
Partially ionized hydrogen plasma in strong magnetic fields

Alexander Y. Potekhin,1,* Gilles Chabrier,2,† and Yuri A. Shibanov1

1Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia
2CRAL (UMR CNRS No. 5574), Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France

~Received 10 February 1999!

We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields,
B;1012– 1013 G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-
mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the
field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical
calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic
states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits
for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to
construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into
account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration
technique. Ionization degrees, occupancies, and the equation of state are calculated. @S1063-651X~99!01308-2#

PACS number~s!: 52.25.Kn, 05.70.Ce, 95.30.Qd, 97.60.Jd

I. INTRODUCTION

Magnetic fields B;1012– 1013 G typical of isolated neu-
tron stars qualitatively modify many physical properties of
matter ~see Refs. @1,2# for reviews!. In this paper we calcu-
late the thermodynamic properties of a strongly magnetized
hydrogen plasma at temperature T;105.0– 106.5 K, which
may compose outer neutron-star envelopes @3–5#. As we
shall see, the plasma under these conditions can be partially
ionized, and the quantum-mechanical properties of both free
electrons and bound species ~primarily hydrogen atoms! are
strongly modified by the field, which thereby affects the ther-
modynamics.

The motion of charged particles in a magnetic field is
quantized into Landau orbitals. The magnetic field is called
strongly quantizing if the free electrons populate mostly the
ground Landau level @2#. This is the situation which we are
especially interested in. It occurs when the electron cyclotron
energy \vc5\eB/(mec) ~where \, e, me , and c are the
Planck constant, electron charge, electron mass, and speed of
light, respectively! exceeds both the thermal energy kBT and
the electron Fermi energy eF—that is, for temperatures T
!TB and densities r,rB , where

TB53.163105g K, rB50.809g3/2 g cm23 ~1!

~see Sec. III A 1!. Here, the parameter g5\3B/(me
2ce3)

5B/(2.353109 G) is the electron cyclotron energy in
atomic units.

We will refer to a strong magnetic field when g@1. A
number of studies of the equation of state ~EOS! of matter in
strong magnetic fields were based on various modifications
of the Thomas-Fermi approximation @6–9#. This approxima-
tion works reasonably well at large r and for large ion charge
Z i . Abrahams and Shapiro @8# estimate its validity range as

r@rBZ i
21/2 . We consider Z i51 and lower densities, for

which atoms are present in the plasma and contribute to the
EOS.

The atom in a strong magnetic field g@1 is compressed
in the transverse directions to the size of the ‘‘magnetic
length’’:

am5~\c/eB !1/2
5a0g21/2, ~2!

where a05\2/(mee2) is the Bohr radius. The ground-state
binding energy grows logarithmically with B and exceeds the
ground-state energy of the field-free atom by order of mag-
nitude at B;1012 G @1#. Ionization equilibrium of atoms in
strong magnetic fields was first discussed by Gnedin et al.
@10# and Khersonskii @11#. Khersonskii @12# considered also
dissociation equilibrium of H2

1 species. However, these pio-
neering works neglected modifications of the atomic proper-
ties caused by the thermal motion of the atoms across the
field.

The motional modifications of quantum-mechanical char-
acteristics of the atom arise from the coupling between the
center-of-mass motion across the field and the relative
electron-proton motion @13–17#. The role of these effects
was appreciated by Ventura et al. @18#, who, however, did
not treat them quantitatively. An increase of the nonionized
fraction caused by the motion effects was mentioned by Pav-
lov and Mészáros @16#, who used perturbation theory appli-
cable to atoms only slightly distorted from their rest-state
cylindrical shape. Quantum-mechanical calculations of bind-
ing energies and wave functions of hydrogen atoms in any
states of motion in the strong magnetic fields have been car-
ried out only recently @15,17#.

Lai and Salpeter @19,20# evaluated the effects of motion
on the ionization equilibrium using an approximation for the
binding energies of moving atoms which does not apply to
the so-called decentered states, for which the electron-proton
separation is large @14,15,17#. Nonideality effects were in-
cluded in the ionization equilibrium equation only as a
pressure-ionization factor for r@102 g cm23. As a result,
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this equation contains a factor which diverges ~and becomes
even negative! at sufficiently high temperatures.

Recently, Steinberg et al. @21# calculated the second virial
coefficient of the proton-electron plasma in arbitrary mag-
netic field and constructed an EOS at low densities. The
bound states were included using the Planck-Larkin partition
function. This approach yields correct EOS at the low den-
sity where the virial expansion holds @22#. However, the
Planck-Larkin formalism fails at higher densities, where one
has to resort to the chemical picture of the plasma, as dis-
cussed in detail, e.g., by Däppen et al. @23#. In addition,
atomic binding energies were calculated in @21# using ap-
proximations @19# which have very restricted applicability as
shown in @24#.

In this paper we use new fitting formulas to atomic ener-
gies and sizes @24# based on a previous numerical study @17#,
valid for any state of atomic motion. The molecular H2 frac-
tion is evaluated following the approach of Lai and Salpeter
@20# but with a modified treatment of nonideality. Our
knowledge of the quantum-mechanical properties of mol-
ecules in a strong magnetic field is still incomplete, but an
evaluation of the molecular fraction is useful to determine
the validity domain of our EOS at relatively low tempera-
tures ~where the molecules dominate!.

The next section presents a simple thermodynamic model
of the hydrogen plasma. The model is tested in the nonmag-
netic case by comparison with more elaborate models, and is
shown to provide sufficient accuracy at high T where the
molecular fraction is small. In Sec. III, we consider a fully
ionized plasma in a strong magnetic field. The partial ioniza-
tion and dissociation are discussed in Sec. IV, where an ana-
lytic model of the plasma free energy is constructed and the
ionization equilibrium equation is derived. Numerical results
are presented and discussed in Sec. V.

II. THERMODYNAMIC MODEL: THE ZERO-FIELD CASE

A. Chemical picture of the plasma

A theoretical description of partially ionized plasmas can
be based either on the physical picture or on the chemical
picture of the plasma @22#. In the chemical picture, bound
species ~atoms, etc.! are treated as elementary entities along
with free electrons and nuclei. In the physical picture, nuclei
and electrons ~free and bound! are the only fundamental con-
stituents of the thermodynamic ensemble. The relative merits
of the two approaches have been discussed, e.g., in @25,26#.

We use the so-called occupation probability formalism in
frames of the chemical picture. Occupation probabilities,
which ensure convergence of the internal partition functions
~IPF!, were first introduced by Fermi @27#, who has demon-
strated their immanent relation to a nonideal contribution in
the Helmholtz free energy. Various approaches to the con-
struction of the occupation probabilities have been reviewed
by Hummer and Mihalas @28#. The approach adopted by Mi-
halas and co-workers @28–30# ~hereafter MDH! is based on
the Inglis-Teller criterion of Stark broadening conventional
for plasma spectroscopy, which gives optical spectra consis-
tent with available experiments ~see, e.g., Ref. @23#!. How-
ever, the equation of state derived by MDH is unrealistic at
r*1022 g cm23 ~see @31#!, and the approximations made in
its derivation are lacking in self-consistency @32#. An alter-

native EOS was derived in a self-consistent manner by Sau-
mon and Chabrier @26,31,33,34# ~hereafter SC! from effec-
tive pair potentials between plasma particles, but with
neglect of the Stark broadening. The ionization degree de-
duced by SC strongly differs from that by MDH. The origin
of the discrepancy is rooted in the fact that strongly per-
turbed atoms, whose spectral lines disappear due to the Stark
merging, may still contribute to the EOS as bound species
@35#. Thus the approaches of MDH and SC are reconciled by
an approximate treatment of the atoms perturbed by plasma
ions as quasicontinuum atomic states, which contribute to the
EOS as atoms although they do not show atomic spectral
lines @32#.

The chemical picture faces a principal difficulty in cases
where the interaction between nuclei and electrons in a
bound state is comparable to the interaction between a bound
object and neighboring plasma particles. This situation oc-
curs when pressure ionization is important or when high
atomic levels are appreciably populated. In these cases, a
special term should be included into the free-energy model,
in order to distinguish between bound and free states. For
instance, MDH constructed an ad hoc ‘‘pressure ionization
term’’ in the free energy @29#, SC introduced hard cores with
fixed diameters in the effective potentials for bound species
@34#, and exponential ‘‘unbinding’’ occupation probabilities
were used in @32#. The latter approach has been justified by
considering an excluded volume of the bound objects at rela-
tively low density, assuming an uncorrelated distribution of
the plasma particles. At high density, the strong correlations
of the positions of the particles must be taken into account.
Their approximate treatment in the hard-sphere model ~e.g.,
by SC! appears to be practical for this purpose.

In the case of the strong magnetic field, the model of the
plasma cannot be as detailed as, e.g., the SC nonmagnetic
model, because the effective potentials ~partly derived from
high-pressure experiments in the zero-field case! are not
available. Therefore we use a simple hard-sphere picture de-
scribed below. In order to check the validity of this model,
we apply the same assumptions to the well-studied zero-field
case and compare the results with those of more elaborated
models.

B. Free-energy model

Consider a plasma consisting of electrons, protons, and H
atoms in a volume V . Let us write the Helmholtz free energy
as F5F id1Fex , where

F id5F id
~e !

1F id
~p !

1F id
neu

1F rad ~3!

is the sum of the ideal-gas free energies of the electrons,
protons, neutral species, and photons ~thermal radiation!, re-
spectively, and Fex is the excess ~nonideal! part.

1. Ideal part of the free energy

We consider nondegenerate protons and neglect their spin
statistics both in bound and free states ~this amounts to an
additive constant in the entropy that affects neither ionization
equilibrium nor the EOS, provided the total number of free
and bound protons, N0 , is fixed!. Then

bF id
~p !/Np5ln~nplp

3!21, ~4!
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where b[(kBT)21. Here and hereafter, Na , na , and la

[(2pb\2/ma)1/2 denote, respectively, the total number,
number density, and thermal wavelength of particles of type
a with mass ma .

For the ideal gas of electrons, we use the identity @36#

F id
~e !

5meNe2PeV , ~5!

where me and Pe are the chemical potential and pressure of
the ideal Fermi gas, respectively, which can be obtained as
functions of ne and T from the equations

Pe5

8

3Ap

kBT

le
3 I3/2~bme!, ~6!

ne5

4

Aple
3

I1/2~bme!. ~7!

Here,

In~z ![E
0

` xn

exp~x2z !11
dx ~8!

is the Fermi integral. With the use of Padé approximants to
the functions In(z) and their inverse functions @37#, F id

(e) is
expressed as an analytic function of Ne , V , and T.

In the zero-temperature limit, one may replace In(bme)
by (beF)n11/(n11), which gives, in particular, the well-
known expression

eF5

\2

2me
~3p2ne!2/3. ~9!

The Fermi temperature is defined as TF[eF /kB'3
3105r̂2/3 K, where r̂51.6735ne /(1024 cm23) is the mass
density of the electron-proton plasma in g cm23. In the non-
degenerate limit T@TF , the ideal Boltzmann gas relations
are recovered, me5kBT ln(nele

3/2) and Pe5nekBT .
For the atoms, one has

F id
H

5kBT(
k

Nk@ ln~nklH
3 /gk!212bxk# , ~10!

where k enumerates quantum states with statistical weights
gk and binding energies xk .

It should be noted that, although nonideality effects are
not included in F id explicitly, they do affect the equilibrium
value of F id through particle numbers. In particular, the dis-
tribution of Nk in Eq. ~10! is not assumed to obey the ideal-
gas Boltzmann law.

Finally, the radiation term ~which can be important only
at low r or very high T! reads

F rad52~4s/3c !VT4, ~11!

where s5p2kB
4 /(60\3c2) is the Stefan-Boltzmann constant.

2. Excess free energy

The excess free energy is conventionally written as

Fex5Fex
C

1Fex
neu, ~12!

where Fex
C is the excess free energy of the ionized part of the

plasma and Fex
neu accounts for interactions of neutral species

with electrons, protons, and other neutral species. The Cou-
lomb term

Fex
C

5F ii1Fee1F ie ~13!

includes contributions from the exchange and correlation in-
teractions of electrons Fee , Coulomb interactions in the one-
component plasma ~OCP! of ions F ii , and ion-electron
~screening! interaction F ie . These contributions have been
calculated by various procedures, e.g., by solving a set of
hypernetted-chain equations or Monte Carlo simulations
@38–42#. We make use of the fitting formulas to the results
of such calculations, obtained in @39# for Fee and in @41# for
F ii and F ie . These formulas express the electron-ion plasma
free energy as an analytic function of the electron density
parameter

rs5ae /a0'1.39r̂21/3 ~14!

and Coulomb coupling parameter

G5be2/ae'0.227r̂1/3/T6 , ~15!

where ae5(4pne/3)21/3 is the mean interelectron distance
and T6[T/106 K.

The nonideal part of the atomic free energy, Fex
neu, can be

written as @33,34#

Fex
neu

5FHS1Fpert , ~16!

where FHS is the reference free energy, treated in the hard-
sphere approximation, and Fpert is the perturbation part that
accounts for the attractive ~van der Waals! interactions. To
calculate these contributions, an elaborate model has been
developed by SC @33,34#. Its simplified analytic version for
weak electron degeneracy has been constructed in @32#. In
the so-called van der Waals one-fluid model @43#, a free en-
ergy of the hard-sphere mixture is represented by the
Carnahan-Starling formula @44#

bFHS /N tot5~4h23h2!/~12h !2, ~17!

where N tot5(aNa is the total number of particles,

h5

p

6N totV
(
aa8

NaNa8
daa8

3 , ~18!

is the effective packing fraction, and daa8
are the hard-

sphere interaction diameters. In our case, the subscript a
enumerates atomic quantum states described by quantum
numbers k and takes on a single value p for the free protons.

In the following, we compare two versions of the model:
~i! the full version, in which Fpert and daa8

are given by
approximations of @32#, with one exception ~adopted from
@34#! that daa8

cannot be smaller than a certain limit daa8

(0) ,
and ~ii! the simple version, in which long-range atomic in-
teractions are disregarded. In the latter case, Fpert50 and
daa8

5daa8

(0) . Furthermore, we adopt the simplest choice

dkk8

~0 !
5lk1lk8

, dkp
~0 !

5lk , ~19!
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where lk is the root-mean-square proton-electron distance in
the quantum state k @45#. For the interactions among charged
particles, we define daa8

50, because this type of interaction
is already included in the Coulomb part of the free energy.
Note that in the second ~simple! version of the model, FHS
turns into the unbinding term Fub of Ref. @32# in the low-
density limit (h!1). Thus the unbinding term is now incor-
porated in FHS , which allows us to approximately take into
account the correlation effects.

C. Equilibrium conditions

Thermodynamic equilibrium is given by the minimization
of F(V ,T ,$Na%) with respect to the particle numbers Na

under stoichiometric constraints. The condition of the extre-
mum of F can be written in the form of the Saha equation
corrected for nonideality and electron degeneracy:

nH5npnele
3~mp /mH!3/2~Zw/2!eL, ~20!

where

L5b]F id
~e !/]Ne2ln~nele

3/2! ~21!

allows for electron degeneracy and

Zw5(
k

gkwkebxk ~22!

is the modified IPF which includes the occupation probabili-
ties wk , defined according to @32#:

kBT ln wk5

]Fex

]Np
1

]Fex

]Ne
2

]Fex

]Nk
. ~23!

To solve Eq. ~20!, one must add the electroneutrality condi-
tion ne5np and the mass conservation condition nH1np

5n0 , where n05r/mH5(r/11.293 g cm23)a0
23.

The Boltzmann distribution of the atoms, corrected for
nonideality, reads

nk5nHgkwkebxk/Zw . ~24!

The minimum of the free energy is sought by solving Eqs.
~20!–~24! iteratively @32#. First, one defines starting wk’s

and calculates the number densities from Eqs. ~20! and ~24!.
Then the wk’s are refined using these number densities in Eq.
~23! @46#.

The molecules H2 can be easily included in this proce-
dure. The dissociation-recombination equation reads

nH2
5nH

2 ~lH& !3Zw2 /Zw
2 , ~25!

where Zw2 is the molecular IPF, modified by multiplying
each kth term by an occupation probability w

k

H2 @32#, given
by

kBT ln wk
H2

52S ]Fex

]Np
1

]Fex

]Ne
D2

]Fex

]N
k

H2
. ~26!

For simplicity, we do not include molecules in the present
versions of the model, because the fraction of H2 is small in
the range of r and T which we are interested in.

After the equilibrium distribution of plasma particles is
found, the pressure P, internal energy U, and entropy S are
calculated from the relations

P52~]F/]V !T ,$Na% , U5@]~bF !/]b#V ,$Na% , ~27!

S5(U2F)/T . The higher-order thermodynamic quantities
are obtained by differentiation of P,U,S without keeping Na

fixed @36#.

D. Results of comparison

The ionization curves given by different versions of the
model are compared in Fig. 1 for T5104.5 K. Although the
neglect of the perturbation terms introduced in the simple
version is most perceptible at such relatively low tempera-
tures, the ‘‘full’’ and ‘‘simple’’ versions of the model yield
practically identical atomic fractions f H[nH /n0 .

The results of SC @31# qualitatively agree with the present
model. Quantitatively, they differ in the pressure-ionization
region at r.0.1 g cm23, where the theoretical uncertainty is
largest ~see Sec. IIA!. The difference in the low-density re-
gime r,1024 g cm23 is due to highly excited states. If both
the effective diameter d and statistical weight gn are propor-
tional to n2 ~n being the principal quantum number!, then the
neutral fraction should asymptotically decrease at low den-
sity as f H}r1/2. Our present model exhibits this asymptotic

FIG. 1. Comparison of the fraction of neutral
atoms f H5nH /n0 given by SC tables ~short-
dashed line! and by two present versions of the
thermodynamic model of partially ionized atomic
hydrogen ~see text!. The long-dashed line corre-
sponds to the fraction of atoms that satisfy the
Inglis-Teller criterion. The dotted line is given by
the usual Saha equation for ground-state atoms.
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behavior; the dependence f H}r1/3 seen at low r in the SC
data might result from a choice d}n .

The long-dashed curve represents the fraction of atoms
satisfying the Inglis-Teller criterion: f IT5(nkw̃k /n0 . Here,
w̃k is the probability that a given atom is not strongly per-
turbed by plasma microfields; it is estimated from Eq. ~31! of
Ref. @32#. Using f IT , we have calculated monochromatic
opacities of the plasma and compared them with the OPAL
monochromatic opacities @47# ~at r<10T6

3 g cm23 where the
OPAL data exist!. Along the isotherm shown in Fig. 1, our
results agree with OPAL within 12% in the photon energy
range from 13.6 eV to 500 eV where the opacity is domi-
nated by bound-free atomic absorption. For comparison, hy-
drogen opacities calculated in @48# differ from OPAL by up
to 37% ~in the same range of energy and density at the same
T!.

Figure 2 demonstrates that the EOSs obtained with the
full and simple versions of our model practically coincide. In
the region of weak degeneracy, they also coincide with the
model presented in @32#. Moreover, there is a good agree-
ment with the SC model @31#. Small differences occur only
in the regions where the SC model predicts an appreciable
amount of molecules, as explained in @32#.

As is well known, the second-order quantities are more
sensitive to the details of the thermodynamic model than the
first-order ones. The adiabatic temperature gradient

¹ad5~] ln T/] ln P !S ~28!

is shown in Fig. 3. There are only tiny differences between
the full and simple versions. For comparison, we also show
¹ad from other models. In its validity region ~i.e., at low
density!, the model @32# approximately agrees with the
present one. The differences with predictions of SC are
somewhat larger. In all models, the isotherms ‘‘wiggle’’ in
the region of consecutive pressure destruction of excited
atomic states. Such wiggles are absent in the OPAL data

@49#, based on the physical picture of the plasma and also
shown in Fig. 3. Compared to SC, the present data tend to be
closer to the OPAL data. We conclude that the simplifica-
tions introduced above are acceptable to describe the thermo-
dynamics of atomic hydrogen. In Sec. IV, we generalize the
model to the case of the strong magnetic field.

III. FULLY IONIZED PLASMA IN A STRONG MAGNETIC
FIELD

In this section, we describe effects of quantizing magnetic
fields on the fully ionized proton-electron plasma. We as-
sume that the field B is uniform and directed along the z axis.

A. Ideal gas

1. Electrons

The electron energy in a magnetic field reads @50#

eN~pz!5N\vc1pz
2/~2me!, ~29!

where pz is the longitudinal momentum and N50,1,2 . . . is
the Landau quantum number. All levels except the lowest
one are double degenerate with respect to the spin projection.
Strictly speaking, the anomalous magnetic moment of an
electron leads to a splitting of the levels N>1 by
0.001 16\vc , which takes off the double degeneracy. How-
ever, this splitting cannot affect the thermodynamics at r
,rB , where kBT should be at least comparable to \vc for
an appreciable population of the excited Landau levels.

The thermodynamic functions of the electron gas in the
magnetic field are easily derived from the first principles
@36#. Taking into account the fact that the number of quan-
tum states of an electron with fixed discrete quantum num-
bers in volume V per longitudinal momentum interval Dpz

equals VDpz /(4p2am
2 \) @50#, the thermodynamic potential

V52PV can be written as

FIG. 2. Comparison of two present versions of the EOS of par-
tially ionized atomic hydrogen ~see text! with Refs. @31# ~SC! and
@32#. The EOS of ideal fully ionized gas is also shown.

FIG. 3. Two adiabatic gradient isotherms given by different
EOS models in the domain of partially ionized atomic hydrogen.
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V52

VkBT

2p2am
2 \

(
N50

`

gNE
0

`

ln~11eb@me2eN~pz!#!dpz ,

where gN is the statistical weight (g051 and gN52 for N
>1). Hence the electron pressure and number density are
given by the equations

Pe5

kBT

p3/2am
2 le

(
N50

`

gNI1/2~bmN!, ~30!

ne5

1

2p3/2am
2 le

(
N50

`

gNI21/2~bmN!, ~31!

where mN[me2N\vc . The Helmholtz free energy is given
by Eq. ~5!, where me can be found by inversion of Eq. ~31!
~e.g., using an algorithm described in @51#!.

In the nonquantizing magnetic field TB!T , where many
Landau levels are populated, the sum over N in Eqs. ~30!,
~31! may be approximated by an integral, and integration by
parts reproduces Eqs. ~6!, ~7!.

In the domain of strong magnetic quantization, T!TB and
r,rB , one may retain only the term N50. In that case,
replacing I21/2(bme) by 2AbeF in Eq. ~31! ~by analogy with
Sec. II B! yields the Fermi energy

eF5

2p4\2

me
~am

2 ne!2. ~32!

By definition, r5rB at eF5\vc . Hence r/rB

53p(2grs
2)23/2, from which Eq. ~1! follows. A comparison

of Eqs. ~9! and ~32! reveals that the Fermi energy changes by
a factor (4/3)2/3(r/rB)4/3. Thus the degeneracy is strongly
reduced at r!rB .

In the nondegenerate regime T@TF , one has In(bme)
'exp(bme)G(n11); therefore Eqs. ~30!, ~31! reduce to Pe
5nekBT and

bme5ln~nele
3/2!2ln u1ln~ tanh u !, ~33!

where u[b\vc/25TB /(2T). This yields an explicit ana-
lytic form for F id

(e) . In the nonquantizing field, TB!T , the
last two terms in Eq. ~33! cancel out, and the classical ex-
pression ~Sec. II B! is recovered. In the strongly quantizing
regime r,rB and TF!T!TB , the last term of Eq. ~33!
vanishes, which yields

F id
~e !

5NekBT@ ln~2pam
2 lene!21# . ~34!

2. Protons

The transverse motion of protons is quantized in Landau
orbitals with the elementary excitation equal to the proton
cyclotron energy \vcp5(me /mp)\vc . The energy spec-
trum is given by Eq. ~29! when replacing me by mp and vc
by vcp . Unlike the case of electrons, the double-spin degen-
eracy of the Landau levels is taken off by the abnormal mag-
netic moment of the proton.

In our analysis, the protons are always nondegenerate, so
that by analogy with Eq. ~34! we have

bF id
~p !/Np5ln~2pam

2 lpnp!1ln@12e2b\vcp#21. ~35!

Here, for sake of brevity, we drop the zero-point energy
1
2\vcp and the spin energy 6

1
4gp\vcp , where gp55.585 is

the proton spin gyromagnetic factor @50#. We suppress these
terms also for atoms and molecules. Taking them into ac-
count yields an additive contribution to the total free energy
of the system, equal to

DF5N0H 1

2
\vcp2kBT ln@2 cosh~bgp\vcp/4!#J ~36!

(N05Np in the case of full ionization!. Since N0 is constant,
DF affects neither ionization equilibrium nor pressure, but it
does affect the internal energy and specific heat; therefore we
take it into account in Sec. V.

B. Nonideal Coulomb plasma

According to the Bohr–van Leeuwen theorem, a magnetic
field does not affect the thermodynamics of classical charged
particle systems ~see, e.g., Ref. @52#!. Thus the classical ionic
OCP excess free energy F ii(G) does not depend on B at any
G. The classical regime for the electron-proton plasma cor-
responds to rs@1 and G!1, where the excess Coulomb free
energy is given by the Debye-Hückel formula Fex

C

52NekBTA8G3/3. Indeed, it is easy to check that this law
holds independent of B @8#.

A magnetic field, however, affects quantum-mechanical
contributions to Fex

C . These effects have been studied only in
low-temperature or low-density regimes.

The ground-state exchange energy of the electron gas in
the strongly quantizing field @7,53# behaves as
22.25(grs

3)21@ ln(grs
2)20.4571¯#e2/a0 ~per electron!,

compared to 20.75p21(9p/4)1/3rs
21e2/a0 in the nonmag-

netic case @54#. Thus the exchange energy at T!TF is sup-
pressed by a factor '0.2036grs

2/@ ln(grs
2)20.457# . Note that

the condition of strong magnetic quantization requires grs
2 to

be large.
A general low-density expansion for the free energy of a

Coulomb plasma in an arbitrary magnetic field up to order
r5/2 has been derived by Cornu @52#. The coefficients of this
expansion are not available in explicit analytic form but re-
quire numerical evaluation, which has not been done yet. In
the particular case of the OCP, a Wigner-Kirkwood-type ex-
pansion in powers of \ is available @52#. The lowest-order
term of the latter expansion ~quantum diffraction term of
order \2) has been obtained by Alastuey and Jancovici @55#:

Fdiff5NekBT
G2

8rs
F 2

u tanh u
2

2

u2 1

1

3G , ~37!

with u defined as in Eq. ~33!. The square brackets in Eq. ~37!
go to 1 at u˜0, recovering the well-known zero-field result,
and to 1/3 at u@1, reflecting the fact that two of three de-
grees of freedom for the electron motion are frozen out in the
strongly quantizing field. Equation ~37! is valid in the low-
density regime, where rs@max(G,G21). In this regime the
correction ~37! is smaller than the classical OCP corrections
to the Debye-Hückel formula. In the electron-ion plasmas,
Fdiff is canceled because of the local neutrality relation @52#.

In this paper, we are mainly interested in the case where
(Grs)

21'3.16T6*1. In this case, a high-temperature expan-
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sion @56#, which can be written as an expansion in powers of
two small parameters s15AG/rs and s25AG/rs , is relevant
at low densities. The lowest-order correction is the Hartree-
Fock term }\2e2. Steinberg et al. @21# have recently ob-
tained an analytic result for this term in a magnetic field:

bFHF

Ne
52

3G2

8rs
f 1~u !, ~38!

where the function

f 1~u !5

cosh~2u !

cosh2 u F tanh u

u G arctanh~A12u21 tanh u !

A12u21 tanh u
~39!

goes to 1 at small u, reproducing the zero-field result @56#,
and to ln(4u)/u at very large u.

Steinberg et al. @21# have also calculated the corrections
}\e4 ~the Montroll-Ward and exchange terms!. For the elec-
tron gas, they can be written in the form

bF4

Ne
5

3Ap

16

G5/2

Ars

@ f 2
ee~u !1 f 3

ee~u !ln 2# , ~40!

where f 2
ee(u) and f 3

ee(u) go to 1 at u˜0, reproducing the
zero-field result @56#, and decrease at large u.

In order to incorporate these results into the analytic free-
energy model, we employ a simple scaling procedure. In the
fit for f ee(u ,G)5bFee /Ne derived in @39#, where u5T/TF
is the degeneracy parameter, we replace the zero-field value
u052(9p/4)22/3rs /G by

u*5u0

11um /u0

11 f 1~u !~um /u0!exp~2um
21!

. ~41!

Here, um58g2rs
5/(9p2G)50.166u0g2rs

4 is the value of the
degeneracy parameter in the strongly quantizing field.

The scaling ~41! reproduces limiting cases: ~i! at rs@1,
the classical OCP expression is recovered, independently of
other parameters; ~ii! in the nonquantizing regime grs

2
!1,

we get the nonmagnetic value u*5u0 ; ~iii! in the strongly
quantizing degenerate regime grs

2
@1 and um!1, the correct

value of the degeneracy parameter u*5um is recovered; and
~iv! in the strongly quantizing nondegenerate regime grs

2

@1 and um@1, the fit reproduces Eq. ~38! in its range of
validity.

Figure 4 demonstrates the validity of the adopted modifi-
cation of Fee at G,1, for three values of rs , for which the
quantum contributions to Fex

C could appreciably affect our
results. We plot departures of Fee from the OCP Debye-
Hückel function FDH

OCP, normalized to NekBT and divided for
convenience by G2. The dot-dashed line shows the classical
OCP free energy @41#, the dotted line displays the e2 correc-
tion ~38!, and the dashed line results from inclusion of the e4

corrections ~40!.
The left panel presents the nonmagnetic case. The solid

line shows the fit to Fee @39#. The region of approximate
coincidence of the fit with the high-T expansion can be
adopted as the region of validity of the latter. At large rs , it
is restricted by the condition s2!1(G!rs

21), while at small
rs , the condition s1!1(G!rs

2) is more restrictive.
The middle and right panels show the modifications of

Fee at two values of the magnetic field strength. One can see
that the scaled fit satisfactorily reproduces the expansion in
the validity range of the latter. Surprisingly, although the
scaling is based on the lowest-order e2 term ~38!, the e4

terms ~40! are also well reproduced.
For the electron-ion plasma, the screening contribution

F ie should be taken into account. At B50, it has been cal-
culated in a number of papers ~e.g., Refs. @39–41#! and fitted
by analytic expressions @41#. In a strongly quantizing mag-
netic field, this contribution has been analytically evaluated
only for a dense plasma at zero temperature using the linear
response theory @7#. Comparison with the analogous zero-
field result @57# shows that the strongly quantizing magnetic
field increases the screening energy at high density by factor
0.8846g2rs

4. To our knowledge, there were no relevant cal-
culations at arbitrary degeneracy. In the regime of low de-
generacy and weak Coulomb coupling, integral representa-
tions of the low-density expansion coefficients have been

FIG. 4. Contribution to the electron-gas non-
ideal free energy f ee5bFee /Ne beyond f DH

OCP
5

2G3/2/) at three values of the magnetic field
parameter g and three values of the density pa-
rameter rs ~indicated!. The scaled fit ~solid lines;
see text! is compared with the high-temperature
expansion up to orders e2 and e4 ~dotted and
dashed lines, respectively! and with the classical
OCP ~dot-dashed lines!.
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obtained @21,52#. The contribution of order e4 is given by
Eqs. ~20!, ~21! of Ref. @21#. It is reproduced if to replace rs

by rs /( f 2
ep)2 in the nonmagnetic expression @56#. Here, f 2

ep

can be approximated ~within 0.5%! as

f 2
ep

5

1

2
1t0.9

arctanh@~12t !0.6#

2~12t !0.6 , ~42!

where t[tanh(0.4u)/(0.4u). We apply the scaling rs

˜rs /( f 2
ep)2 to the formula for F ie(rs ,G) given in @41#.

IV. PARTIALLY IONIZED PLASMA

A. Hydrogen bound species in the strong magnetic field

1. Atoms

Only a brief summary of the properties of the hydrogen
atom in a strong magnetic field is given below. See, e.g., Ref.
@17# for details and references.

The motion of an atom in a magnetic field B can be con-
veniently described using the pseudomomentum K, the
quantum-mechanical constant of motion related to the aver-
age center-of-mass velocity v5“KE , where E is the total
energy of the atom. If there were no Coulomb attraction, the
energy would be E5ENs

'
1Kz

2/(2mH), where

ENs
'

5N\vc1~N1s !\vcp ~43!

is the energy of the transverse excitation, N is the electron
Landau number, s is the z projection of the relative proton-
electron angular momentum, and Kz

2/(2mH) is the kinetic
energy of motion along the field. The Coulomb interaction
mixes the Landau orbitals. Nevertheless, it is convenient to
keep the quantum numbers N and s for enumerating the
quantum states at g@1. Then the energy of the atom can be
decomposed as follows:

ENsn~K!5ENsn
i

~K'!1ENs
'

1Kz
2/~2mH!, ~44!

where ENsn
i (K'),0 is the ‘‘longitudinal’’ energy, and the

quantum number n enumerates the longitudinal excitations.
At g@1, the states with NÞ0 or large s are subject to auto-
ionization. Therefore we put N50 and suppress this quan-
tum number hereafter. The binding energy is

xsn~K'!5uEsn
i

~K'!u2s\vcp . ~45!

In accordance with Sec. III A 2, the zero-point and spin
terms are subtracted from Eq. ~43! and absorbed into Eq.
~36!. Note that Eq. ~36! is valid for the partially ionized
plasma provided that the IPF’s for atoms with opposite pro-
ton spin projections are identical. It is true under the assump-
tion that the autoionization processes with proton spin flip
may be neglected on the plasma relaxation time scale. We
adopt this assumption, because the plasma under consider-
ation is rather dense and nonrelativistic. Otherwise, states
with binding energy xsn(K'),gp\vcp/2 should be ex-
cluded from the IPF for atoms with the negative proton spin
projection.

At K50, the atom is axially symmetric, and its sizes
transverse to the magnetic field can be approximated @1,24#

as lx5ly'amAs11, while the longitudinal size is much

larger: lz;a0 /ln g for the tightly bound states (n50) and
lz;a0n2 for the hydrogenlike states (n>1). Longitudinal
energies of the former states grow as E i}(ln g)2, whereas the
energies of the latter states are relatively small, uE iu
;(e2/a0)(2n2)21, where n is the integer part of (n11)/2.

An atom moving across the field acquires a constant di-
pole moment in the direction opposite to its guiding center
rc5c(eB2)21B3K. When K' is small enough, the dipole
moment is also small, and E i is increased by K

'

2 /(2msn
' ).

Here, msn
' is the so-called effective transverse mass, which

exceeds mH and grows with field strength. In this case the
average transverse velocity is �

'5K' /msn
' . When K' ex-

ceeds some critical value Kc;102\/a0 , the atom becomes
decentered: �

' reaches a maximum and starts to decrease,
while the electron-proton separation approaches rc . Thus,
for the decentered states, the transverse pseudomomentum
K' characterizes electron-proton separation rather than ve-
locity.

In the limiting case of K'@g(n11/2)2\/a0 , the longitu-
dinal energies approach the asymptote E i;2e2/rc . Note
that only the states with s50 may remain bound if they have
such large values of K' . Indeed, since E i is small for large
K' , the binding energy ~45! becomes negative for s>1.
However, at s50 and arbitrarily large K' , there still re-
mains an infinite number of truly bound states ~enumerated
by n!, as has been strictly proved in @17#.

Since rc5a0
2K' /g\ , the decentered states have huge

sizes at g,1; hence they are expected to be destroyed by
collisions with surrounding particles in the laboratory and in
white-dwarf atmospheres @58#. In neutron-star atmospheres
at g*103, however, the decentered states may be signifi-
cantly populated, as we shall see below.

Accurate numerical dependences of the atomic binding
energies xsn(K') and sizes lsn(K') for 300<g<104 and
any K' have been obtained in @17,24#. In Ref. @24#, analytic
fits have been constructed for these quantities as functions of
g and K' , as well as for the critical pseudomomentum Kc

and transverse mass msn
' as functions of g, for various s and

n. These fits are more suitable for studying the thermody-
namics of hot plasmas than previous approximations @19#,
which were accurate only for the centered ground state (s
5n50 and K',Kc).

2. Other bound species

At sufficiently low T or high B, there may exist a consid-
erable amount of molecules and ions in the hydrogen plasma.
The molecular ion H2

1 has been thoroughly investigated at
B,1010 G, including the dependence of binding energies of
various electron-vibrational-rotational levels on the angle be-
tween the ion axis and the magnetic field direction @59#. For
stronger fields, only the parallel configuration has been con-
sidered @12,60–62#. The ions H2

1 have negligible abundance
in the strong field, owing to the small binding energy, com-
pared to the atoms and H2 molecules @12,20#. The same is
probably true for H2 ions @20#.

H2 molecules have been studied in detail at various field
strengths @60,61,63#. An interesting result is that the ground
state is unbound at 0.18,g,12.3 @63#. Fitting formulas for
the dissociation energies in the parallel configuration for g
*103 have been given in @20,61#. At such fields, the disso-
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ciation energy grows }(ln g)2, approximately at the same
rate as the atomic ground-state energy. The equilibrium in-
ternuclear distance decreases as 1/ln g, being as small as
1/4a0 at B51012 G, again roughly proportional to the longi-
tudinal size of the atom.

Moreover, strong magnetic fields stabilize polymer chains
HN aligned with B, as first suggested by Ruderman @64# and
later confirmed by Hartree-Fock calculations @60#. The spe-
cific quantum-mechanical properties of these species ~e.g.,
their excitation spectra! are poorly known.

Motional effects on the molecules and chains in the strong
magnetic fields have not been studied. Therefore, one cannot
construct a reliable EOS in the domain of r ,T ,B where these
species are expected to dominate. For instance, Lai and Sal-
peter @20# estimated the effective transverse mass of HN as N
times the atomic effective mass, Nm00

' , and used it in the
dissociation equilibrium equation. However, since the
heavier molecule has lower velocity at a given K, it is ex-
posed to a weaker electric field in the comoving frame.
Therefore, one could expect its energy levels to be less per-
turbed and its effective mass to be closer to the zero-field
value, NmH .

Because of these uncertainties, we do not include HN in
our study but restrict ourselves to the atomic phase. Never-
theless, we include ground-state H2 molecules in order to
determine the validity domain of our results.

B. Free-energy model

Our free-energy model is a straightforward generalization
to the magnetic case of the model presented in Sec. II B:

F5F id
~e !

1F id
~p !

1F id
neu

1F rad1Fex
C

1Fex
neu. ~46!

The ideal electron and proton free energies F id
(e) and F id

(p) are
derived in Secs. III A 1 and III A 2, respectively. F rad is given
by Eq. ~11!. The Coulomb part Fex

C has been discussed in
Sec. III B. Now let us consider the ideal and nonideal con-
tributions F id

neu and Fex
neu brought about by the bound species.

Since the quantum-mechanical characteristics of an atom
in a strong magnetic field depend in a nontrivial way on the
transverse pseudomomentum K' , the distribution of atoms
over K' cannot be written in a closed form, and only the
distribution over Kz remains Maxwellian. Let psn(K')d2K'

be the probability to find an atom with given (s ,n) in an
element d2K' near the point K' of the transverse pseudo-
momentum plane. For the Maxwell distribution, we would
have psn(K')5(2p\)22lH

2 exp@2K
'

2 /(2mH)# . In the gen-
eral case, the number of atoms in an element d3K of the
pseudomomentum space is

dN~K!5Nsn

lH

2p\
expS 2

bKz
2

2mH
D psn~K'!d3K , ~47!

where Nsn5*dNsn(K) is the total number of atoms with the
specified discrete quantum numbers. The distribution
Nsnpsn(K') is not given in advance but should be calculated
self-consistently by minimization of the total free energy,
including nonideal terms.

It is convenient to introduce deviations from the Maxwell-
Boltzmann distribution through the occupation probabilities
wsn(K'):

psn~K'!5S lH

2p\
D 2 wsn~K'!exp@bxsn~K'!#

Zsn
, ~48!

Nsn /NH5Zsn /Zw , ~49!

where

Zsn5

lH
2

2p\2 E
0

`

wsn~K'!ebxsn~K
'

!K'dK' , ~50!

Zw5(
sn

Zsn . ~51!

The number of atoms per unit phase-space cell equals
@dN(K)/d3K#(2p\)3/V . Calculation of (U2TS) for this
distribution gives

F id
H

5kBT(
sn

NsnE $ln@nsnlH~2p\ !2psn~K'!#

212bxsn~K'!%psn~K'!d2K'

5kBT(
sn

NsnE lnFnsnlH
3 wsn~K'!

exp~1 !Zsn
Gpsn~K'!d2K' .

~52!

The contribution of molecules should be added to this ex-
pression. We estimate it taking into account only the mol-
ecules in their ground state. This is an acceptable approxi-
mation at B*1012 G, because the energies of different types
of molecular excitations are not much smaller than the elec-
tronic excitations of the atoms @61# ~contrary to the zero-field
case!, so that excited levels cannot give a large contribution
to the molecular IPF at those relatively low temperatures
where the molecular fraction is large @20#. We also neglect
the ~unknown! motional modification of the molecular spec-
trum, as noted in Sec. IV A 2.

Thus, we include in the ideal free energy of the bound
species F id

neu the term

F id
H2

5NH2
kBT@ ln~nH2

lH2

3 !212xH2
# , ~53!

where xH2
52x00(0)1Q2 is the molecular binding energy,

and Q2 is the dissociation energy fitted as function of g in
@20,61#.

The nonideal part Fex
neu is calculated in the hard-sphere

approximation using Eqs. ~17!–~19!, where the composite
atomic number is k5(snK') and the obvious generalization
of (k includes *psn(K')d2K' . The effective atomic size
lk5lsn(K') is given by fitting formulas @24#. The effective
size of the H2 molecule in the ground state is estimated as
lH2

5@2am
2

1lz ,H2

2 #1/2, where the longitudinal size is lz ,H2

'lz01r0 . Here, lz0 is the longitudinal size of the ground-
state H atom fitted in @24#, and r0'12.7(ln g)22.2 is the equi-
librium internuclear separation given in @20#.
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C. Equilibrium conditions

The thermodynamic equilibrium for the free-energy
model ~46! is given by a generalization of the equations in
Sec. II C, taking into account the fact that the atomic IPF Zw
now includes integration over K' . In particular, ]Fex /]Nk

in Eq. ~23! is replaced by a functional derivative.
In the conditions studied here, neutral atoms can exist

only in the regime of strong magnetic quantization and weak
degeneracy. Therefore it is convenient to write the general-
ized Saha equation using Eq. ~34! and describe the devia-
tions from it by a separate factor L. For the ideal free energy
of protons, we use Eq. ~35!, and the one for the atoms is
given by Eq. ~52!. Thus the generalized Saha equation reads

nH5npne

lple~2pam
2 !2

lH
3 @12exp~2b\vcp!#ZweL,

~54!

where

L5bme2ln~2pam
2 lene!1b

]me

] ln ne
2

]Pe

]ne
~55!

allows for deviations of the exact value of F id
(e) from that

given by Eq. ~34! due to electron degeneracy and population
of excited Landau levels. The distributions of atoms over the
discrete quantum numbers and over the transverse pseudo-
momenta are given by Eqs. ~49! and ~48!, respectively.

The occupation probabilities can be presented as a prod-
uct of two terms that arise from Fex

C and FHS :

wsn~K'!5wCwsn
HS~K'!. ~56!

Hereafter, we exclude Ne from our formulas by explicit use
of the electroneutrality condition Ne5Np . Then the Cou-
lomb factor reads

ln wC
5b

]Fex
C

]Np
52 f ex

C
1

2

3 S ] f ex
C

] ln G
2

] f ex
C

] ln rs
D , ~57!

where f ex
C (rs ,L)[bFex

C /(2Np) is described in Sec. III B. In
the Debye-Hückel limit, wC is given by @32#

ln wDH
C

52A8pnp~be2!3. ~58!

The hard-sphere factor reads

ln wsn
HS~K'!5

~12h/2!ln wsn
~0 !~K'!25h2

13h3

~12h !3 , ~59!

where lnw (0)
5(]/]Np2]/]Nk)@4N toth# is the low-density

limit of lnwHS and h is the packing fraction ~18!. Explicitly,

ln wsn
~0 !~K'!52

4p

3
$~nH1np!lsn

3 ~K'!1nH2
@ lsn~K'!1lH2

#3

13nH@ lsn~K'!^l2&1lsn
2 ~K'!^l&#%, ~60!

h5

p

3N totV
@NH

2 ~^l3&13^l2&^l& !1NHNp^l3&1NHNH2
~^l3&

13^l2&lH2
13^l&lH2

2
1lH2

3 !1NpNH2
lH2

3
14NH2

2 lH2

3 # ,

~61!

where

^lk&[
1

NH
(
sn

NsnE lsn
k ~K'!p~K'!d2K' . ~62!

The dissociation equilibrium is given by Eq. ~25!, where
Zw2 is replaced by wH2

exp(xH2
) and Zw is modified accord-

ing to Eqs. ~50! and ~51!. From Eq. ~26! we obtain wH2

5(wC)2wH2

HS, where

ln wH2

HS
5

~12h/2!ln wH2

~0 !
215h2

19h3

~12h !3 , ~63!

ln wH2

~0 !
52

4p

3
@nH~3^l2&lH2

13^l&lH2

2
2^l3& !1~nH1np16nH2

!lH2

3 # . ~64!

A solution of Eqs. ~54!–~64!, supplemented by the sto-
ichiometric constraint np1nH12nH2

5n0 , yields the equi-
librium abundances and the free-energy value. The solution
is sought by an iteration procedure, in analogy with the zero-
field case described in Sec. II C, and the EOS is obtained
from Eq. ~27!. In the strongly quantizing magnetic field and
in the nondegenerate regime, the EOS is a sum of three ana-
lytic terms: the ideal term P id5n totkBT1(4s/3c)T4, the con-
tribution due to the Coulomb nonideality given by derivation
of the fit described in Sec. II B, and the hard-sphere contri-
bution PHS54h(12h/2)(12h)23n totkB T.

V. RESULTS

A. Distribution of plasma particles

1. Occupation numbers

Figure 5 displays the distribution of the atoms over quan-
tum states given by Eq. ~49! at B51012 G and 1013 G, T
5106 K, and at two relatively low densities r
50.001 g cm23 and 0.1 g cm23. The left panel shows the
relative occupation numbers for the tightly bound states n
50, for different quantum numbers s. The distribution is
broader for higher density. This apparently surprising feature
is easily explained by the presence of the third quantum pa-
rameter K' , in addition to s and n. At low density most
atoms reside in the states with large values of K' because of
the large statistical weight of such states, which all have s
50 ~Sec. IV A 1!. At higher density, these strongly decen-
tered states are removed by excluded-volume effects, and the
distribution over s grows broader. Conversely, on the neigh-
boring panel we observe a narrower distribution over n
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at higher density, because the excluded-volume effects elimi-
nate the hydrogenlike states. In the next section we shall see
that ultimately, at still larger densities, only the ground-
centered state survives (s5n50, K',Kc).

The right two panels demonstrate the effect of increasing
B to 1013 G. Due to the larger binding energies, the distribu-
tion at r50.1 g cm23 has become narrow, with more atoms
concentrated in the ground state. However, at the lower den-
sity, the distribution over n has changed weakly, since the
increase of binding energies is accompanied by a decrease of
the atomic size ~and hence a decrease of the nonideality ef-
fects!.

2. Ionization equilibrium

Figure 6 shows the ionization curves at three values of T
for B51012 G. The heavy solid lines represent the total frac-
tion of atoms f H5nH /n0 in all quantum states, calculated
according to Eq. ~54!. Thin solid lines show the fraction f 00
of atoms in the ground state (s5n50, but any K'), and the
dashed lines show the fraction of atoms in the centered states
(K',Kc , any s and n!. For reference, triangles display the
zero-field atomic fraction given by Eq. ~20!.

We see that a strong magnetic field generally increases
the neutral fraction. At low densities, the excited atoms con-
tribute significantly. Since their effective size is proportional
to K' , the integration ~50! gives roughly Zsn}n0

22/3 ; there-
fore f 00 decreases asymptotically as n0

1/3 . Because of the
broadening of the n distribution ~roughly, max n}n0

21/6), the
low-density wing of the curve for the total neutral fraction
has a slope f H}n0

1/6 , which is very moderate compared to
f H}n0

1/2 in the nonmagnetic case ~triangles!.
The centered atoms, whose pseudomomentum is limited

from above by the critical value Kc , have a nearly density-
independent IPF at low r. Therefore their fraction behaves as
f cen}n0 , and they disappear much faster at low r and espe-
cially at high T ~compare the dashed lines in the upper and
lower panels!.

At high densities, on the contrary, the decentered states
become depleted due to the excluded-volume effects, so that
the dashed line in the figure merges with the solid one at r
*10 g cm23. At still higher densities r*102 g cm23, all ex-
cited states disappear, and only the state s5n50 survives.

The pressure ionization proceeds around r
;102 – 103 g cm23. The excluded-volume and Coulomb non-
ideal effects favor pressure ionization @both wHS and wC in
Eq. ~56! are less than unity#, whereas finite electron degen-
eracy hampers it (L.0). Because of the reduced atomic
volume, the pressure ionization occurs at densities orders of
magnitude larger than for the zero-field case @34#. At T
5105.5 K, the molecular fraction becomes non-negligible at
r;102 g cm23.

Not all of the neutral atoms that contribute to the EOS
may be identified spectroscopically. Because of their pertur-
bation by plasma microfields, the atoms that do not satisfy
the Inglis-Teller criterion form ‘‘optical continuum.’’ An ap-
proximate estimate of the fraction of atoms below the optical
continuum is given by a generalization of the optical occu-
pation probabilities w̃k ~Sec. II D! to the case of the strong
magnetic field according to Eq. ~14! of Ref. @65#. This ‘‘IT’’
fraction is shown by the long-dashed lines. Their rapid de-
crease indicates that the atomic spectral features disappear
around r;10 g cm23, long before pressure ionization.

The approximation of Lai and Salpeter @20#, also shown
in the figure ~dotted line!, clearly underestimates the neutral
fraction at low density and overestimates it at high density,
especially at high temperature. At low density, the discrep-
ancy arises mainly from an underestimation of the decen-
tered states because of an incorrect fitting formula to their
binding energies. From a comparison with the dashed line in
Fig. 6, we see that the fraction of centered states can be
estimated by the approximation @20# at r,0.1 g cm23 and
T,106 K. At higher T or larger r, the atomic abundance is
overestimated in @19,20# because of neglecting nonideal ef-
fects. Although the neutral fraction is very significant, it
never dominates the plasma at the values of T and B shown
in Fig. 6, contrary to the prediction of Ref. @20#. ~At T
5105.5 K, the maximum is f H50.41 at r'5 g cm23.)

Figure 7 shows the ionization curves for a stronger field,
B51013 G. Under this condition, the neutral fraction still
increases. At T5105.5 K ~top panel!, f H exceeds 1

2 at r
.0.1 g cm23, reaching the maximum of 85% at r'10. Most
atoms in this regime reside in the centered ground state. On
the other hand, at T5105.5 K and r;102 – 103 g cm23, the
molecules are the dominant species; hence our present model

FIG. 5. Distribution of atomic occupation
numbers at T5106 K for the magnetic field
strengths B51012 G and 1013 G ~indicated!. For
each value of B, the distribution over the quan-
tum number s at n50 and over n at s50 is
shown for two density values: r50.001 g cm23

~hatched histograms! and 0.1 g cm23 ~shaded his-
tograms!.
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may be not accurate in this r-T domain.
A comparison with the result by Lai and Salpeter is not

performed for T5106.5 K ~the bottom panel of Fig. 7! be-
cause the approximations ~3.11!, ~3.12! of Ref. @20# yield a
negative IPF in this case.

At T5105.5 K and r*300 g cm23, there appears thermo-
dynamic instability (]P/]r,0) leading to a phase transi-
tion. The stability is recovered at r*8000 g cm23, where the
plasma is fully ionized. This phase transition is a complete
analogue to the plasma phase transition ~PPT! predicted in
the zero-field case by several theoretical models @34,66# but
not yet confirmed in experiment. It is caused by a strong
Coulomb attraction between pressure-ionized plasma par-
ticles, which contributes negative pressure that cannot be
compensated at low temperature until the degeneracy sets in.

There is no confidence in the reality of the PPT because of
its model dependence. In our case, an additional uncertainty
is introduced by the simplified treatment of molecules.

The B dependence of the atomic fraction at two values of
T and two values of r is shown in Fig. 8. The total f H is
drawn by solid lines and the ‘‘optical’’ ~Inglis-Teller! frac-
tion by dashed lines. Triangles in the left panel show the
total fraction of atoms at B50 ~it is negligible at r
510 g cm23 on the right panel!. Dotted lines correspond to
the approximation @20# at T5105.5 K.

It was found previously @10,11# that the ionization degree
decreases with growing B above ;1012 G only at T&5
3105 K but, in contrast to the present results, increases at
higher T. This behavior was attributed to two effects: de-
creasing phase space occupied by a plasma particle with
growing B, which favors ionization, and increasing binding
energy, which disfavors it. Our present result arises from the
motional perturbations of the atoms, neglected in @10,11#:
first, increasing B increases the effective mass m' and thus
the statistical weight of the centered atoms, and second, at
low densities the atomic IPF is further increased due to the
decentered states.

FIG. 6. Ionization isotherms at B51012 G and three values of T
~indicated!: total fraction of atoms f H5nH /n0 ~heavy solid lines!
and the fractions of ground-state atoms ~thin solid lines!, the cen-
tered atoms ~short-dashed lines!, and the optically identifiable
~Inglis-Teller! atoms ~long-dashed lines!. The dot-dashed lines
show the molecular fraction f H2

52nH2
/n0 , which is below the

frame in the bottom panels. For comparison, f H in the zero-field
case ~triangles! and in the approximation of Lai and Salpeter ~dotted
lines! is also shown.

FIG. 7. The same as in Fig. 6 for B51013 G. The vertical line in
the top panel separates the region of thermodynamic instability.
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B. Equation of state

Figure 9 presents four pressure isotherms obtained using
the free-energy model described in Sec. IV. For comparison,
we also show the fully ionized ideal-gas EOS ~Sec. III A!
and the nonmagnetic EOS ~Sec. II!. The vertical line bounds
the region r,rB . Let us first discuss the low-density regime
r&10 g cm23. At T*106 K, all three EOS reduce to P
5n0kBT . At lower temperatures, the pressure deviates from
this law because of the partial recombination of atoms. As
discussed in the previous section, a strong magnetic field
increases the neutral fraction; therefore the pressure is re-
duced more significantly compared to the B50 case.

In the intermediate-density range 10 g cm23
&r&rB , the

differences among the three considered cases are most im-
portant. For B50, the plasma is fully ionized in this region,
and the electrons become partially degenerate, making the
EOS stiffer. In a strong magnetic field, the electron degen-
eracy is reduced ~Sec. III!; hence the ideal-gas EOS is softer,
except for densities approaching rB , where the degeneracy
sets in and pressure grows rapidly. Partial recombination and
Coulomb nonideality lead to a still further decrease of P. The
pressure ionization discussed above has two opposite effects
on the pressure: the positive ideal-gas contribution of free
electrons appearing in the course of the ionization and the
positive nonideal pressure of neutral species compete with
the negative Coulomb contribution. At low T, these effects
may cause the thermodynamic instability mentioned above,
which we observe on the isotherm T5105 K. The second
lowest isotherm in the figure is slightly overcritical for this
PPT. The dependence of the critical temperature Tc and den-
sity rc on B can be fitted by simple power laws Tc53
3105B12

0.39 K and rc5143B12
1.18 g cm23, where B12

[B/(1012 G). These fits provide an accuracy of a few per-
cent in the considered range of the field strengths 7
31011 G,B,331013 G.

At higher density r*rB , excited Landau levels become
populated due to the increase of the Fermi energy. Eventu-
ally, at r@rB , the nonmagnetic EOS is recovered.

Figure 10 demonstrates the effects of the strong magnetic
field on the density exponent xr5(] ln P/] ln r)T . Although
the pressure approaches the nonmagnetic value at r.rB , the
effects of magnetic quantization remain quite prominent for
the derivative xr , as shown by the curve B51012 G in the
figure. Consecutive population of excited Landau levels
causes the oscillations of xr and other second derivatives of
F around their nonmagnetic values. The regime where these
oscillations are significant is called weakly quantizing @2#.

The effects of a strongly quantizing magnetic field on the
reduced heat capacity CV5kB

21(]U/]T)V divided by the
number of plasma particles, N tot5Ne 1Np1NH1NH2

, are
shown in Fig. 11. In the nonmagnetic case ~dashed line!, the

FIG. 8. Dependence of the atomic fraction f H

~solid lines! and the fraction of the optically iden-
tifiable atoms ~dashed lines! on the magnetic field
strength at two values of r ~indicated in the fig-
ure!, T5105.5 K ~upper curves! and 106.5 K
~lower ones!. The atomic fraction at B50 ~tri-
angles! and the approximation of Ref. @20# ~dot-
ted lines! are shown for comparison.

FIG. 9. EOS of partially ionized atomic hydrogen at B
51012 G ~solid lines! compared with the EOS of fully ionized ideal
electron-proton plasma ~dotted lines! and the EOS of partially ion-
ized hydrogen at B50 ~dashed lines!. The temperature logarithms
are ~from top to bottom! log T@K#56.5, 6.0, 5.5, and 5.0. The ver-
tical line corresponds to rB , above which excited Landau levels
become populated.
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classical value CV /N tot5
3
2 is slightly exceeded at lower den-

sities because of the thermal ionization of the atoms, and it is
reduced to smaller values at higher densities because of elec-
tron degeneracy.

In strong magnetic fields, the heat capacity is modified
due to several effects. In the low-density regime, CV is re-
duced compared to the nonmagnetic value because of the
quantization of the transverse motion of electrons and pro-
tons. The strongly quantized electrons have only one mo-
tional degree of freedom, so that their contribution reduces to
CVe

5
1
2 Ne . When protons are nonquantized and the plasma

is fully ionized, this amounts to CV /N tot51. In the general
case, the contribution of free spinless protons would be

CVp
~1 !

5F1

2
1S b\vcp

2 sinh~ b\vcp/2! D 2GNp , ~65!

which tends to 1
2 at b\vcp50.732B12 /T6@1, where the pro-

tons are strongly quantized. The interaction of a magnetic
field with proton spin, according to Eq. ~36!, yields

CVp
~2 !

5F bgp\vcp

4 cosh~bgp\vcp/4! G2

N0 , ~66!

which vanishes in the limiting cases of \vcp!kBT and
\vcp@kBT . In the latter case, CV /N tot would tend to 1

2 for
the fully ionized plasma. In Fig. 11, however, this does not
happen because of the contribution of neutral atoms, which
are subject to thermal ionization in this r-T-B domain. On
the contrary, CV increases with increasing B, since the neu-
tral fraction becomes larger. The two humps visible on each
magnetic isotherm correspond to the regions of the pressure
destruction of the first excited atomic state s51, n50 and
the ground state s5n50, respectively. In the latter case, CV
even exceeds the nonmagnetic value, because of the delayed
onset of degeneracy. Only with density approaching rB is the
zero-field value of the heat capacity recovered.

This illustrates the main effects of a strongly quantizing
magnetic field on a partially ionized hydrogen plasma. Other
thermodynamic quantities, obtained within the framework of
the present model, experience similar profound modifica-
tions.

VI. CONCLUSIONS

We have developed a thermodynamic model of hydrogen
plasma in strong magnetic fields, making use of the available
quantum-mechanical results for the fully ionized plasma and
for the hydrogen bound species. Applicability of the devel-
oped model is limited to the temperatures T, densities r, and
magnetic field strengths B at which formation of molecules
and other bound species more complex than the H atoms
may be neglected. This condition holds, for instance, at B12

&10 and T*106 K ~any r! or at T*105 K and r
&104(T6 /B12)

3 g cm23. Furthermore, although the theory
presented in Sec. IV is rather general, our numerical results
in partially ionized regions are restricted to B12>0.7, be-
cause fitting formulas @24# for quantum-mechanical charac-
teristics of the atoms moving in magnetic fields have been
derived under this condition. This restriction is fulfilled for
the majority of neutron stars. For laboratory field strengths
~at g!1), perturbative methods may be sufficient.

Calculations in the frames of our model show that the
magnetic field effects strongly modify the thermodynamic
functions and phase diagram of the plasma, in particular the
partial ionization region. The abundance of atoms is signifi-
cant in the considered domain of temperatures T
;105 – 106.5 K and magnetic field strengths B;1012– 1013 G
at densities up to r;102 – 103 g cm23, contrary to the zero-
field case. At relatively low densities (r&1 – 100 g cm23, de-
pending on B and T!, the decentered atomic states possessing
a large constant dipole moment are significantly populated.
Since these values of r, T, and B are typical of the atmo-
spheres of isolated neutron stars, the physical effects dis-
cussed above are expected to affect the spectra. It has been
shown @65,67# that the presence of a nonionized component
and, in particular, decentered atoms should produce observ-
able absorption and thus necessitate a modification of previ-
ous fully ionized atmosphere models @68#. Work in this di-
rection is under way @69#.

FIG. 11. Normalized heat capacity at the same T and B values as
in Fig. 10.FIG. 10. Density exponent xr5(] ln P/] ln r)T at T5106 K

without magnetic field ~dashed line! and in strong magnetic fields of
various indicated strengths ~dot-dashed and solid lines!.
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