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ABSTRACT
We calculate the transition rates between proton Landau levels due to non-radiative and ra-

diative Coulomb collisions in an electron–proton plasma with strong magnetic field B. Both

electron–proton collisions and proton–proton collisions are considered. The roles of the first-

order cyclotron absorption and second-order free–free absorption and scattering in determining

the line strength and shape as well as the continuum are analysed in detail. We solve the sta-

tistical balance equation for the populations of proton Landau levels. For temperatures ∼106–

107 K, the deviations of the proton populations from local thermal equilibrium are appreciable

at density ρ � 0.1 B3.5
14 g cm−3, where B14 = B/(1014 G). We present general formulae for the

plasma emissivity and absorption coefficents under a wide range of physical conditions. Our

results are useful for studying the possibility and the conditions of proton/ion cyclotron line

formation in the near vicinity of highly magnetized neutron stars.
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1 I N T RO D U C T I O N

Cyclotron lines are a powerful diagnostic tool for magnetized neu-

tron stars. The detection of electron cyclotron features at 10–80 keV

in the spectra of a number of binary X-ray pulsars (e.g. Trümper et al.

1978; see Heindl et al. 2004; Terada et al. 2006 for recent obser-

vations) provided direct confirmation that these are neutron stars

endowed with strong magnetic fields B ∼ 1012–1013 G. Numerous

theoretical works have been devoted to the physics and modelling

of electron cyclotron line formation and transfer in accreting neu-

tron stars (e.g. Wasserman & Salpeter 1980; Mészáros & Nagel

1985; Burnard, Klein & Arons 1988; Lamb, Wang & Wasserman

1990; Wang, Wasserman & Lamb 1993; Araya & Harding 1999;

Araya-Góchez & Harding 2000).

There has been growing evidence in recent years for the existence

of neutron stars possessing superstrong magnetic fields, B � 1014 G.

In particular, soft gamma-ray repeaters (SGRs) and anomalous

X-ray pulsars (AXPs) are believed to be magnetars, whose radi-

ation is powered by the decay of superstrong magnetic fields (see

Thompson & Duncan 1995, 1996; Woods & Thompson 2005). Sev-

eral radio pulsars with inferred surface magnetic fields approaching

1014 G have also been discovered (e.g. McLaughlin et al. 2003).

In such superstrong magnetic field regime, the electron cyclotron

energy,

hωce = h
eB

mec
= 1.16 B14 MeV, (1)

�E-mail: palex@astro.ioffe.ru

lies outside the X-ray band, but the ion cyclotron energy,

hωci = h
ZeB

m ic
= 0.635 (Z/A)B14 keV, (2)

lies in the detectable range for X-ray telescopes such as Chan-
dra and XMM–Newton when B14 � 0.4. In equations (1) and (2),

B14 = B/(1014 G), mi is an ion mass and Z and A are nuclear charge

and mass numbers. In the last few years, absorption features at

E ∼ 0.2–1 keV have been detected in the spectra of several ther-

mally emitting isolated neutron stars (e.g. Haberl et al. 2004; van

Kerkwijk et al. 2004; van Kerkwijk & Kaplan 2006). While no

definitive identifications of the lines have been made, it is likely

that some of these lines involve proton cyclotron resonances at

B � 1014 G. Somewhat surprisingly, the observed quiescent emis-

sion of AXPs and SGRs does not show any spectral feature, in

particular the proton cyclotron line around 1 keV (e.g. Juett et al.

2002; Kulkarni et al. 2003; Patel et al. 2003; Tiengo et al. 2005).

This absence of lines may be naturally explained by the effect of

vacuum polarization, which tends to reduce the line width signifi-

cantly in the atmosphere (thermal) emission for B � 1014 G (Ho &

Lai 2003, 2004; Lai & Ho 2003; van Adelsberg & Lai 2006).

There has been some evidence for ion cyclotron lines during

several AXP/SGR outbursts, e.g. the 6.4-keV emission feature in

SGR 1900+14 (Strohmayer & Ibrahim 2000), the 5-keV absorption

feature in SGR 1806−20 (Ibrahim, Swank & Parke 2003) and the

14-keV emission feature (and possibly also ∼7, 30 keV features) in

the bursts of AXP 1E 1048−5937 (Gavriil, Kaspi & Woods 2002).

There was also a possible detection of a 8.1-keV absorption feature

in AXP 1RXS J1708−4009 (Rea et al. 2003; but see Rea et al. 2005).

It is possible that these absorption/emission features are produced
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by ion cyclotron resonances in the corona or lower magnetosphere

of magnetars (although one cannot exclude the alternative possibil-

ity that they are produced by electron cyclotron resonances in upper

magnetospheres).

To be specific, in the following we focus on the electron–proton

plasma (Z = 1, A = 1.008, spin =1/2) and the proton cyclotron res-

onance with energy hωcp = 0.630 B14 keV. Generalization to other

ions is outlined in Section 7.

While the physics of electron cyclotron line transfer has been

extensively studied in the context of accreting X-ray pulsars (see

above), several basic issues regarding proton cyclotron line have

not been properly considered. Since the radiative electron cyclotron

decay rate is many orders of magnitude larger than the collisional

de-excitation rate, electron cyclotron resonance always takes the

form of scattering (e.g. Mészáros 1992). For protons, the radia-

tive cyclotron decay rate is much smaller, so the situation is not

at all clear. Depending on the plasma density, temperature and

magnetic field strength, true proton cyclotron absorption and emis-

sion are possible. Previous calculations of proton cyclotron lines

from magnetized neutron star atmospheres (e.g. Zane et al. 2001;

Ho & Lai 2001, 2003; Potekhin et al. 2004) assumed local ther-

mal equilibrium (LTE) population of proton Landau levels. We

will see that this assumption is not always valid in the case of a

magnetar.

In this paper we study systematically the rates for collision-

induced proton cyclotron transitions in a magnetized plasma. Com-

bining these rates with radiative transition rates, we then study

the statistical equilibrium of protons in different Landau levels,

and use the non-LTE level population to calculate the radiative

opacities and emissivities for different photon modes. Our re-

sults serve as an crucial ingredient for determining the possibil-

ity and the physical conditions of proton/ion cyclotron line forma-

tion in various plasma environments of highly magnetized neutron

stars.

In statistical equilibrium, populations of excited Landau levels

of the ions are determined by rates of spontaneous radiative decay

and by rates of transitions caused by radiative and non-radiative

Coulomb collisions (note that ‘true’ cyclotron absorption can be

separated from scattering by considering second-order Feynman

diagrams which include Coulomb interaction; cf. Daugherty &

Ventura 1978). Order-of-magnitude estimates of the rates of these

processes and their consequences for the level populations are

given in Section 2. In subsequent sections we consider these pro-

cesses in more detail. In Section 3 we write formulae for rates of

such transitions in a proton–electron plasma. Radiative transition

rates and cross-sections are considered in Section 4. In Section 5

we analyse population of the Landau states of the ions. Opacity

and emissivity for the ion cyclotron resonance are calculated in

Section 6.

1.1 Landau level basics and notations

Motion of the ions and electrons in the plane (xy) perpendicular to

the magnetic field B (assumed to be directed along z) is quantized in

Landau levels with excitation energies EN ,⊥ = mc2 [
√

1 + 2bN −
1](N = 0, 1, . . .), where b = hωc/mc2 is the relativistic magnetic

parameter, ωc = |Ze|B/mc is the cyclotron frequency, and Ze and m
are the charge and mass of the particle (e is the elementary charge).

For non-interacting particles, every Landau level is degenerate with

respect to a position of the guiding centre in the xy plane (e.g. Landau

& Lifshitz 1976). The number of degenerate states (for fixed N and

longitudinal velocity vz) is Lx Ly |Z|/(2πa2
m), where

am =
(

hc

eB

)1/2

= 2.5656 × 10−11 B−1/2
14 cm (3)

is the magnetic length, and Lx and Ly are normalization lengths.

In addition, excited Landau levels of the electrons usually can be

treated as double spin-degenerate. In contrast, the Landau levels of

the ions are not degenerate, but split with respect to the spin, because

of the anomalous magnetic moments of nuclei.

For the electrons, the relativistic magnetic parameter is be =
hωce/(mec2) = B/BQ, where BQ = m2

ec3/(eh) = 4.414 × 1013 G.

For density ρ � 7 × 106(A/Z)B3/2
14 g cm−3 and temperature T �

hωce/kB = 1.34 × 1010B14 K, virtually all electrons reside in the

ground Landau level. For T � 2.7 × 10−4 B−2
14 (ρ0Z/A)2 K (where ρ0

is the density in units of 1 g cm−3), the electrons are non-degenerate.

We shall be concerned with this regime in this paper.

For the ions, the cyclotron energy is hωci = 0.635 (Z/A) B14 keV,

and their relativistic magnetic parameter is bi = hωci/(mic2) =
beZ(me/mi)

2 = 0.68 × 10−6(Z/A2) B14. We consider the situation

where the ions are non-relativistic: Nbi � 1, EN ,⊥ = Nhωci. Ob-

viously it is always the case if the ion Landau number N is not

huge.

In the following we introduce a number of notations for various

kinds of transition rates (i.e. number of transitions per unit time per

occupied initial state) between proton Landau levels N and N ′ and

corresponding cross-sections. Here we list these and other related

notations and the basic relevant equations for easy reference:

ωce, ωci, ωcp cyclotron frequencies for electron, ion
and proton: equations (1), (2)

am magnetic length: equation (3)
ne, ni, np number densities of electrons, ions and

protons in the plasma
nN number density of protons in the Nth

Landau level (N = 0, 1, 2, )
W fix

N N ′ (vz) transition rate per particle on the level N
with initial longitudinal (i.e. along B)
velocity vz, in a volume V for scattering
on a fixed Coulomb centre:
equation (A7)

σ fix
N N ′ (vz) corresponding cross-section: equations

(A7) and (A13)

W (pe)
N N ′ (vz) transition rate for protons scattered on

those electrons which rest on the
ground Landau level, assuming the
relative initial longitudinal velocity vz:
equation (8)

σ
(pe)
N N ′ (vz) partial cross-section for such scattering,

normalized to vz: equations (4) and (8)
WN1 N2; N ′

1 N ′
2
(vz) transition rate for charged particle 1

scattered on particle 2 in volume V at
relative longitudinal velocity vz, under
the condition that initial and final
Landau numbers of particle i are Ni and
N′

i, respectively: equation (A19)
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W ±
N1,N2; N ′

1,N ′
2
(vz) analogous to WN1 N2; N ′

1 N ′
2
(vz), but for

collision of identical particles with
even (+) or odd (−) total spin:
equation (A22)

σ
(pp)±
N N2; N ′ N ′

2
corresponding cross-section normalized

to vz: equations (15), (16) and (A19)

σ
(N2)
N N ′ partial cross-section of a proton with

initial Landau number N2 (regardless
of its final Landau number) with

respect to scattering of a test proton from
Landau number N to N ′: equation (18)

�
C(pe)
N N ′ velocity-averaged partial Coulomb

transition rate for proton scattering on
the electrons on the ground Landau
level: equations (4), (7) and (12)

�
C(pp)
N N ′ analogous to �

C(pe)
N N ′ , but because of

collisions with other protons: equa-
tions (15) and (18)

�A
N N ′ spontaneous decay rate: equations (5),

(21) and (28)
�B

N N ′ total transition rate due to
photoabsorption: equations (20) and
(30)

�̂B
N N ′ total transition rate due to stimulated

emission: equation (30)
σN N ′ ( j, ω, n) cross-section of a proton with respect to

photoabsorption (normalized to speed
of light) for polarization j (j = 1, 2),
photon frequency ω and direction n:
equations (24), (25), (26) and (47)

σα,N N ′ (ω) partial photoabsorption cross-section
(normalized to speed of light) for basic
polarization α (α = 0, ±1): equations
(25), (26) and (28)

σ ff
α (ω), σ ff

α,N N ′ (ω) total and partial cross-sections
(normalized to speed of light) for basic
polarization α, for transitions caused
by free–free photoabsorption of a
proton–electron pair: equations (33),
(34) and (B1)

σN N ′ (vz, ω) partial cross-section σα,N N ′ (ω) for
longitudinal velocity vz of the
absorbing particle: equations (46) and
(50)

σ sc
α cross-section of a proton with respect to

scattering of a photon for basic
polarization α: equation (37).

2 O R D E R - O F - M AG N I T U D E E S T I M AT E F O R
P ROTO N L A N DAU L E V E L P O P U L AT I O N S

In this section we present simple estimates of the relative popu-

lation of protons in the ground Landau level (number density n0)

and the first excited level (n1). Other levels are neglected here for

simplicity, and also for simplicity we assume that transitions stim-

ulated by radiation are unimportant. The cyclotron energy of the

proton is hωcp = h(eB/mp c) ≈ 0.63 B14 keV. In this section we

use without proof formulae for the rates of transitions between

proton Landau levels, deferring their derivation to the following

sections.

(i) Coulomb collisions. The collisional cross-section involving

proton Landau transition N = 1 → N = 0 is denoted by σ
(pe)
10 (vz),

where vz is the relative velocity (along the z-axis) between the

electron and the ion before collision. Detailed balance implies

σ
(pe)
10 (vz) = σ

(pe)
01 (v′

z), where vz and v′
z are related by m∗v2

z /2 +
hωcp = m∗v′

z
2/2, and m∗ = memi/(me + mi) � me is the reduced

mass. The collisional deexcitation rate per proton is

�
C(pe)
10 = ne〈vzσ10(vz)〉 = 4

√
2π ne

a3
me4√mpm∗

h3
�̃

(pe)
10 , (4)

where ne is the electron number density, 〈. . .〉 denotes averaging

over the 1D Maxwell distribution f (v) ∝ exp(−m∗v2/2T), and the

Coulomb logarithm �̃
(pe)
10 (to be defined later) is of order of unity

for the plasma parameters we are interested in. In general, �̃
(pe)
10 de-

pends on parameter βp ≡ hωcp/T = 73.38 B14/T6, where T is the

kinetic temperature for particle motion along B, and T6 ≡ T/(106 K)

(throughout this paper, we suppress Boltzmann constant, imply-

ing the conversion 1 keV = 1.16045 × 107 K). At βp � 1 we

have �̃
(pe)
10 ∼ 1 (and �̃

(pe)
10 ∼ β1/2

p | ln βp| for βp � 1 (see Sec-

tion 3.1). The collisional excitation rate is �
C(pe)
01 = �

C(pe)
10 exp(−βp).

The contribution to Landau excitation from proton–proton col-

lisions is of similar order and will be neglected in this

section.

(ii) Radiative Transitions. The spontaneous decay rate of the

first Landau level is

�A
10 = 4

3

e2ω2
cp

mpc3
. (5)

We neglect here the radiative absorption and stimulated emission.

(iii) Statistical equilibrium. The relative population of protons

in N = 0 and N = 1 is determined by

n1/n0 = e−βp
[
1 + �A

10/�C
10

]−1
, (6)

When �A
10/�

C
10 � 1, the Boltzmann distribution (i.e. LTE) is re-

covered, n1 = e−βp n0. In this case, the cyclotron absorption and

emission are related by the Kirchhoff law.

In the opposite case �C
10/�

A
10 � 1, we have n1/n0 = �C

01/�
A
10, i.e.

collisional excitation (0 → 1) is balanced by radiative decay (1 →
0).

With ne = ρ/mp, we see that

�
C(pe)
10 /�A

10 = 28.6 ρ0 B−7/2
14 �̃

(pe)
10 . (7)

The ratio (7) is larger than unity for ordinary neutron star atmo-

spheres, but it can become smaller than unity for magnetars.

The above situation should be contrasted with that of electrons.

The deexcitation rate of an electron from its first excited Landau

level to the ground state due to collisions with protons (treated as

classical particles) is of the order of 4
√

2πnpa3
me4me/h3 for βe =

hωce/T � 1 [cf. equation (4)]. The spontaneous cyclotron decay

rate of electron is �A
10 (e) = 4e2ω2

ce/(3me c3), and the ratio �C/�A is

about a factor (me/mp)7/2 smaller than that for protons. Thus for elec-

trons, radiative deexcitation is always much faster than collisional

deexcitation, and there is no true electron cyclotron absorption,

but only scattering, in the magnetic fields of ordinary pulsars and

magnetars.
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3 N O N - R A D I AT I V E C O U L O M B C O L L I S I O N
R AT E S

Coulomb collision rates of non-degenerate fermions in a strong mag-

netic field have been studied by many authors. Ventura (1973) de-

rived collision rates for electrons scattered by a fixed Coulomb po-

tential. Pavlov & Yakovlev (1976) presented transition probabilities

for collisions of two non-relativistic particles, which interact via a

screened Coulomb potential. As a particular case they recovered the

result of Ventura (1973), but in a simpler form. Relativistic expres-

sions for Coulomb collision rates of non-degenerate fermions in a

magnetic field were derived by Langer (1981) and Storey & Melrose

(1987). However, since we are interested in Landau transitions of

ions, we may take the non-relativistic approach (Pavlov & Yakovlev

1976). Accordingly, we do not consider Coulomb spin-flip transi-

tions which generally are weaker by a factor ∼bi compared to the

transitions which preserve spin. The spin distribution, however, may

affect statistical equilibrium through exchange effects.

3.1 Proton–electron collisions

General formulae for Coulomb collision rates of two different par-

ticles with arbitrary charges are given in Appendix A2.1. Here we

consider electron collisions with protons, assuming that the elec-

trons remain in the ground Landau state. This particular case

has been previously considered by Miller, Salpeter & Wasserman

(1987), based on Pavlov & Yakovlev (1976). For a given relative ve-

locity (along z) vz between a proton and an electron, the transition

rate from proton Landau level N to N ′ is

W (pe)

N N ′ (vz) ≡ nevzσ
(pe)

N N ′ (vz) = 4πτ−1
0 nea

3
m

∑
±

w
(pe)

N N ′ (u±)/u′, (8)

where σ
(pe)

N N ′ (vz) is the corresponding cross-section, τ 0 = h3/(e4me)

= 2.42 × 10−17 s is the atomic unit of time, ne is the electron number

density, and

w
(pe)

N N ′ (u±) =
∫ ∞

0

e−t/2 I 2
N N ′ (t/2)

(t + u2±)2
dt . (9)

Here u2
± = (u ± u′)2 + u2

s , and u = (m∗|vz |/h) am and u′ =
(m∗|v′

z |/h) am are scaled relative velocities along z, which satisfy

the energy conservation law u′2 = u2 + 2(N − N ′)m∗/mp, where

m∗ = memp/(me + mp) is the reduced mass. The parameter us =
ksam, included in u±, is the scaled Debye screening wave num-

ber (k−1
s is the Debye screening length). For a neutral electron–

proton plasma at temperature T we have ks =
√

8πnee2/T =
(1.584 × 108 cm−1)ρ

1/2
0 T −1/2

6 . Equations (8) and (8) follow from

(A19) and (A20) of Appendix A with Z1 = Z2 = 1 and w
(pe)

N N ′ (u±) =
w0,N ; 0,N ′ (u±). Laguerre function IN N ′ is defined by equation (A4).

If the distributions of z-velocities of electrons and protons are

Maxwellian with temperatures Te and Tp, respectively, which do

not depend on the Landau number N, then the relative velocities

vz = hk/m∗ have Maxwellian distribution

Fm∗,T (vz) =
√

m∗
2πT

exp

(
−m∗v2

z

2T

)
, (10)

where

T = (me + mp)/
(

meT −1
p + mpT −1

e

)
. (11)

In order to simplify formulae, hereafter we assume Te = Tp = T ,

unless the opposite is explicitly stated. Then the velocity-averaged

partial Coulomb transition rate ne〈vzσ
(pe)

N N ′ 〉 is

�
C(pe)

N N ′ = 4(e4/h2)
√

2πm∗/T nea
2
m�

(pe)

N N ′ (12a)

= 4
√

2π

τ0

(
m∗mp

m2
e

)1/2

nea
3
m�̃

(pe)

N N ′ , (12b)

where

�̃
(pe)

N N ′ =
√

βp �
(pe)

N N ′ , (13a)

�
(pe)

N N ′ =
∫ ∞

0

du

u′ e−β∗u2/2 θ (u′2) g(u)g(u′)

× [
w

(pe)

N N ′ (u+) + w
(pe)

N N ′ (u−)
]
.

(13b)

Here θ (u′2) [with u′2 ≡ u2 + 2(N − N ′)m∗/mp] is the step function

that ensures the energy conservation, β∗ ≡ heB/m∗cT = βpmp/m∗,

and g(u)g(u′) is the correction factor, which approximately allows

for violation of Born approximation as discussed in Appendix A1.4.

The latter factor appreciably differs from 1 only at u � γ
−1/2
B , where

γ B =h3 B/(m2
∗ ce3). In the case of electron–proton collisionsγ

−1/2
B ≈

αf/
√

be = 0.004848 B−1/2
14 . The smallness of γ

−1/2
B ensures that

the approximations used to derive equation (13b) are sufficiently

accurate; in this case the γ B-dependence in equation (13b) is weak

(logarithmic).

By changing integration variable u →u′ in equation (13b), and

taking into account that w
(pe)

N N ′ (u±) = w
(pe)

N ′ N (u±), we can check that

�
(pe)

N N ′ = eβp(N−N ′)�
(pe)

N ′ N , and thus

�
C(pe)

N N ′ = eβp(N−N ′)�
C(pe)

N ′ N . (14)

Fig. 1 depicts the function �
(pe)

N N ′ (N > N ′) for transitions between

different low-lying proton Landau states, calculated assuming us →
0 and γ −1

B → 0. Fig. 2 presents the same functions for us = 0.5.

Note that us = ksam = 4.1 × 10−3ρ
1/2
0 T−1/2

6 B−1/2
14 . So us = 0.5

corresponds to a rather high plasma density. We see that at any B
and us transitions between neighbouring states (N − N ′ = 1) strongly

dominate.

Representation (12b) is most convenient when βp � 1, because

in this case the exponential function in equation (13b) varies much

faster than u′ and w
(pe)

N N ′ , and it can be integrated separately. Hence

�̃
(pe)

N N ′ approaches a constant.

Figure 1. The dimensionless quantity �̃
(pe)

N N ′ (equation 13b) as a function

of βp = hωcp/T for transitions between several lowest proton Landau states

for screening parameter us = 0.
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Figure 2. The same as in Fig. 1, but for screening parameter us = 0.5.

In the opposite limit βp � 1 it may be more convenient to use

equation (12a), because in this case �
(pe)

N N ′ is a slowly varying func-

tion of βp. At the first glance it may seem unphysical that equa-

tion (12a) contains factor a2
m which goes to infinity as B goes to

zero. However, it has a simple explanation. As long as the Landau

numbers of the electron (equal to zero) and proton (N, N ′) are kept

fixed, equation (12a) describes the partial rate of the collisions in

which the transfer of the kinetic energy of the motion transverse

to the field, |N − N ′|hωcp, decreases linearly with decreasing B.

In the classical picture this corresponds to collisions with impact

parameters increasing ∝ am, for which the cross-section increases

according to the Rutherford formula. The divergence of the classical

cross-section at large impact parameters is eliminated if one takes

into account the screening of the Coulomb potential. It is also the

case for the quantum cross-section. Indeed, u2
± in the denominator of

equation (8) in general includes the term u2
s = k2

s a2
m. Thus w

(pe)

N N ′ (u±)

(and hence �
(pe)

N N ′ ) becomes ∝(ksam)−4 when the magnetic length am

is much larger than the screening length k−1
s .

3.2 Proton–proton collisions

Now let us consider proton–proton collisions. This case is more

complicated than the previous one in two respects: first, there is the

exchange interaction described in Appendix A2.2, and secondly,

both colliding particles can change their Landau numbers (neither

of them is confined to the ground state).

Let nN be the number density of protons in the Nth Landau state,

and let f ↑
N and f ↓

N be the fraction of such protons with spin along and

opposite to the field direction, respectively (f ↑
N + f ↓

N = 1). Then the

average rate of proton transitions from level N to level N ′ due to the

Coulomb collisions is

�
C(pp)

N N ′ = 1

2

∑
N2 N ′

2

nN2

[(
f ↑

N f ↓
N2

+ f ↓
N f ↑

N2

) 〈
vzσ

(pp)+
N N2; N ′ N ′

2

〉
+(

f ↑
N f ↑

N2
+ f ↓

N f ↓
N2

) 〈
vzσ

(pp)−
N N2; N ′ N ′

2

〉]
, (15)

where 〈vzσ
(pp)±
N N2; N ′ N ′

2
〉 is the probability, per unit time, that two protons

in unit volume, which have initial Landau numbers N and N2, make

a transition to the state where they have Landau numbers N ′ and

N ′
2, under the condition that their spin projections to B are the same

(sign −) or opposite (sign +). The factor 1
2

at the sum allows for the

quantum statistics of identical particles.

For Maxwell distribution (10) with m∗ = mp/2, using the results

of Appendix A2, we obtain〈
vzσ

(pp)±
N N2; N ′ N ′

2

〉 = 8 (e4/h2)
√

πmp/T a2
m

×
∫ ∞

0

du

u′ e−βpu2[
wN N2;N ′ N ′

2
(u+) + wN N2;N ′ N ′

2
(u−)

± 2 wx
N N2; N ′ N ′

2
(u−, u+)

]
, (16)

where u2
± = (u ± u′)2 + u2

s and u′ = [u2 + N ′ − N + N ′
2 − N2]1/2.

Functions wN N2; N ′ N ′
2

and wx
N N2; N ′ N ′

2
are given by equations (A20)

and (A24), respectively.

Equations (15) and (16) can be written in the form analogous to

equation (12b),

�
C(pp)

N N ′ =
∑

N2

nN2

〈
vzσ

(N2)
N N ′

〉
, (17)

〈
vzσ

(N2)
N N ′

〉 = 4
√

π
a3

m

τ0

mp

me

[
�̃

(pp)

N N2; N ′

−(
f ↑

N − f ↓
N

) (
f ↑

N2
− f ↓

N2

)
�̃

(pp,x)

N N2; N ′
]
, (18)

where

�̃
(pp)

N N2; N ′ =
√

βp

∑
N ′

2

∫ ∞

0

du

u′ e−βp u2
θ (u′2) g(u)g(u′)

×[
wN N2; N ′ N ′

2
(u+) + wN N2; N ′ N ′

2
(u−)

]
,

(19a)

�̃
(pp,x)

N N2; N ′ = 2
√

βp

∑
N ′

2

∫ ∞

0

du

u′ e−βp u2
θ (u′2) g(u)g(u′)

×wx
N N2; N ′ N ′

2
(u−, u+). (19b)

In these equations u′ and u± depend on N′
2. The factors g(u)g(u′),

with g(u) defined by equation equation (A16), account for the

correction due to violation of Born approximation, as discussed

in Appendix A1.4. However, unlike Section 3.1, here γ
−1/2
B =

αfmp/(2me

√
be) = 4.45 B−1/2

14 is larger than 1 for B < 2 × 1015 G,

which reflects the fact that the protons are moving much slower

than the electrons, therefore Born and adiabatic approximations (see

Appendix A1.4) are less applicable to the proton–proton collisions.

Nevertheless, we use these approximations, considering them as

order-of-magnitude estimates, which is justified because the whole

effect of the proton–proton collisions on statistical equilibrium is

not very significant, as we will see below.

In Fig. 3 we show �̃
(pp)

N N2; N ′ for the case of negligible screening

(us =0) andγ B =1, for a few initial and final proton Landau numbers

N, N ′, and for initial Landau numbers of the second proton N2 =
0, 1, 2. The decrease of the displayed functions at βp � 1 results

from the correction beyond Born approximation. This indicates that

an accurate evaluation of the proton–proton collision rates would

require non-Born quantum calculations, which are beyond the scope

of the present paper.

In Fig. 4 we compare some of the curves from Fig. 3 (solid lines)

with the case of non-negligible screening, ksam = us = 0.5 (dot-

dashed lines), which can be relevant at rather high density. Also in

this figure we show a comparison of �̃
(pp)

N N2; N ′ (solid lines) with the

difference �̃
(pp)

N N2; N ′ − �̃
(pp,x)

N N2; N ′ (dashed lines) which enters equa-

tion equation (18) when the proton spins are all aligned in the same

direction.
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Figure 3. The dimensionless function �̃
(pp)

N N2; N ′ (equation 19a) without

screening (us = 0) for the transitions between the proton Landau states

marked near the curves. Initial Landau number of the second proton equals

N2 = 0 (solid lines), N2 = 1 (dashed lines) or N2 = 2 (dot–dashed lines).

Figure 4. The functions �̃
(pp)

N N2; N ′ (solid lines without screening and dot–

dashed lines with screening parameter us = 0.5) and �̃
(pp)

N N2; N ′ − �̃
(pp,x)

N N2; N ′
(dashed lines, without screening), representing the expression in the square

brackets of equation equation (18) for random spin orientations (f ↑ = f ↓ =
0.5) and for aligned spins (f ↑ = 1), respectively, for transitions N → N − 1

and N → 0, with N = 1, 2, 3, 4, N2 = 0, as functions of βp = hhωcp/Tp.

Let us note that if Te �= Tp, then in this section Tp should substitute

T defined by equation (11). In particular, βp = hωcp/Tp in equations

(16) and (19).

4 R A D I AT I V E T R A N S I T I O N S

4.1 Radiative transition rates in magnetized plasmas

Magnetized plasma is a birefringent medium. Electromagnetic ra-

diation propagates through it in the form of two normal polarization

modes j = 1, 2 with polarization vectors e j (ω, n) (e.g. Ginzburg

1970). Here, ω is the angular frequency and n the unit vector along

the wave vector. Consequently, radiative transition rates depend not

only on ω, but also on j and n.

Let �A
N N ′ , �B

N N ′ , and �̂B
N N ′ be the rates of transitions from level N

to N ′ due to spontaneous emission, photoabsorption, and stimulated

emission, respectively.1 These rates are the total (for both polar-

izations, integrated over angles and frequencies) transition proba-

bilities per unit time for one occupied initial quantum state. They

can be expressed through Einstein coefficients AN N ′ and B̂N N ′ (for

emission), or BN N ′ (for absorption). These coefficients have differ-

ent definitions in the literature (e.g. cf. Rybicki & Lightman 1979;

Ginzburg 1970; Zheleznyakov 1996). We define AN N ′ , BN N ′ , and

B̂N N ′ from the conditions that the number of quanta with angu-

lar frequencies in the interval d ω and wave vectors in solid an-

gle element d n spontaneously emitted by a unit volume during

unit time equals nN AN N ′ dω dn, and the number of quanta emit-

ted or absorbed under the action of radiation with the specific in-

tensity Iω equals nN B̂N N ′ Iω dωdn or nN BN N ′ Iω dωdn, respectively

(Zheleznyakov 1996). This definition (or a similar one in Ginzburg

1970, but not the one in Rybicki & Lightman 1979) is relevant in a

strong magnetic field, where the emission is neither isotropic, nor

unpolarized. Then

�B
N N ′ =

∑
j=1,2

∫
dn

∫
dωBN N ′ ( j, ω, n) Iω, j (n), (20)

�A
N N ′ =

∑
j=1,2

∫
dn

∫
dω AN N ′ ( j, ω, n), (21)

and the expression for �̂B
N N ′ is completely analogous to equa-

tion equation (20).

The quantities AN N ′ , B̂N N ′ and BN ′ N are related by the Einstein

relations (which include polarization dependence, see, e.g. Ginzburg

1970; Zheleznyakov 1996):2

B̂N N ′ = BN ′ N , AN N ′ = hω3

8π3c2
BN ′ N . (22)

From the first of these relations, it follows that the stimulated emis-

sion rate is equal to that of photoabsorption with interchange of the

initial and final levels: �̂B
N N ′ = �B

N ′ N .

In equation (22) we have neglected the difference of the group and

phase velocities of radiation. Einstein relations with allowance for

this difference are given, e.g. by Ginzburg (1970) and Zheleznyakov

(1996). Note, however, that this difference would lead to appearance

of additional factors not only in equation (22), but also in the expres-

sions for photoabsorption cross-sections discussed in Section 4.2

below.

Spontaneous cyclotron decay rates have been derived by

Daugherty & Ventura (1977) (see also Daugherty & Ventura 1978;

Melrose & Zheleznyakov 1981; Pavlov et al. 1991; Baring, Gonthier

& Harding 2005, and references therein). In the non-relativistic limit

(Nbi � 1), the decay rates are proportional to bN−N ′+1
i , multiplied

by a combinatorial factor. Although the latter factor may be large

for large N ′ − N, transitions N → N ′ = N − 1 still dominate in

1 Generally, N and N′ may take any values. For instance, free–free photoab-

sorption is allowed for N′ � N (i.e. the photon is absorbed while the proton

makes a downward transition) as well as for N′ > N.
2 Einstein relations (22) come from the detailed balance equa-

tion nN ′ BN ′ N Iω, j = nN AN N ′ + nN B̂N N ′ Iω, j in the complete thermody-

namic equilibrium, where Iω, j = 1
2 Bω = (hω3/8π3c2) (eh ω/T − 1)−1, and

the requirement that the coefficients A and B must be independent of T.
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the non-relativistic regime. The rates of the latter transitions are

�A
N ,N−1 = N�r,p, where

�r,p = 4

3

e2ω2
cp

mp c3
(23)

is the natural width of the proton cyclotron line.

Spin-flip transitions for protons are unimportant in the non-

relativistic limit, because their rates contain an additional factor

bi compared to the dominant transitions preserving spin (e.g. cf.

Melrose & Zheleznyakov 1981).

4.2 Relation between emission rates and photoabsorption
cross-sections

The Einstein absorption coefficient BN N ′ is given by the relation

BN N ′ ( j, ω, n) = σN N ′ ( j, ω, n)/hω, (24)

where σN N ′ is the partial photoabsorption cross-section responsible

for the N →N ′ transition. Equation (24) directly follows from the

definition of BN N ′ in Section 4.1. Together with Einstein relations, it

allows one to express spontaneous decay rates �A
N N ′ through partial

photoabsorption cross-sections.

In the ‘rotating coordinates’ (e.g. Mészáros 1992), the polariza-

tion vectors e j (ω, n) of two polarization modes j = 1, 2 have the

components ej
α , α = 0, ±1. In the dipole approximation, photoab-

sorption cross-sections can be written as (e.g. Ventura, Nagel &

Mészáros 1979)

σ ( j, ω, n) =
1∑

α=−1

σα(ω)
∣∣e j

α(ω, n)
∣∣2

, (25)

where the component e− is responsible for the electron cyclotron

resonance, and e+ for the ion cyclotron resonance.

Using equations (21), (22) and (24), one obtains

�A
N ′ N =

∑
j=1,2

∫
dn

∫
ω2dω

8π3c2
σN N ′ ( j, ω, n). (26)

As already stated in Section 4.1, we neglect the difference of the

group and phase velocities of radiation. This is equivalent to the

‘semi-transverse approximation’ (Ventura 1979), where refraction

indices are close to 1, and n · e j ≈ 0. In this approximation, the

relation
∑

j=1,2
A j

α = 1 holds, where

A j
α ≡ 3

8π

∫ ∣∣e j
α(ω, n)

∣∣2
dn. (27)

Then equations (25) and (26) give

�A
N ′ N =

∑
α

∫
ω2 dω

3π2 c2
σα,N N ′ (ω). (28)

Let us suppose that transition N → N ′ corresponds to an absorp-

tion line with a profile φ(ω)(
∫

φ(ω)dω = 1), which at ω = ω0 has

a sharp peak with a characteristic half-width ν � ω0 for the polar-

ization α. At ω ∼ ω0, let us write the photoabsorption cross-section

in the form σα,N N ′ (ω) = 2νσ̄α,N N ′φ(ω). Then equation (28 gives the

spontaneous emission rate

�A
N ′ N ≈ 2νσ̄α,N N ′ ω2

0

3π2c2
. (29)

Let us assume, in addition, that Iω,j (n) can be replaced by the aver-

age over the angles under the integral in equation (20, which we de-

note Īω, j (this replacement is exact in the diffusion approximation).

Then, using equations (24) and (27), we obtain the photoabsorption

and stimulated emission rates

�B
N N ′ = �̂B

N ′ N = 8π3c2

hω3
0

�A
N ′ N

∑
j=1,2

A j
α Jj , (30)

where

Jj ≡
∫

Īω, j φ j (ω) dω. (31)

4.3 Cross-sections at the proton cyclotron resonance

Although cyclotron emission rates can be calculated in the frame-

work of the first-order perturbation theory, this theory is not suitable

for the determination of the frequency dependence of photoabsorp-

tion cross-sections and opacities. The reasons for that, and the con-

ditions where the first-order process still can be important, were

discussed by Daugherty & Ventura (1978), who stressed that the

spectral dependence of the absorption coefficient is properly de-

scribed by second- and higher-order processes. Indeed, because of

kinematic requirements (energy and momentum conservation), the

first-order absorption is possible only at a single frequency at any

given angle of incidence. Thus one must take into account level

broadening in order to obtain the spectral absorption coefficient.

The broadening is caused by the finite life time of the proton in a

final state after an absorption event. In a macroscopically homo-

geneous plasma this life time is limited only by (1) spontaneous

emission and (2) interactions with other particles. It is the emitted

photon in the first case or another plasma particle in the second case

that carries the energy and momentum needed to restore the kine-

matic balance. Thus a quantum description of the absorption line

shape requires at least two-vertex Feynman diagrams. The second

vertex may correspond to the emission of the photon [case (1); cf.

Figs 1 and 2 of Daugherty & Ventura 1978] or to Coulomb interac-

tion with a charged particle [case (2)]. The first case is scattering,

and the second is free–free photoabsorption. We now consider the

cross-sections for these two processes for the polarization compo-

nent α = +1, corresponding to the proton cyclotron resonance.

4.3.1 Free–free absorption

The free–free photoabsorption cross-section at any frequencies and

polarizations is given by equations (B1)–(B3) of Appendix B. It can

be presented as a sum of terms corresponding to transitions of a

proton from level N to N ′:

σ ff
α (ω) =

∑
N

f p
N

∑
N ′

σ ff
α,N N ′ (ω), (32)

where f p
N is the fraction of protons in Landau state N, and

σ ff
α,N N ′ (ω) = 4πe2

mec

ω2
∑

n f e
n

∑
n′ ν

ff,α
n,N ; n′,N ′ (ω)

(ω + αωce)2(ω − αωcp)2 + ω2ν̃2
α(ω)

, (33)

where f e
n is the fraction of the electrons in Landau state n, and ν̃α(ω)

is a damping factor. The separation of σ ff
α into σ ff

α,N N ′ , expressed by

equation (32), is useful for calculation of non-LTE emissivity (see

Section 6).

At ω ∼ ωcp and α = +1, there is a resonance:

σ ff
+(ω) ≈ 4πe2

mpc

νff
p

(ω − ωcp)2 + ν2
, (34)

where ν = (me/mp)ν̃+(ωcp) = ν̂p + νff
p , with ν̂p = νp(ωcp) the

radiative damping rate �r,p/2 (note that it could also include other

damping mechanisms not related to electron–proton collisions, such
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as the damping rate due to collisions with neutral particles), and νff
p

the damping rate due to electron–proton collisions:

νff
p = (me/mp) νff

+(ωcp), (35)

with νff
+ (ω) given by equation (B2). From equation (28), taking

into account the condition ν � ωcp, we obtain the rate of N ′ →N
transitions caused by the resonant free–free emission,

�ff
+,N ′ N ≈ 4

√
2π

τ0

(mp

me

)1/2

nea
3
m

×
√

βp

3π

∫
�r,p �

ff,+1
0,N ; 0,N ′

(ω − ωcp)2 + ν2
dω, (36)

where �
ff,+1
n,N ; n′,N ′ is given by equation (B10). This result is written

in the form similar to equation (12b) for easy comparison, which

shows that by order of magnitude �ff/�C(pe) ∼ �r,p/ν. The damping

factor ν is discussed in Section 4.3.2; here we note only that the ratio

�ff/�C(pe) cannot be large, because ν � �r,p/2.

4.3.2 Scattering

The resonant cyclotron scattering (Canuto, Lodenquai & Ruderman

1971; Ventura 1979) is a second-order process which is common

for electrons in white dwarfs and magnetic neutron stars, and for

ions in magnetars. The photon-proton scattering cross-section is

σ sc
+ = σTp

ω2

(ω − ωcp)2 + ν2
, (37)

where σ Tp = 8πe4/(3m2
pc4) is the Thomson cross-section for pro-

tons.

The determination of the effective damping factor ν (not con-

sidered by Canuto et al. 1971) is not trivial. In general, this task

requires a non-perturbative treatment (Cohen-Tannoudji, Dupont-

Roc & Grynberg 1998), which goes beyond the scope of our paper.

However, ν(ω) can be found from the correspondence to the classical

physics.

The naıve estimate of ν as the sum of total half-widths of two

Landau levels would lead to replacement of equation (37) by a sum

of different Lorentz profiles for different proton states N. However,

this estimate is incorrect, because it ignores the coherence of equally

spaced quantum states, as discussed, e.g. by Cohen-Tannoudji et al.

(1998) for the case of interaction of electromagnetic field with a

quantum oscillator. Interference of transition amplitudes between

different states leads to the common damping factor (which proves to

be equal to the classical oscillator damping factor) for all transitions

which have the same resonant frequency. Thus we should put in

equation (37) the same damping factor as in equation (35), ν =
ν̂p + νff

p at ω ≈ ωcp. The frequency dependence of ν is suggested by

analogy with a classical oscillator (Jackson 1975):

ν(ω) = νp(ω) + (me/mp) νff
+(ω), (38)

with

νp(ω) = 2

3

e2

mpc3
ω2. (39)

Thus we recover the damping factor that was previously given with-

out discussion by Pavlov et al. (1995). Obviously, at the resonance,

νp(ωcp) = ν̂p = �r,p/2.

Note that for damping of free–free photoabsorption (equa-

tion [B3]) we should include, beside νp(ω), also νe(ω) =
(2/3)(e2/mec3) ω2. Then the terms containing factor α in equa-

tion (B3) cancel out, and it simplifies to

ν̃α(ω) = 2

3

e2

m∗c3
ω2 + νff

α (ω). (40)

5 S TAT I S T I C A L E QU I L I B R I U M O F P ROTO N
L A N DAU L E V E L S

5.1 Two-level system

The model in which only two quantum levels participate in the

radiative and collisional transitions is helpful for understanding the

main features of line formation and transition rates. This simplest

model can be applicable to the formation of the proton cyclotron

line if the ground Landau level is much more populated than excited

ones. For electron cyclotron lines, a similar model was considered

previously by Nagel & Ventura (1983).

The statistical equilibrium of two proton Landau levels is given

by the equation

n0

(
�B

01 + �C
01

) = n1

(
�A

10 + �̂B
10 + �C

10

)
. (41)

Let us first consider the case where proton–proton collisions are

unimportant. Then, taking into account equation (30) and the rela-

tion �
C(pe)
01 = �

C(pe)
10 e−βp (Section 3.1), equation (41) can be written

in the form

n1

n0

= e−βp
1 + ε R/(1 − e−βp )

1 + R + ε R/
(

e
β
p − 1

) , R ≡ �r,p/�C
10 (42)

where the parameter ε = 2
∑

j A j
+ Jj/Bω (at ω = ωcp) characterizes

the ratio of the effective radiative energy density in the line to its

equilibrium value.

Let us mention three important limiting cases.

(i) When either R � 1 or ε = 1, the Boltzmann ratio n1/n0 =
e−βp is recovered. This is the LTE situation, where absorption and

emission coefficients are related by the Kirchhoff law.

(ii) In another limiting case, where R � 1 and εR � 1, n1/n0 =
e−βp/R = �C

01/�r,p, that is, excitation of the level N = 1 is colli-

sional, but its deexcitation is radiative. This is the case for which

emission is most prominent.

(iii) In the third limit, where ε � 1 and εR � 1, the level N = 1

is excited by absorption of radiation and deexcited by spontaneous

emission. In this case n1/n0 = (8π3c2/hω3)
∑

j A j
+ Jj , and

n1

∑
j

∫
dnA10( j, ω, n) = n0

∑
j

∫
dnB01( j, ω, n) Īω, j .

Then the spectral power of spontaneous emission is identical to that

of absorption, and both processes can be treated as non-coherent

scattering (Ventura 1979; Mészáros 1992). Such situation is most

common for the electron cyclotron absorption and emission in strong

magnetic fields of neutron stars (Nagel & Ventura 1983), but it is

not so usual for ion (proton) cyclotron processes.

Taking into account proton–proton collisions, from equation (41)

we obtain

n1

n0

= 1

2 + 2 c(1)
10

{[(
1 + c(0)

10 − c(1)
01 − x1

)2

+ 4
(

1 + c(1)
10

) (
x1 + c(0)

01

)]1/2− (
1 + c(0)

10 − c(1)
01 − x1

)}
, (43)

where c(N2)
N N ′ = 1

2
np〈vzσ

(N2)
N N ′ 〉/(�A

10 + �B
01 + �

C(pe)
10 ), the factor

〈vzσ
(N2)
N N ′ 〉 is given by equation (18), and x1 is the solution (42), which

is reproduced when c(0,1)
N N ′ → 0.
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Figure 5. Population of the proton Landau level N = 1 relative to N = 0 as

function of mass density for different values of B and T.

In Fig. 5 we show the relative populations of the excited proton

Landau state (N = 1) as function of density, according to equa-

tion (43), for several B and T values. Here we assumed that stim-

ulated transitions are unimportant and set ε = 0 in equation (42).

At high density, all curves tend to their LTE limit n1/n0 = e−βp .

Radiative decay rates dominate at lower densities, where the excited

level becomes depopulated.

For the considered plasma parameters, the rates of transitions due

to proton–proton collisions are of the same order of magnitude or

smaller than those due to electron–proton collisions. Therefore a

neglect of the pp rates does not significantly affect the statistical

equilibrium. For instance, in Fig. 5 this neglect would change n1/n0

by less than 6 per cent. Thus statistical equilibrium can be approxi-

mately evaluated with only proton–electron interactions taken into

account.

5.2 Multilevel system

The statistical equilibrium of proton distribution over Landau levels

is determined by the balance of the total rates of transitions from

and to every level N,

nN

[ ∑
N ′<N

�A
N N ′ +

∑
N ′ �=N

(
�B

N N ′ + �C
N N ′

)] =
∑
N ′>N

nN ′ �A
N ′ N

+
∑
N ′ �=N

nN ′
(
�B

N ′ N + �C
N ′ N

)
, (44)

supplemented with the condition
∑

N nN = np. Here �C
N N ′ =

�
C(pe)

N N ′ + �
C(pp)

N N ′ . This system is non-linear, because according to

equation (15) �
C(pp)

N N ′ depends on the distribution of nN . We solve

equation (44) iteratively, starting from the Boltzmann distribution

of nN .

An example of the numerical solution of equation (44) is shown

in Fig. 6. As in Fig. 5, here we have neglected �B relative to �C.

The curves of different style correspond to the values of nN/n0 as

functions of ρ for different N from 1 to 4. The dots correspond to

n1/n0 in the two-level approximation (cf. Fig. 5). We see that they

coincide with the multilevel solution for n1/n0 (solid lines) within

graphical accuracy.

Figure 6. Populations of the levels N = 1, 2, 3, 4 relative to N = 0 as

functions of mass density for T = 107 K and two values of B. The solid lines

show the population of the N = 1 level, dot–dashed lines N = 2, long-dashed

lines N = 3 and short-dashed lines N = 4. The dotted lines show n1/n0 based

on the two-level approximation.

6 O PAC I T Y A N D E M I S S I V I T Y

6.1 Relation between emission and absorption coefficients

For each polarization component, the photoabsorption coefficient

can be presented in the form

μ(ω) =
∑
N ,N ′

μN N ′ (ω), (45)

μN N ′ (ω) = nN

∫
FN (vz) σN N ′ (vz, ω)dvz

−nN ′

∫
FN ′ (v′

z) σN N ′ (vz, ω) dv′
z,

(46)

where σN N ′ (vz, ω) is the (free–free) partial photoabsorption cross-

section for ions in the Landau state N having longitudinal velocity vz

and going to the final state N ′, andFN (vz) is the distribution of vz for

such ions.3 The second term in equation (46) represents stimulated

emission (treated as negative absorption), v′
z is related to vz by the

energy conservation law mpv
2/2
z +EN ,⊥+hω = mpv

′2/2
z +EN ′,⊥, and

the integration is performed over those vz for which this law can be

satisfied. In the case where FN (vz) = Fmp,T (vz) is the Maxwellian

distribution (10) with T independent of N, equation (46) can be

written as

μN N ′ (ω) = nN σN N ′ (ω)

[
1 − nN ′

nN
e(N ′−N )βp−hω/T

]
, (47)

where σN N ′ (ω) = ∫
FN (vz) σN N ′ (vz, ω)dvz . In LTE, equa-

tions (45)–(47) yield

μLTE(ω) = npσ (ω) (1 − e−hω/T ), (48)

where np ≡ ∑
N nN and σ (ω) is the average photoabsorption cross-

section of a proton: σ (ω) = ∑
N f p

N

∑
N ′ σN N ′ (ω).

3 This is essentially the partial cross-section given by equation (33), except

that the latter assumes vz = 0. To simplify notations, we suppress the sub-

script ‘α’ and the superscript ‘ff’ in this section.
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The power of spontaneous emission of unit volume into d ω d

n is jω d ω d n, where jω is the emission coefficient. Some authors

(e.g. Zheleznyakov 1996) call it emissivity (whereas other authors,

e.g. Rybicki & Lightman 1979 call emissivity the emission power

per unit mass). It can be derived from the second Einstein relation

(22) and presented in the form

jω =
∑
N ′ N

jω,N ′ N , (49)

jω,N ′ N = hω3

8π3c2
nN ′

∫
FN ′ (v′

z) σN N ′ (vz, ω) dv′
z . (50)

In the case of Maxwell–Boltzmann distribution of vz and v′
z, using

equation (47) we obtain

jω,N ′ N = hω3

8π3c2
nN ′ σN N ′ (ω) e(N ′−N )βp−hω/T . (51)

In LTE, equations (45), (49) and (51) reduce to the Kirchhoff law

(for each polarization mode)

jLTE
ω = μLTE(ω)Bω(T )/2. (52)

According to equation (51), the ratio of the emission coefficient to

its LTE value (often also called emissivity) is

jω
jLTE
ω

=
∑
N ′ N

μN N ′ (ω)

μLTE(ω)

(
eh ω/T − 1

)
×

[
nN

nN ′
e(N−N ′)βp+h ω/T − 1

]−1

. (53)

We shall call ratio (53) relative emissivity.

6.2 Proton cyclotron line

Figs 7 and 8 show the opacities μ(ω)/ρ (upper panels) and relative

emissivities jω/jLTE
ω (lower panels) as functions of the photon energy

for polarization α = +1, for two values of ρ and two values of B. At

ω � ωcp, the main contribution to the absorption and emission of

photons is given by the free–free processes preserving N (N = N ′).
In this case jω ≈ jLTE

ω . At higher ω, transitions N → N ′ �= N give

a noticeable contribution to the photoabsorption. In the absence

of statistical equilibrium, they result in a decrease of the relative

emissivity (jω < jLTE
ω ).

The Coulomb logarithms for photoabsorption processes N →
N ′ strongly increase at ω ≈ (N ′ − N)ωcp. At these frequen-

cies the weight of such transitions increases, which causes weak

spikes (pseudoresonances) in the photoabsorption cross-sections

(see Potekhin & Chabrier 2003). However, at the ρ, T , and B values

shown in Figs 7 and 8, the resonant peaks of the Coulomb loga-

rithms �
ff,+1
0,N ; 0,N ′ (N ′ > N ) are not sufficiently high to make them

larger than �
ff,+1
0,N ; 0,N . Therefore the free–free absorption/emission

processes with N ′ = N give the main contribution even at ω ≈ (N ′ −
N)ωcp. Accordingly, these pseudoresonances are not very pro-

nounced. They are not visible in the opacity curves in the upper

panels of Figs 7 and 8 because of the logarithmic scale, but the cor-

responding periodic decreases of the relative emissivity at multiples

of ωcp are clearly seen in the lower panels.

7 G E N E R A L I Z AT I O N F O R OT H E R I O N S

The formulae derived in the present paper for protons can be general-

ized for other nuclei with arbitrary A and Z. If they have spin 1
2
, then

in the formulae for the rates of non-radiative collisions it is sufficient

Figure 7. Upper panel: the opacity components for the polarization α = +1,

as functions of the photon energy, for ρ = 0.01 g cm−3, T = 107 K and B =
1014 and 1015 G (as marked near the curves). Dashed lines – ion scattering

opacity, dotted lines – electron scattering opacity, dot–dashed lines – free–

free absorption contribution, solid lines – the total. Lower panel: relative

emissivity, equation (53), for the same plasma parameters.

Figure 8. The same as in Fig. 7 but for ρ = 100 g cm−3. In this case the

relative emissivity for the weaker field (B = 1014 G) equals to one because

of the LTE.
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to replace the mass mp by mi = 0.9928 Amp, the number density np

by ni = ne/Z, the magnetic field parameter βp by β i ≡ hωci/T =
73.9(Z/A) B14/T6, and to use for the Debye screening wave number

the Z-dependent formula k2
s = 4π(1 + Z)nee2/T . Furthermore, in

equation (8) one should replace IN N ′ (t/2) by IN N ′ (t/2Z ) and use

equation (A21), u′2 = u2 + 2Z(N − N ′)m∗/mi. Also in equation (16)

one should substitute w(u±) and wx (u+, u−) from equations (A19)

(with Z1 = Z2 = Z) and (A24), and to use u′2 = u2 + Z (N − N ′ +
N2 − N ′

2) from equation (A21).

Generalization for ions with different spin is also straightforward,

but more elaborate, because it requires to rewrite equation (18) with

allowance for different projections of spin on the magnetic field.

A possible generalization of the free–free cross-section σ ff for

Z �= 1 is discussed at the end of Appendix B.

8 S U M M A RY

We have derived the general expressions for the rates of transitions

between ion Landau levels caused by non-radiative and radiative

electron–ion Coulomb collisions and non-radiative ion-ion colli-

sions. We have also obtained (in Appendix B) the formulae for

free–free photoabsorption cross-sections in strong magnetic fields

with allowance for the electron and ion (proton) quantization, which

are much simpler than the previously known ones.

On the base of the calculated transition rates we solved the equa-

tion of statistical equilibrium for protons in a strong magnetic field.

Considerable deviation from the Boltzmann distribution over the

proton Landau levels occurs at densities ρ � 0.1 B3.5
14 g cm−3. At

higher densities (lower magnetic fields) non-LTE effects are negli-

gible. Conversely, at lower densities (higher B) the excited proton

states become depleted because of radiative decay.

Nevertheless, even with strongly depleted populations of the ex-

cited Landau states, the emissivity of the fully ionized plasma is not

much suppressed relative to its LTE value. This is because the main

contribution in the photoabsorption is given by transitions which

do not change Landau number N. For such transitions, the relative

population of other levels is unimportant.

Although we have performed calculations only for the proton–

electron plasma, generalization of our results to other ions is rather

straightforward (Section 7).

All results in the present paper are obtained in the Born approx-

imation. A truncation used in older papers to eliminate the diver-

gence at small velocities, inherent to the Born approximation, is now

replaced by a smooth correction. The thermally averaged electron–

proton non-radiative and radiative transition rates are not sensitive

to this correction. Proton–proton transition rates, however, are sen-

sitive, therefore their more thorough examination beyond the Born

approximation would be desirable. Fortunately, at the considered

physical conditions the proton–proton rates are not dominant, thus

we think that our main conclusions are sufficiently robust.

Our general expressions for the proton/ion Landau level transi-

tions derived in this paper will be useful for studying the possi-

bility and the conditions of proton/ion cyclotron line formation in

magnetar bursts. The radiation-dominated bubble formed during the

magnetar outbursts may be considered as a hot (T � 10 keV), op-

tically thick, rarefied medium embedded in a strong magnetic field

(Thompson & Duncan 1995; Woods & Thompson 2005). Within

the bubble, vacuum polarization dominates the dielectric tensor and

scattering dominates the opacity. The bubble may also contains ap-

preciable amount of ions ripped out of the NS surface during the

outbursts. A neutron star atmosphere code, such as that developed

in Ho & Lai (2001, 2003) and van Adelsberg & Lai (2006), can

be adapted to study radiative transfer in the bubble. It may be that

depending on the total bubble energy and the location of energy

release in the bubble, the characteristics of bubble radiation (such

as ion cyclotron line strength, line emission vs. absorption) are dif-

ferent. If so, the burst spectra can provide a useful diagnostics for

the energy dissipation mechanisms of magnetar outbursts.
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M. A., Kiziloğlu Ü.,van Paradijs J., eds, NATO ASI Ser. C, Vol. 450,

The Lives of the Neutron Stars. Kluwer, Dordrecht, p. 71

Potekhin A. Y., 1996, A&A, 306, 999

Potekhin A. Y., Chabrier G., 2003, ApJ, 585, 955

Potekhin A. Y., Pavlov G. G., 1997, ApJ, 483, 414

Potekhin A. Y., Pavlov G. G., Ventura J., 1997, A&A, 317, 618

Potekhin A. Y., Lai D., Chabrier G., Ho W. C. G., 2004, ApJ, 612, 1034

Potekhin A. Y., Lai D., Chabrier G., Ho W. C. G., 2005, Adv. Space Res.,

35, 1158

Rea N., Israel G. L., Stella L., Oosterbroek T., Mereghetti S., Angelini L.,

Campana S., Covino S., 2003, ApJ, 586, L65

Rea N., Oosterbroek T., Zane S., Turolla R., Méndez M., Israel G. L., Stella

L., Haberl F., 2005, MNRAS, 361, 710

Rybicki G. B., Lightman A. P., 1979, Radiative Processes in Astrophysics.

Wiley, New York

Sokolov A. A., Ternov I. M., 1986, Radiation from Relativistic Electrons,

2nd edn. Am. Inst. Phys., New York

Storey M. C., Melrose D. B., 1987, Aust. J. Phys., 40, 89

Strohmayer T. E., Ibrahim A. I., 2000, ApJ, 537, L111

Terada Y. et al., 2006, ApJ, 648, L139

Thompson C., Duncan R. C., 1995, MNRAS, 275, 255

Thompson C., Duncan R. C., 1996, ApJ, 473, 322

Tiengo A., Mereghetti S., Turolla R., Zane S., Rea N., Stella L., Israel G. L.,

2005, A&A, 437, 997
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A P P E N D I X A : T R A N S I T I O N R AT E S F O R
C O U L O M B S C AT T E R I N G

Here we present the non-relativistic formulae for the collision rates

of charged particles in an arbitrary magnetic field, derived in the

Born approximation.

A1 Scattering off a fixed Coulomb centre

A1.1 Derivation of the cross-section for Z = 1

The motion of a charged particle in a magnetic field can be de-

scribed by different sets of wave functions, corresponding to differ-

ent choices of the electromagnetic gauge (e.g. Landau & Lifshitz

1976). Ventura (1973) studied the scattering by a fixed Coulomb

potential using the axially symmetric gauge of the vector potential

A = 1
2

B × r . Pavlov & Yakovlev (1976) found that the Landau

gauge (Ax , Ay , Az) = (0, −By, 0) facilitates obtaining a simpler

representation of the scattering rate. In the latter gauge, the ‘good’

quantum numbers are the Landau number N and the components kx

and kz of the wave vector of the particle. Assuming Z = 1, one can

write the coordinate wave function as

ψN ,kx ,kz (r ) = (Lx Lz)
−1/2eikx x+ikz zχN

(
y + kx a2

m

)
, (A1)

where

χN (y) = exp
( −y2/2a2

m

)
π1/4(2N N ! am)1/2

HN (y/am), (A2)

and HN (ξ ) = (−1)N eξ2
dN e−ξ2

/dξ N is a Hermite polynomial. The

functions χN(y) are ortho-normalized and have the following nice

property (Klepikov 1954; Kaminker & Yakovlev 1981):∫ ∞

−∞
χN

(
y − qx a2

m/2
)
χN ′

(
y + qx a2

m/2
)

eiqy ydy

= IN ′ N
(

q2
⊥a2

m/2
)

ei(N ′−N )arctan(qy/qx ). (A3)

Here q2
⊥ ≡ q2

x + q2
y , and IN ′ N is the Laguerre function (Sokolov &

Ternov 1986), defined as follows: if N ′ − N � 0, then

IN ′ N (x) =
√

N !

N ′!
e−x/2x (N ′−N )/2 L N ′−N

N (x)

= e−x/2x (N ′−N )/2

N∑
l=0

√
N !N ′! (−x)l

l! (N − l)! (N ′ − N + l)!
, (A4)

otherwise IN ′ N (x) = (−1)N−N ′
IN N ′ (x); Ls

N(x) is generalized

Laguerre polynomial.

Relation (A3) allows one to reduce the matrix element of the

transition |Nkx kz〉 → |N ′k ′
x k ′

z〉 to the form

M = 1

2πLx Lz

∫ ∞

−∞
e−Iqy (kx +k′

x )a2
m/2+i(N ′−N )arctan(qy/qx )

× IN ′ N
(

q2
⊥a2

m/2
)

Vq dqy, (A5)

where qx = k′
x − kx , qz = k′

z − kz , and

Vq = e2

∫
dreiq·r e−ksr

r
= 4πe2

q2 + k2
s

(A6)

is the Fourier transform of the potential. In this paper we use the

screened Coulomb potential for the electron–ion non-degenerate

plasma, for which ks equals the inverse Debye screening length.

Averaging the specific transition rate (2π/h)|M|2 δ(E′ − E)

(where E and E′ is the initial and final energy) over kx and sum-

ming it over k′
x and k′

z we obtain the transition rate per particle on

the level N with initial longitudinal velocity vz = hkz/m, in a volume

V = Lx LyLz :

W fix
N N ′ ≡ vzσ

fix
N N ′ (vz)

V

= Lx Lz

(2π)2

a2
m

L y

∑
±

∫ ∞

−∞
dkx

∫ ∞

−∞
dk ′

x

2π

h
|M |2

(
dE ′

d|k ′
z |

)−1

= 4π

τ0

m

me

a3
m

V

∑
±

wfix
N N ′ (u±)

u′ , (A7)

where τ 0 = h3/e4me is the atomic unit of time, σ fix
N N ′ (vz) is an ef-

fective partial cross-section,

wfix
N N ′ (u±) =

∫ ∞

0

I 2
N ′ N (t/2)

(t + u2±)2
dt, (A8a)

u± = [
(u ± u′)2 + u2

s

]1/2
, u = |kz |am, us = ksam, (A8b)

u′ = |k ′
z |am =

√
u2 + 2N − 2N ′, (A8c)

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 793–808



Statistical equilibrium in magnetized plasmas 805

and wfix
N N ′ should be set equal to zero when u2 < 2(N ′ − N). It is

easy to check that equations (A7), (A7) are equivalent to equations

(12), (13) of Pavlov & Yakovlev (1976).

A1.2 Classical limit

The function wfix
N N ′ (u±) belongs to a class of integrals studied

by Potekhin (1996). According to his equation (B21), based on

Kaminker & Yakovlev (1981), in the semiclassical limit

wfix
N N ′ (u±) ≈ (1/2)

(
u2

±/2 + N + N ′)
×[

(
√

N ′ −
√

N )2 + u2
±/2

]−3/2

×[
(
√

N ′ +
√

N )2 + u2
±/2

]−3/2
(N � 1, N ′ � 1).

(A9)

Using this approximation, one can demonstrate that equations (A7),

(A7) provide the correct classical cross-section in the limit B →
0, where N can be replaced by (p⊥am/h)2/2, p = mv = hk, p2

⊥ ≡
p2

x + p2
y . For example, consider a scattering event without screening

(ks = 0), where the particle moves in the xz plane at the angle θ to the

z axis before scattering and θ ′ = θ + α after scattering, θ < π/2, and

θ ′ < π/2. Taking into account that p′ = p and (p′
z pz − p′

⊥ p⊥)/p2 =
cos α = 1 − 2 sin2 α/2, from equation (A9) we obtain

wfix
N N ′ (u−) =

(
h

am

)4
1

8p3 sin4 α/2

1 − cos θ cos θ ′

1 − cos α
. (A10)

When N ′ � 1, a sum over N ′ can be replaced by an integral. Then,

according to equations (A7) and (A10), the effective cross-section

for transitions into a range of Landau levels between N ′ and N ′ + d

N ′ is

dσ = 4π

τ0

m

me

a3
m

vz

w(u−)

u′ dN ′ = 4π

τ0

m

me

a4
m

V h
w(u−)

p′
⊥dp′

⊥
p′

z

= πe4m (1 − cos θ cos θ ′) sin θ ′

2V p3 (1 − cos α) sin4 α/2
dθ ′. (A11)

In the cylindrically symmetric case, when θ → 0 and θ ′ → α,

equation (A11) becomes

dσ = e4

4m2v4
z

1

sin4 α/2
d�α, (A12)

where d�α is a solid angle element. This is the Rutherford

formula.

A1.3 Cross-section and average transition rate for arbitrary Z

For arbitrary charges of the scattered particle, Ze, and the Coulomb

centre, Z0e, one should replace am → am |Z|−1/2 in equations (A1)–

(A5) and Vq → Z0ZVq in equation (A5). Then

σ fix
N N ′ (vz) = 4πa3

m

vzτ0

m

me

Z 2
0

√
|Z |

∑
±

wfix
N N ′ (u±)

u′ , (A13)

where wfix
N N ′ , u±, and u′ are given by equations (A7) with modified

scaling of kz and k′
z , u = |kz |am|Z|−1/2 and u′ = |k′

z |am |Z|−1/2. Be-

sides, the Z-dependence of the Debye screening parameter us = ks

am should be taken into account.

If the velocities vz = hkz/mi have Maxwellian distribution (10),

then from equation (A13) we obtain the probability for one par-

ticle in the state N in unit volume to make a transition to the

state N ′

〈vzσ
fix
N N ′ (vz)〉 = 4

√
2π

τ0

m

me

Z 2
0

√
|Z | a3

m �̃fix
N N ′ , (A14)

where �̃fix
N N ′ ≡ √

β �fix
N N ′ ,

�fix
N N ′ =

∫ ∞

0

du

u′ e−βu2/2 θ (u′2)
∑

±
wfix

N N ′ (u±), (A15)

β = h|Z|eB/mcT . The function θ (u′2) is the step function, equal to

1 when u2 + 2(N − N ′) > 0 and 0 otherwise.

A1.4 Validity range and correction

The integral in equation (A15) diverges when N = N ′. This be-

haviour, which is well known for collision rates in the Born

approximation in one dimension, means nothing but viola-

tion of this approximation for low velocities of the colliding

particles.

A convenient parameter of the magnetic field strength at atomic

scales is γ B = b/(αfZZ0)2 = h3B/(m2c |Z|Z2
0e3), where αf is the

fine-structure constant. Born approximation is valid at |kz |, |k′
z | �

|ZZ0|e2m/h2, that is at u, u′ � γ
−1/2
B . The most important effect

of going beyond Born approximation is the suppression of the

amplitude of the longitudinal part of the wave function (the ex-

ponential in equation [A1]) near the Coulomb centre. At |kz | →
0 this amplitude becomes proportional to

√|kz |. Quantitatively,

when ln γ B � 1, the ratio of the square modulus of the ampli-

tude at |kzz| γ −1/4
B �u � 1 relative to its constant value at u � 1

equals C |kz |h2/(m|Z Z0|e2) = Cu
√

γB , where C = 2π/ln2γ B [1 +
O(1/ln γ B)] (Hasegawa & Howard 1961). Therefore, at u → 0 or

u′ → 0, |M|2 in equation (A7) becomes proportional to u or u′,
respectively, which compensates the diverging factor 1/u′ in equa-

tion (A15).

In order to eliminate the divergence of collision integrals in Born

approximation, similar to equation (A15), previous authors (Pavlov

& Panov 1976; Kaminker & Yakovlev 1981) introduced a cutoff at

the lower limit of integration for N = N ′. Instead of the cutoff, we

introduce weight function g(u)g(u′), with

g(u) = (
1 + γ −1

B u−2
)−1/2

. (A16)

Under the conditions γ B � 1 and βγ B � 1, Born approxima-

tion is valid for most of the velocity values that substantially con-

tribute to the integral in equation (A15). The latter condition can

be written as T � Z2
0Z2e4m∗/h2, which is the usual condition

of the applicability of Born approximation in the non-magnetic

case.

Apart from Born approximation, which consists in neglecting

the influence of the Coulomb potential on the longitudinal part of

the wave function (the exponential in equation [A1]), we have also

employed the adiabatic approximation, which consists in neglect-

ing perturbation of the transverse part of the wave function (χN in

equation [A1]). For the continuum wave functions, both approxi-

mations are always valid at z → ∞, but may become inaccurate

at the distances from the Coulomb centre comparable to the Bohr

radius. The adiabatic approximation remains sufficiently accurate at

small z provided that the parameter γ B , introduced above, is large.

Lowest-order perturbation corrections and exact solution to the con-

tinuum wave functions in a strong magnetic field beyond the adia-

batic approximation have been discussed, e.g. by Potekhin, Pavlov

& Ventura (1997).
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A2 Scattering of two charged particles

A2.1 Scattering of different particles

Let us consider Coulomb scattering of two particles with charges

Zi e (i = 1, 2). In the Landau gauge (Section A1) their wave functions

are

ψNi ,kx,i ,kz,i (r i ) = (Lx Lz)
−1/2eikx,i xi +ikz,i zi

× |Zi |1/4 χN

(|Zi |1/2
(

yi + kx,i a
2
m/Zi

))
, (A17)

where χN(y) is given by equation (A2). The excitation energy of

the two particles is E = heBc−1(|Z1|/m1 + |Z2|/m2) + m1v
2
z,1/2

+ m2v
2
z,2/2, where mi are masses of the particles, and vz,i their

longitudinal velocities.

Consider a transition in which the quantum numbers of the parti-

cles change from Ni , kx,i , kz,i to N ′
i , k′

x,i , k′
z,i (i = 1, 2). Wave functions

(A17) depend on x and z only through the plane-wave exponential

factor, which results in conservation of the x and z components of

the total momentum in the matrix element of any potential which

depends only on the relative position r 2 − r 1 of the two particles:

kx1 + kx2 = k′
x1 + k′

x2, kz1 + kz2 = k′
z1 + k′

z2. Since χN does not

depend on kz,i, we may choose the reference frame comoving with

the centre of mass in the z direction, so that kz2 = − kz1 ≡ kz . The

number of final states in dk′
x,1 dk′

x,2 dk′
z is (2π)−3L2

x Lz dk′
x,1 dk′

x,2 dk′
z

= (2π)−3L2
x Lz dk′

x,1 dk′
x,2 dE′ m∗/h2|k′

z |, where m∗ = m1m2/(m1 +
m2) is the reduced mass.

Using Fourier decomposition of the interaction potential V (r ) =
(2π)−3

∫
dq e−iq·r Vq (where r =r 2 −r 1), and assuming Lx and Lz to

be large, we can perform the integration over x1, qx, z, and qz in the

matrix element M for the transition |N1, N2, kx,1, kx,2, kz〉 → |N ′
1,

N ′
2, k′

x,1, k′
x,2, k′

z〉. This integration fixes qx = k1,x − k′
1,x and qz =

k′
z − kz in Vq. Furthermore, using equation (A3), we can perform

integration over y1 and y2. Then we obtain

M = 1

2πL2
x Lz

∫
dx2 e

i(qx +kx,2−k′
x,2

)x2

∫
dqy Vq

×IN ′
1

N1

(
q2

⊥a2
m

2 |Z1|

)
IN ′

2
N2

(
q2

⊥a2
m

2 |Z2|

)
× exp

[
ia2

m

(
kx,1 + k ′

x,1

2 Z1

− kx,2 + k ′
x,2

2 Z2

)
qy

]
× ei [(N ′

1
−N1) signZ1+(N ′

2
−N2) signZ2] arctan(qy/qx ). (A18)

By averaging |M|2 over kx,2 and summing over k′
x,2, we arrive at

〈|M |2〉2 ≡
∫

a2
m dkx,2

|Z2| L y

∫
Lx dk ′

x,2

2π
|M |2

= 1

2πL2
x L y L2

z

∫
dqy |Vq |2 I 2

N ′
1

N1

(
q2

⊥a2
m

2 |Z1|

)
I 2

N ′
2

N2

(
q2

⊥a2
m

2 |Z2|

)
.

This expression does not depend on kx,1, and therefore it does not

require another averaging. Finally, summation of the specific tran-

sition rate (2π/h)〈 |M|2〉2 δ(E′ − E) over k′
x,1 and k′

z gives the partial

transition rate from N1, N2 to N′
1, N′

2 for two particles in volume

V = Lx LyLz

WN1 N2; N ′
1

N ′
2

≡ V −1vz σN1 N2; N ′
1

N ′
2
(vz)

= Lzm∗
h3|k ′

z |
∑
sign k′

z

∫
Lx dk ′

x

2π
〈|M |2〉2

= 4π

τ0

m∗
me

Z 2
1 Z 2

2

a3
m

V

1

u′
∑

±
wN1,N2; N ′

1
,N ′

2
(u±), (A19)

where

wN1,N2; N ′
1
,N ′

2
(u) =

∫ ∞

0

dt

(t + u2)2

× I 2
N ′

1
N1

(
t

2 |Z1|

)
I 2

N ′
2

N2

(
t

2 |Z2|

)
. (A20)

Here u± = [(u ± u′)2 + u2
s ]1/2, u = |kz |am, us = ks am, and

u′ =
[

u2 + 2 m2|Z1|
m1 + m2

(N1 − N ′
1) + 2 m1|Z2|

m1 + m2

(N2 − N ′
2)

]1/2

.

(A21)

The last equation represents the energy conservation law. The tran-

sition is energetically forbidden when the expression in square

brackets is negative. Note that we have redefined u and u′ com-

pared to the definition used in equations (A13)–(A15): now Zi en-

ter equation (A21). Clearly, wN1,N2; N ′
1
,N ′

2
(u) = wN ′

1
,N2; N1,N ′

2
(u) =

wN1,N ′
2
; N ′

1
,N2

(u). In addition, if Z1 = Z2, then wN1,N2; N ′
1
,N ′

2
(u) =

wN2,N1; N ′
2
,N ′

1
(u).

A2.2 Scattering of identical particles

The derivation of the transition rates for identical particles

can be patterned after Section A2.1, but with initial and fi-

nal wave functions in the form [ψN1,kx1,kz1
(r 1)ψN2,kx2,kz2

(r 2) ±
ψN1,kx1,kz1

(r 2)ψN2,kx2,kz2
(r1)]/

√
2, where ψN ,kx ,kz (r ) is given by

equation (A17). The resulting partial transition rate from N1, N2

to N ′
1, N ′

2, averaged over initial and integrated over final kx values,

is

W ±
N1,N2; N ′

1
,N ′

2
= 2

(
WN1,N2; N ′

1
,N ′

2
± W x

N1,N2; N ′
1
,N ′

2

)
, (A22)

where the sign + (−) refers to the states with even (odd) total spin,

WN1,N2; N ′
1
,N ′

2
is given by equation (A19),

W x
N1,N2; N ′

1
,N ′

2
= 8π

τ0

m∗
me

|Z |3
u′ wx

N1,N2; N ′
1
,N ′

2
(u−, u+), (A23)

and

wx
N1,N2; N ′

1
,N ′

2
(u−, u+) =

∫ ∞

0

dt

(t + u2+/|Z |)(t + u2−/|Z |)
× IN ′

1
N1

(t/2) IN ′
2

N2
(t/2) IN ′

2
N1

(t/2) IN ′
1

N2
(t/2). (A24)

The latter function satisfies symmetry relations

wx
N1,N2; N ′

1
,N ′

2
(u−, u+) = wx

N1,N2; N ′
1
,N ′

2
(u+, u−) =

wx
N2,N1; N ′

1
,N ′

2
(u−, u+) = wx

N1,N2; N ′
2
,N ′

1
(u−, u+) =

wx
N ′

1
,N ′

2
; N1,N2

(u−, u+).

A P P E N D I X B : C RO S S - S E C T I O N S O F
F R E E – F R E E P H OTOA B S O R P T I O N

In order to calculate a cross-section of the free–free absorption in

a magnetic field, it is important to take into account the the ion–

electron centre of mass motion effects, even though mp � me.

Potekhin & Chabrier (2003) performed quantum calculations of

this cross-section and demonstrated a correspondence to the clas-

sical dielectric tensor (Ginzburg 1970). The result can be written

as

σ ff
α (ω) = 4πe2

mec

ω2 νff
α (ω)

(ω + αωce)2(ω − αωcp)2 + ω2ν̃2
α(ω)

, (B1)
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νff
α (ω) =

∑
n,N

f e
n f p

N

∑
n′,N ′

ν
ff,α
n,N ; n′,N ′ (ω), (B2)

ν̃α(ω) =
(

1 + α
ωce

ω

)
νp(ω) +

(
1 − α

ωcp

ω

)
νe(ω) + νff

α (ω).

(B3)

Hereα =0,±1 is the polarization index, νff
α is the effective frequency

of the electron–ion collisions for a given photon frequency ω, f p
N

and f e
n are the fractions of the protons and electrons in Landau states

N and n, σ ff
α; n,N ; n′,N ′ (ω) is a partial photoabsorption cross-section for

a transition in which the electron and proton change their Landau

quantum numbers from n to n′ and from N to n′, respectively. Finally,

νp and νe in equation (B3) are effective damping factors for protons

and electrons, respectively, not related to the electron–proton colli-

sions (for example, Ginzburg 1970 considers collisions of electrons

and protons with molecules). The derivation of the damping fac-

tor (B3) from the complex dielectric tensor of the plasma assumes

νe � ωce, ν̃α � ωce, and νp � ωcp .

Potekhin & Chabrier (2003) calculated ν
ff,α
n,N ; n′,N ′ (ω) assuming

LTE. Following their approach without LTE, however retaining the

Maxwell longitudinal distributions (10), we present the result as

follows:

ν
ff,α
n,N ,n′,N ′ (ω) = 4

3

√
2π

meT

ne e4

hω
�

ff,α
n,N ; n′,N ′ (β∗, ω/ω∗), (B4)

where for α = 0

�
ff,0
n,N ; n′,N ′ (β∗, ω/ω∗) = 3

2

∫ ∞

0

du

u′ e−β∗u2/2 θ (u′2)

×
∑

±
(u′ ± u)2 w

(0)
n,N ; n′,N ′ (u±), (B5)

and for α = ±1

�
ff,α
n,N ; n′,N ′ (β∗, ω/ω∗) = 3

2

∫ ∞

0

du

u′ e−β∗u2/2 θ (u′2)

×
∑

±

[
m2

∗
m2

e

(
1 − α

ωcp

ω

)2

w
e,α
n,N ; n′,N ′ (u±)

+ 2m pme

(mp + me)2

(
1 − α

ωcp

ω

)(
1 + α

ωce

ω

)
w

x,α

n,N ; n′,N ′ (u±)

+ m2
∗

m2
p

(
1 + α

ωce

ω

)2

w
i,α
n,N ; n′,N ′ (u±)

]
. (B6)

Here β∗ = hω∗/T = heB/m∗cT = βpmp/m∗, and the arguments

u± = [(u ± u′)2 + u2
s ]1/2, u = |kz |am, us = ks am, and

u′ =
[

u2 + 2m∗
m p

(N − N ′) + 2m∗
me

(n − n′) + 2ω

ω∗

]1/2

(B7)

have the same meaning as in Appendix A. The functions w(u±) are

defined as

w
e,+1
n,N ; n′,N ′ (u) =

∫ ∞

0

ρ dρ
[√

n′ + 1 ṽn,s,n′+1,s′−1(ρ, u
√

2)

− √
n ṽn−1,s+1,n′,s′ (ρ, u

√
2)

]2
, (B8a)

w
p,+1

n,N ; n′,N ′ (u) =
∫ ∞

0

ρ dρ
[√

N ′ ṽn,s,n′,s′−1(ρ, u
√

2)

− √
N + 1 ṽn,s+1,n′,s′ (ρ, u

√
2)

]2
, (B8b)

w
x,+1
n,N ; n′,N ′ (u) =

∫ ∞

0

ρ dρ
[√

n′ + 1 ṽn,s,n′+1,s′−1(ρ, u
√

2)

−√
n ṽn,s+1,n′,s′ (ρ, u

√
2)

] [√
N ′ ṽn,s,n′,s′−1(ρ, u

√
2)

− √
N + 1 ṽn,s+1,n′,s′ (ρ, u

√
2)

]
, (B8c)

where s = N − n and s′ = N ′ − n′ are the relative proton–

electron orbital quantum numbers, and ṽn,s,n′,s′ (ρ, x) are the scaled

Fourier transforms of the effective potentials defined in Appendix

B of Potekhin & Chabrier (2003).4 Due to the symmetry prop-

erties of these potentials we have w
(e,p,x),−1

n,N ; n′,N ′ (u) = w
(e,p,x),+1

N ,n; N ′,n′ (u).

Finally,

w
(0)
n,N ; n′,N ′ (u) =

∫ ∞

0

ρ dρ ṽ2
n,s,n′,s′ (ρ, u

√
2). (B9)

One can demonstrate that the integrals (B8) are symmetric with

respect to interchange of their indices n, n′ or n, n′, and moreover,

all of them coincide with one another. It follows that equation (B6)

simplifies to

�
ff,±1
n,N ; n′,N ′ (β∗, ω/ω∗) = 3

2

∫ ∞

0

du

u′ e−β∗u2/2 θ (u′2)

× [
w

(1)
n,N ; n′,N ′ (u+) + w

(1)
n,N ; n′,N ′ (u−)

]
, (B10)

where w
(1)
n,N ; n′,N ′ (u) is any of the integrals (B8).

The integral (B10) diverges at ω → ωcp(N ′ − N) + ωce(n′ −
n), which is caused by the failure of Born approximation at slow

electron–proton relative motion. As discussed in Section A1.4, this

failure can be cured by introducing correction factors (A16) under

the integral.

The functions w
(0,1)
n,N ; n′,N ′ (u) can be presented as

w
(α)
nN ; n′ N ′ (u) = 1

2

∫ ∞

0

t |α| dt

(t + u2/2)2
I 2

n′,n(t) I 2
N ′ N (t), (B11)

This alternative representation can be obtained by passing from the

cylindrical to Landau gauge in the derivation of the free–free cross-

section (Appendix B of Potekhin & Chabrier 2003), taking into

account equation (A3) and recurrence relation Ls
n(x) − Ls

n−1(x) =
Ls−1

n (x).

We see that w
(0)
n,N ; n′,N ′ (u) coincides with wn,N ; n′,N ′ (u) given by

equation (A19) at Z1 = Z2 = 1, Thus, for a given initial (n, N)

and final (n′, N ′) Landau quantum numbers, the effective rates of

the electron–proton radiative and non-radiative transitions are de-

termined, for any B, T, and ω, by one-dimensional integrals in-

volving just two universal functions w
(0,1)
n,N ; n′,N ′ (u). These functions

are smooth and monotonically decreasing. At u � 1 they tend to

constants, except for the following cases: (i) if n′ = n and n′ = n,

then w
(1)
n,N ; n′,N ′ (u) ∼ ln u and w

(0)
n,N ; n′,N ′ (u) ∼ u−2; (ii) if n′ = n and

N ′ = N ± 1 (or n′ = n and N ′ = N ± 1), then w
(0)
n,N ; n′,N ′ (u) ∼ n∗ ln u,

where n∗ = max(N, N ′) (or n∗ = max(N, N ′), respectively). At

u � 1, w
(α)
n,N ; n′,N ′ (u) ∝ u−4.

The approximation of infinitely massive ions (Pavlov & Panov

1976) is reproduced by setting ωcp = 0 in equation (B1) and replac-

ing I 2
N ′ N (t) by

∑∞
N ′=0

I 2
N ′ N (t) = 1 in equation (B11).

Since equation (B1) is classical (although the factors νff
α and ν̃α

need quantum calculation), we may extend it to Z > 1. In this case

the right-hand side of equation (B4) should be multiplied by Z2,

and the coefficient �n,N ; n′,N ′ will be different. By analogy with

4 In equation (B7) of Potekhin & Chabrier (2003) the factor
√

s̃ s̃′ (a typo)

must be
√

s̃!s̃′!.
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the general case of non-radiative Coulomb collisions, considered in

Section A2.1, the latter difference consists in replacing of I 2
N N ′ (t)

by I 2
N N ′ (t/Z ) in equation (B11) and multiplying (N − N ′) by Z

in equation (B7). This simple generalization to the Z �= 1 case is

possible only in the adiabatic and Born approximations, which we

use in this paper. Beyond these approximations, the effects of centre-

of-mass motion of an ion–electron system affect the initial and final

wave functions in a non-trivial way. Continuum wave functions with

allowance for these effects have been so far calculated only for Z =
1 (Potekhin & Pavlov 1997).
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