kkg Y9ulgT)y divided by the
number of plasma particles, Nigw=Ne+Ny+Ny+Ny , are
shown in Fig. 11. In the nonmagnetic case (dashed line), the
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FIG. 10. Density exponent x,=(dInP/dInp); a T=10°K
without magnetic field (dashed line) and in strong magnetic fields of
various indicated strengths (dot-dashed and solid lines).

classical value Cy /N,y=3 is dlightly exceeded at lower den-
sities because of the thermal ionization of the atoms, and it is
reduced to smaller values at higher densities because of elec-
tron degeneracy.

In strong magnetic fields, the heat capacity is modified
due to several effects. In the low-density regime, Cy, is re-
duced compared to the nonmagnetic value because of the
guantization of the transverse motion of electrons and pro-
tons. The strongly quantized electrons have only one mo-
tional degree of freedom, so that their contribution reduces to
Cv,= 3N, . When protons are nonquantized and the plasma

is fully ionized, this amounts to C,,/N,;=1. In the general
case, the contribution of free spinless protons would be

1

Bhaoc,
>+

2
2 sinh( Bﬁwcp/2)> }Np’ (65)

1)_
Cclh=

which tends to 3 at Bf w¢,=0.732B;,/T> 1, where the pro-
tons are strongly quantized. The interaction of a magnetic
field with proton spin, according to Eq. (36), yields

2

e L T~

CV=|7 cosh( Bgphwepl4)

which vanishes in the limiting cases of fw.,<kgT and
hwep>kgT. In the latter case, Cy /N Would tend to 3 for
the fully ionized plasma. In Fig. 11, however, this does not
happen because of the contribution of neutral atoms, which
are subject to thermal ionization in this p-T-B domain. On
the contrary, C,, increases with increasing B, since the neu-
tral fraction becomes larger. The two humps visible on each
magnetic isotherm correspond to the regions of the pressure
destruction of the first excited atomic state s=1, »=0 and
the ground state s= v=0, respectively. In the latter case, Cy,
even exceeds the nonmagnetic value, because of the delayed
onset of degeneracy. Only with density approaching pg isthe
zero-field value of the heat capacity recovered.
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FIG. 11. Normalized heat capacity at the same T and B values as
in Fig. 10.

This illustrates the main effects of a strongly quantizing
magnetic field on a partialy ionized hydrogen plasma. Other
thermodynamic quantities, obtained within the framework of
the present model, experience similar profound modifica-
tions.

VI. CONCLUSIONS

We have developed a thermodynamic model of hydrogen
plasmain strong magnetic fields, making use of the available
quantum-mechanical results for the fully ionized plasma and
for the hydrogen bound species. Applicability of the devel-
oped model is limited to the temperatures T, densities p, and
magnetic field strengths B at which formation of molecules
and other bound species more complex than the H atoms
may be neglected. This condition holds, for instance, at B,
<10 and T=10°K (any p) or a T=10°K and p
<10%(Te/B1p)3gem 3. Furthermore, athough the theory
presented in Sec. 1V is rather general, our numerical results
in partialy ionized regions are restricted to B,,=0.7, be-
cause fitting formulas [24] for quantum-mechanical charac-
teristics of the atoms moving in magnetic fields have been
derived under this condition. This restriction is fulfilled for
the majority of neutron stars. For laboratory field strengths
(at y<1), perturbative methods may be sufficient.

Calculations in the frames of our model show that the
magnetic field effects strongly modify the thermodynamic
functions and phase diagram of the plasma, in particular the
partia ionization region. The abundance of atoms is signifi-
cant in the considered domain of temperatures T
~10°-105°K and magnetic field strengths B~ 10?-10° G
at densities up to p~10°—10°gcm ™3, contrary to the zero-
field case. At relatively low densities (p<1-100gcm™3, de-
pending on B and T), the decentered atomic states possessing
a large constant dipole moment are significantly populated.
Since these values of p, T, and B are typical of the atmo-
spheres of isolated neutron stars, the physical effects dis-
cussed above are expected to affect the spectra. It has been
shown [65,67] that the presence of a nonionized component
and, in particular, decentered atoms should produce observ-
able absorption and thus necessitate a modification of previ-
ous fully ionized atmosphere models [68]. Work in this di-
rection is under way [69].
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