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INTRODUCTION

Since the �rst observations of neutron stars thirty years ago, they have a�ected

many branches of physics. These extremely compact stars serve as natural physical

laboratories for probing the properties of matter under extreme physical conditions. In

particular, more than half of them possess magnetic �elds B > 10

12

G.

Despite their name, neutron stars consist not only of neutrons. They have a

crust containing ionized iron, heavier elements, and exotic neutron-rich nuclei,

1

above

which lie liquid and gaseous outer envelopes, which are thought to be composed of iron

or lighter elements.

2

The atmosphere, that a�ects the spectrum of outgoing thermal

radiation, likely consists of hydrogen, the most abundant element in the Universe, which

might be brought to the star surface by fall-out of circumstellar medium. Neutral atoms

can provide an appreciable contribution to the atmospheric opacity.

Apart from the physics of neutron stars, quantum-mechanical calculations of strong-

ly magnetized hydrogen atoms �nd application also in the physics of white dwarf stars

3,4

and in the solid state physics.

5

Because of this practical demand, hydrogen in strong

magnetic �elds has been well studied in the past two decades.

6

The peculiarity of the

problem for neutron stars is that an atom cannot be considered abstractedly from its

thermal motion. Indeed, neutron star atmospheres are hot (T � 10

5

� 10

6

K), so

that typical kinetic energies of the atoms are non-negligible in comparison with typical

binding energies. Taking the thermal motion into account is highly non-trivial, because

an atom moving across magnetic �eld is equivalent to an atom placed in orthogonal

electric and magnetic �elds, so that the cylindrical symmetry is broken.

At 
 � 1, where 
 � �h!

c

=2 Ryd = B=2:35 � 10

9

G � 1 and !

c

is the electron

cyclotron frequency, the collective motion e�ects

7,8

become especially pronounced. In

particular, so-called decentered states (with the electron localized mostly in the \mag-

netic well" aside from the Coulomb center) are likely to be populated even at the rela-

tively high densities � > 10

�2

g cm

�3

typical of neutron star atmospheres. These exotic

states have been predicted two decades ago by Burkova et al.

9

and studied recently by

other authors.

10{12

Collective-motion e�ects on the usual \centered" states have been �rst consid-

ered in frames of the theory of perturbation.

8,13

Non-perturbative results covering both

centered and decentered states were subsequently presented for binding energies and

�
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wavefunctions,

14,15

oscillator strengths,

15

spectral line shapes,

16

and photoionization

cross sections.

17

None of these data, however, has been published in an easy-to-use

form of tables or analytical expressions.

In this contribution I propose approximate analytical expressions for the binding

energies of the hydrogen atom arbitrarily moving in a magnetic �eld typical of neutron

stars, 300 � 
 � 10

4

. This range is physically distinguished, since at weaker �elds the

spectrum is strongly complicated by multiple narrow anticrossings,

14

while the upper

bound, 
 � 10

4

, corresponds to the onset of non-negligible relativistic e�ects.

18

THEORETICAL FRAMEWORK

Motion of the hydrogen atom in a magnetic �eld can be conveniently described by

the pseudomomentumK = m

p

_
r

p

+m

e

_
r

e

�(e=c)B�(r

e

�r

p

); where the subscript i = e or

i = p indicates electron or proton, respectively,
_
r

i

= �(i�h=m

i

)r

i

� (q

i

=m

i

c)A(r

i

) is the

velocity operator, m

i

the mass, q

p

= �q

e

= e the charge, and A(r) the vector potential

of the �eld. Gorkov and Dzyaloshinskii

19

have shown that in the representation in

which all components of K have de�nite values, the relative motion can be described

in terms of a one-particle Hamiltonian which depends on K.

It is convenient to describe the centered states of the atom using the relative

coordinate r

(0)

= r

e

� r

p

as independent variable and the axial gauge of the vector

potential, A(r) =

1

2

B � r. For the decentered states, the \shifted" representation

19

is more convenient. In the latter representation, the independent variable is r

(1)

=

r

e

�r

p

�r

c

and the gauge isA(r) =

1

2

B�(r�[(m

p

�m

e

)=m

H

] r

c

). Here, r

c

=

c

eB

2

B�K

is the relative guiding center, and m

H

= m

p

+m

e

.

Let us assume that B is directed along the z-axis. The z-component of the pseu-

domomentum corresponding to the motion along the �eld yields the familiar term

K

2

z

=2m

H

in the energy, while the transverse components K

?

produce non-trivial ef-

fects. Therefore we assume K

z

= 0 and K

?

= K hereafter.

If there were no Coulomb attraction, then the transverse part of the wavefunction

could be described by a Landau function �

ns

(r

(1)

?

), where r

(1)

?

is the projection of r

(1)

in the (xy)-plane. The energy of the transverse excitation is

E

?

ns

= [n + (m

e

=m

p

)(n+ s)]�h!

c

; (1)

where the zero-point and spin terms are disregarded.

A wavefunction  

�

of an atomic state j�i can be expanded over the complete set

of the Landau functions

 

(�)

�

(r

(�)

) =

X

ns

�

ns

(r

(�)

?

) g

(�)

n;s;�

(z); (2)

where � = 0 or 1 indicates the conventional or shifted representation, respectively (a

generalization to arbitrary � proved to be less useful

15

). The one-dimensional functions

g

(�)

ns;�

are to be found numerically. The adiabatic approximation used in early works

9,19

corresponds to retaining only one term in this expansion.

A bound state can be numbered

15

as j�i = jn

�

; s

�

; �;Ki, where n

�

and s

�

relate

to the leading term of the expansion (2), and � enumerates longitudinal energy levels

E

k

n

�

;s

�

;�

(K) = E

�

� E

?

n

�

s

�

(3)

and controls the z-parity: g

(�)

n;s;�

(�z) = (�1)

�

g

(�)

n;s;�

(z). For the non-moving atom at


 > 1, the states � = 0 are tightly bound in the Coulomb well, while the states � � 1

50



Table 1. Parameters of the approximation (4) at 10

�1

� 
 � 10

4

.

s 0 1 2 3 4 5 6 7

p

1

15.55 0.5332 0.1707 0.07924 0.04696 0.03075 0.02142 0.01589

p

2

0.3780 2.100 4.150 6.110 7.640 8.642 9.286 9.376

p

3

2.727 3.277 3.838 4.906 5.787 6.669 7.421 8.087

p

4

0.3034 0.3092 0.2945 0.2748 0.2579 0.2431 0.2312 0.2209

p

5

0.4380 0.3784 0.3472 0.3157 0.2977 0.2843 0.2750 0.2682

are hydrogen-like, with binding energies below 1 Ryd. The states with n 6= 0 belong to

continuum at 
 > 0:2 and will not be considered here.

At small pseudomomenta K, the states � = 0 remain tightly bound and cen-

tered, the mean electron-proton separation �x being considerably smaller than r

c

(for

the hydrogen-like states � � 1, however, �x is close to r

c

at any K). The larger K,

the greater is the distortion of the wavefunction towards r

c

, caused by the motion-

induced electric �eld in the co-moving reference frame, until near some K

c

transition

to the decentered state occurs, and the character of the motion totally changes. With

further increasing K, the transverse velocity decreases and tends to zero, whereas the

electron-proton separation increases and tends to r

c

. Thus, for the decentered states,

the pseudomomentum characterizes electron-proton separation rather than velocity.

At very large K the longitudinal functions become oscillator-like, corresponding

to a wide, shallow parabolic potential well.

9

For a �xed �, this limit is reached at

K � (�+

1

2

)

2

�h=a

B

, where a

B

is the Bohr radius. Still at arbitrarily largeK, there remain

in�nite number of bound states with high values of � whose longitudinal wavefunctions

are governed by the Coulomb tail of the e�ective one-dimensional potential.

15

The decentered states of the atom at K > K

c

� 10

2

au have relatively low binding

energies and large quantum-mechanical sizes, l � K=
 au; therefore they are expected

to be destroyed by collisions with surrounding particles in the laboratory and in the

white-dwarf atmospheres. In neutron-star atmospheres at 
 � 10

3

, however, the de-

centered states may be signi�cantly populated. This necessitates inclusion of the entire

range of K below and above K

c

in the consideration.

ANALYTICAL APPROXIMATIONS

Binding Energies of the Non-Moving Hydrogen Atom

Extensive tables of binding energies of the hydrogen atom at rest with respect

to the magnetic �eld have been presented by R�osner et al.

20

and supplemented by

other authors.

21{23

Recently, the accuracy � 10

�12

Ryd has been achieved.

24

In the

astrophysics, a lower accuracy is usually su�cient, and simple analytical estimates are

often desirable.

For this reason, we have constructed a �t to E

(0)

, where E

(0)

ns�

� �E

k

ns�

(0), in a

possibly widest range of 
. For the tightly-bound states, we have

E

(0)

0s0

(
) = ln

�

exp

h

(1 + s)

�2

i

+ p

1

[ln(1 + p

2

p


)]

2

�

+ p

3

[ln(1 + p

4




p

5

)]

2

Ryd: (4)

The parameters p

1

� p

5

depend on s; they are listed in table 1. This �t is accurate to

within 0.1{1% at 
 = 10

�1

� 10

4

, and it also provides the correct limits at 
 ! 0.

For the hydrogen-like states, we use the asymptotic result

25

E

(0)

ns�

=

1 Ryd

(N + �)

2

; where

(

N = (� + 1)=2; � � 


�1

for odd �,

N = �=2; � � (ln
)

�1

for even �:

(5)
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Table 2. Parameters of (5) at 1 � 
 � 10

4

.

� 1 2 3 4 5 6

a

�

0.785 0.578 0.901 0.631 0.970 0.660

b

�

1.724 0.765 1.847 0.717 1.866 0.693

We have obtained the following �ts to the quantum defect �: for odd �, � = (a

�

+b

�

p


+

0:077
)

�1

; where a

�

� 1 and b

�

� 2; and for even �, � = [a

�

+ 1:28 ln(1 + b

�




1=3

)]

�1

;

where a

�

�

2

3

and b

�

�

2

3

. More accurate values of a

�

and b

�

are given in table 2. At

1 � 
 � 10

4

, errors of these approximations lie within � 10

�3

.

Binding Energies of the Moving Hydrogen Atom

For the moving hydrogen atom in a strong magnetic �eld, the �rst analytical �t

to E(K) has been published by Lai and Salpeter.

26

It is rather accurate for the ground

state at K < K

c

but cannot be applied to excited or decentered states.

We describe the longitudinal energy (3) by the formula

jE

k

ns�

(K)j =

E

(1)

ns�

(K)

1 + (K=K

c

)

1=�

+

E

(2)

ns�

(K)

1 + (K

c

=K)

1=�

: (6)

The two-term structure of (6) is dictated by the necessity to describe the two physically

distinct regions of K below and above K

c

. The parameter � has the meaning of the

width of the transition region near K

c

in logarithmic scale of pseudomomenta.

For the tightly-bound states, we parameterize the dependencies E

(j)

(K) as follows:

E

(1)

0s0

(K) = E

(0)

0s0

�

K

2

2m

e�

+ q

1

K

2

=E

(0)

0s0

; E

(2)

0s0

(K) =

2 Ryd

q

r

2

�

+ r

3=2

�

+ q

2

r

�

; (7)

where r

�

= r

c

=a

B

= K=(
 au), q

1

and q

2

are dimensionless �tting parameters, and

m

e�

is the e�ective mass which is close to (but not necessarily coincident with) the

transverse e�ective massM

?

ns�

obtained by the perturbation technique. At 
 � 300, we

put q

1

= log

10

(
=300) if s = 0 and q

1

= 0:5 otherwise, q

2

= 0:158 [ln((1+0:1s)
=215)]

2=5

,

and � = 0:053 ln(
=150). For the e�ective mass, we have m

e�

= m

H

[1 + (
=


0

)

c

0

] ;

where c

0

= 0:937+0:038s

1:58

and 


0

= 6150(1+0:0389s

3=2

)=[1+7:87s

3=2

]. For the critical

pseudomomentum, we have K

c

= [c

1

+ ln(1+ 
=


1

)]

q

2m

H

E

(0)

. The parameters c

1

and




1

take on the values c

1

= 0:81; 1:09; 1:18; 1:24 and 


1

= (8:0; 3:25; 2:22; 1:25)� 10

4

for

s = 0; 1; 2; 3, respectively. For s � 4, we put c

1

= 0:93 + 0:08s and 


1

= 6500.

In �gure 1 the above �tting formulae are compared with our numerical results

15

and with the previous approximations.

26

The �gure demonstrates that the present

approximations are valid at any K from 0 to in�nity. Appreciable discrepancies occur

only in narrow ranges of K near anticrossings.

Now let us turn to the hydrogen-like states. Their binding energies are approximat-

ed by the same formula (6) but with slightly di�erent expressions for E

(1)

and E

(2)

. For

these states, M

?

ns�

exceeds m

H

by orders of magnitude, and the perturbation method

fails already at small K,

13

rendering the notion of the e�ective mass practically useless

for the �tting. Thus we consider m

e�

as e�ectively in�nite and put E

(1)

0s�

(K) = E

(0)

0s�

(� � 1). Furthermore, the transition region is not well de�ned, and therefore K

c

and �

lose their clear meaning and become mere �tting parameters. For odd states, we have,

approximately, K

c

= (�

5=4


=170)

0:9

q

2m

H

E

(0)

and � = 0:66 + �=20. For even states,

K

c

= �

q

(
=600)m

H

E

(0)

and � = 0:66.
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Figure 1. Energy spectrum of the hydrogen atom moving across strong magnetic �elds. Numerical

values (dots) are compared with the present analytical approximations (full lines) and with

previously published

26

ones (dashed lines). Open circles mark the positions of K

c

.

The function E

(2)

(K) that describes the longitudinal energy at large K is now

E

(2)

0s�

(K) =

�

(2 Ryd)

�1

h

r

2

�

+ (2� + 1)r

3=2

�

+ q

2

r

�

i

1=2

+ 1=E

(0)

0s�

�

�1

; (8)

with q

2

= �

2

�1 for odd �, and q

2

= �

2

+2

�=2

log

10

(
=300) for even � (at 
 � 300). The

�rst and second terms in the square brackets ensure the correct asymptotic behavior.

15

CONCLUDING REMARKS

The analytical approximations for binding energies presented in this contribution

depend continuously on two arguments | magnetic �eld strength and transverse pseu-

domomentum. They are accurate, typically, within a few parts in 100{1000. The accu-

racy can be improved by almost an order of magnitude by optimizing the parameters

m

e�

, K

c

, �, q

1

, q

2

in equations (6){(8) separately at each discrete value of 
. Tables of

such optimized parameters have been obtained and will be published elsewhere, togeth-

er with analytical approximations of geometrical sizes of various quantum-mechanical

states of the moving atom and oscillator strengths of radiative transitions among them.

The atomic sizes play important role in distribution of atoms over quantum states in

a plasma and in their contribution to the plasma absorption coe�cients. For exam-

ple, a size of an atom may be used to evaluate e�ects of \unbounding" of electrons

caused by random charge distribution in the plasma. For non-magnetized hydrogen

plasma, an approximate treatment of these e�ects was revised recently;

27

for the strong

magnetic �elds analogous work is under way. Eventually, the analytical estimates of

K-dependencies of the binding energies, atomic sizes, and transition rates help to gen-

eralize previously developed models of fully ionized atmospheres of magnetic neutron

stars

28

to the more realistic case of partially ionized atmospheres.
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