Physics of neutron star surface layers and their
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Abstract. I briefly review the physical properties of neutron star surface layers, important for the
stellar thermal radiation, taking into consideration the effects of strong magnetic fields.
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INTRODUCTION

Envelopes of neutron stars (in the wide sense) comprise the stellar atmosphere, ocean,
outer and inner crusts, and possibly mantle (e.g., [1], and references therein). Although
the envelopes constitute less than 10% of the mass M of a typical (with M ~ 1—2 M,
and radius R ~ 10 — 15 km) neutron star, they play an important role. For example,
neutrino emission in the crust affects the initial (~ 100 yr) thermal relaxation of the star
[2]. Depending on the heat capacity and thermal conductivity in the crust, this initial
relaxation can leave an imprint on the subsequent cooling history (e.g., [3]). The shear
viscosity of the crust affects localization and damping of stellar oscillations (e.g., [4],
and references therein). The glitches of radio pulsars can be associated with depinning
of superfluid vortices in the crust (see, ¢.g., [5], for review).

The outer envelopes (envelopes in the restricted sense) lie at densities smaller than the
neutron drip density pxp ~~ 4 x 1011 g cm—3. In a typical neutron star, the outer envelopes
are several hundred meters thick and constitute < 10~ of the stellar mass (see, e.g.. [1]).
This thin layer of a dense plasma provides thermal insulation of the stellar interior and
controls thus the cooling of a neutron star and its photon luminosity. Furthermore, the
properties of the atmosphere (only a few centimeters thick) or the condensed surface
(see below) determine the spectrum, beaming, and polarization of emitted radiation.

Apart from its importance for neutron star modeling, the physics of the outer en-
velopes of neutron stars is interesting on its own. Because the values of temperatures
T and densities p in the largest part of these envelopes cannot be reached in terrestrial
experiments, a comparison of observations of neutron star thermal radiation with theo-
retical predictions can be invaluable for the physics of dense plasmas. Moreover, most
of the currently known neutron stars possess strong magnetic fields B, which cannot be
created in laboratory. Therefore, some unique magnetic phenomena, that occur in the
neutron star envelopes, should be taken into account in neutron star models and can
potentially be revealed by observations.

I briefly review astrophysically important physical properties of matter in the outer
envelopes of neutron stars, focusing on surface layers responsible for thermal emission.
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NONMAGNETIZED OUTER ENVELOPES

Fully ionized plasma

Sufficiently deep layers of neutron star envelopes are fully ionized. This regime can
be defined by the requirement that the spacing a; = [3/ (47mi)]1/ 3 between ions is small
compared to the radius of the atomic core, which at B = 0 leads to the condition [6]
p > peip = miZ/ay ~ 10AZ g cm . Here n; is the ion number density, ag is the Bohr
radius, m; = Amy, is the ion mass, m, is the atomic mass unit, 4 and Z are the ion mass and
charge numbers. At p > peip, a model of an electron-ion plasma of bare pointlike nuclei
on an ¢lectron-liquid background can provide a good approximation for thermodynamic
functions. Generally, the background is compressible, and Coulomb correlation of ions
and electrons should be taken into account.

The state of a free electron gas is determined by the electron number density
n, and temperature 7. It is convenient to introduce the parameter x; = pp/mec ~
1.009 (pg(Z) /(A))'/3, where pr = h(3m%n.)'/? is the electron Fermi momentum,
ps=p/10° gcm =, and (...) means the average over number fractions of ion species.
The electron gas is nonrelativistic at 7 < 7; and x; < 1 and ultrarelativistic at x; > 1 or
T > T, where T; = mec? /kp ~ 5.93 x 10° K and kg is the Boltzmann constant,

The strength of the Coulomb interaction of electrons and ions in a plasma can be
characterized by the electron and ion Coulomb coupling parameters:
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where 75 = 7/10% K and a, = [3/(47n,)]"/? is the mean distance between electrons.

The averaging in the last equality in (1) is justified by the “lincar mixing law” (e.g.,
[7, 8]). However, the case of a mixture of ions with strongly different Z, corresponding
to large and small partial " values, is more complicated, as recently shown in [9].

The electron degeneracy is usually characterized by the parameter 6 = 7' /7y, where
Tr =T; (% — 1) is the electron Fermi temperature (the Fermi energy in temperature units)
and % = /1 +x,2. In the non-relativistic and ultrarclativistic cases (x; < 1 and x; >> 1),
at B = 0, this parameter equals 6 = 0.543r/T, and 8 = (263T,)~!, respectively.

Another important parameter is the screening length. In the linear plasma response
approximation, the length r, of electron screening is r. = (47me® dn. /0 ,ug)fl/ * where
U is the electron chemical potential. For 7 > T, r. equals the Debye length for the
electrons: r, =~ a/ V3T, For T < T, r, 1 equals the Thomas-Fermi wave number.
In this case, 7o = (0¥%xr/7) 20/ (2mec) ~ 5.4 \/x; /% ae, where o = €2/ (hc) ~ 1.
The ion screening at ' < 0.1 is determined by the Debye radius rp = ((30/a?)) /2.
However, atT" 2 0.1 the Debye theory does not apply. In this case one can use an effective
screening length r; [10, 11], which equals rp at T’ < 1 and is ~ g; at 1 ST < 100. The
total effective screening length in the electron-ion fluid equals 7 = (r, %+ 7, 2 -1z,

At sufficiently strong coupling between the ions, their infinite motion is replaced by
oscillations near equilibrium positions: the plasma solidifies. For a typical middle-age
neutron star, this occurs at p > 10® g cm—3. In the rigid electron background model, the
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liquid-solid phase transition occurs at I = 175, but the electron response (screening) can
shift this value by tens per cent [12].

The effects of collective oscillations of plasma particles are characterized by the elec-
tron and ion plasma frequencies — @y, = (4me?n,/m%)V/? and wy; = (4me?n;/mt)1/2,
respectively, where m) = m.7% is the effective dynamical mass of an electron on the

Fermi surface. The corresponding energies are @y, ~ 28.437(xf/ 2/%1/ 2) keV and

Froy; = 0.675 [(ps/ (4))(Z*/4)]'/? keV.

At kgT < hay,;, the quantization of ion motion is very important. Moreover, for light
elements (H and He) the zero-point quantum vibrations of ions may hamper lattice
ordering, and one gets the quantum liquid instead of the Coulomb crystal (e.g., [13],
and references therein; see also a discussion and references in [1]).

Thermodynamic functions of the fully ionized electron-ion plasma can be presented
as sums of the terms corresponding to the contributions of the ideal ion (i) and electron
(e) gases, the exchange-correlation (xc) contribution for the electrons, the ion-ion (ii)
nonideal part (which includes the Coulomb correlations), and the contribution due to
the ion-¢electron (ie) interactions (at arbitrary 0, x;, and I" these terms can be calculated
using analytical fitting expressions [1]). For example, the pressure is represented as

P:ES)+E§)+PXC+R1+EG (2)

For a strongly degenerate (7 < Tr) and fully ionized plasma, the main contribution in
Eq. (2) comes from the term

N Pr ngad
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where P, = m.c?/ 7CC3 = 1.4218 x 10% dyn cm 2 is the relativistic unit of the electron

pressure, £ = h/(mec) = 386.16 fm is the electron Compton wavelength, and 7,4 is an

effective adiabatic index, equal to 5/3 for x, < 1 and 4/3 for x, > 1.

However, the leading contribution to the heat capacity C in the important p — 7T
domain ~m,; S kT < kgTr is provided by the ions: C ~ Ci((;) +Cy.

The calculation of radiative opacities of a fully ionized plasma is relatively simple:
one has to take into account only the Thomson (Compton) scattering and free-free
transitions. For the latter transitions, calculations of the cross sections beyond the Born
approximation are available as fitting formulae [14]. For the Rosseland opacities, the
relevant fit has been produced in [15]. A correction factor to this fit was introduced in
[16]: it is important at high p, where hiwy,. 2 k7', and approximately takes into account
the suppression of radiative transport at photon frequencies @ < pe.

The radiative opacities in the atmosphere control the formation of the spectrum at a
given radiation flux. This flux, however, is mainly determined by conductive opacities
in subphotospheric layers. The most recent practical formulae for calculation of the
conductive opacities in nonmagnetized, fully ionized plasmas, and relevant references
can be found in [11, 17]. For the theory of neutron star thermal structure, thermal
luminosity, and cooling, see the review [18] and references therein.
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Partial ionization

A partially ionized plasma is present in neutron star envelopes at relatively low p and
T'. The larger the ion charge number Z, the higher the values of p and 7" up to which the
plasma is partially ionized.

A theoretical description of the partial ionization can be based cither on the physical
picture or on the chemical picture of the plasma. In the chemical picture, bound objects
(atoms, molecules, ions) are treated as clementary members of the thermodynamic
ensemble, along with free electrons and nuclei. In the physical picture, nuclei and
electrons (free and bound) are the only constituents of the ensemble. Relative merits and
shortcomings of the two approaches are discussed, ¢.g., in [19], where many relevant
references can be found. Models based on the chemical picture have the advantage that
they provide detailed information about occupation numbers of various species in the
plasma, which enables one to calculate radiative opacities.

In recent years, the nonmagnetic atmosphere models are usually based on the
databases created due to two large-scale opacity projects: OP (Ref. [20], and references
therein) and OPAL (e.g., [21]). The OP results are based entirely on the chemical
picture, whereas the OPAL project uses the physical picture for the thermodynamic
functions and introduces elements of the chemical picture for evaluating the abundances
of species and calculating opacities. The OP database includes the most detailed atomic
calculations. However, the OPAL data cover higher values of p, and therefore they are
commonly used for modeling the dense atmospheres of neutron stars [22-24]. At still
higher p, the nonideality effects lead to pressure ionization, which is hard to treat. For
example, the equation of state for partially ionized carbon, which covers any densities
at temperatures relevant for neutron stars (7 ~ 10° K) and contains detailed information
on occupation numbers, was developed only recently [25].

THE EFFECTS OF STRONG MAGNETIC FIELDS

Fully ionized plasma

Magnetic fields B > 10'2 G, typical for isolated neutron stars, drastically modify many
physical properties of matter (see, e€.g., [26], for review). Motion of free electrons and
ions perpendicular to the field lines is quantized into Landau orbitals with a characteristic
transverse scale equal to the magnetic length ay, = (fic/eB)Y/2. This brings to the scene
an atomic field-strength parameter ¥ = (ag/am )?. If this parameter is large, the Lorentz
force acting on valence electrons in atoms exceeds the Coulomb force. The Landau
energy levels of electrons are modified by relativistic effects if the field strength in the
relativistic units, b =A@,/ (m.c*) = B/By, is > 1. Here, @ = eB/(m.c) is the electron
cyclotron frequency (ha, =~ 11.577B12 keV) and B, = m2c3/(eh) = 4.414 x 102 G is
the relativistic magnetic field unit. Introducing the notation Bi, = B/ 1012 G, we have
vY=425.44B15, and b = ocfzy = B12/44.14. A magnetic field is usually called strong if
v>> 1 (typical for radio pulsars) and superstrong if b > 1 (which occurs in magnetars).

Magnetic field quantizes particle motion in Landau levels. In this case the decomposi-
tion of thermodynamic functions, like (2), remains useful, but its terms are modified. The

124



quantization can be neglected if the particles occupy a great number of the Landau levels.
For electrons, this happens if p >> pg ~ 70453%2(<A>/<Z>) gem 3 orif kgT > ha
(the latter criterion is approximate; see [1] for a more accurate one). In this case the
thermodynamic functions of the plasma remain the same as at B = 0. In the opposite
case, where p < pp and kT < ho, the field is strongly quantizing: in equilibrium, all
electrons reside in the ground Landau level. In the latter case, for example, the pressure
of strongly degenerate ideal electron gas [cf. Eq. (3)] becomes Pi(dg) ~ Prbxgad (27%7aa).
where xp = (4p2/3p3)"/3x, is the magnetically modified relativity parameter (xg o< p),
and 7,4 takes the values 3 and 2 in the non-relativistic (xg < 1) and ultrarelativistic
(xg > 1) limits, respectively.

One can note that the kinetic pressure, calculated through electron velocities and
momenta, is anisotropic in a magnetic field (e.g., [27, 28]). However, the kinetic pressure
is only a part of the total pressure in the magnetized electron gas. Its anisotropy is exactly
balanced by the pressure excess caused by magnetization currents [28, 29]. Thus, the
thermodynamic pressure is isotropic (the stress tensor reduces to scalar) at any B.

Consecutive population of upper Landau levels by degenerate electrons with grow-
ing . leads to magnetic quantum oscillations of thermodynamic and kinetic functions.
When the field is weakly quantizing, these quantities oscillate, as a rule, around their val-
ues obtained neglecting the magnetic quantization. For first-order (bulk) thermodynamic
quantities (¢.g., P), the oscillations are relatively weak, but for second-order quantities
(e.g., r., heat capacity, or magnetic susceptibility [28]) they are more pronounced.

A magnetic field quantizes not only electrons, but also ions. Their Landau levels are
separated by he,; =~ 6.35(Z/4)B1, eV, where @ = Z (m./m;) @ is the ion cyclotron
frequency. In a plasma, this effect becomes appreciable (e.g., [1]) when @ > @p; and
hag > kpT. This happens at Bi> 2 max(100./ps,107s). In contrast to the case of
electrons, the spin degeneracy of the Landau levels of the ions is taken off completely
because of relatively large abnormal magnetic moments of the nuclei.

In the general case (arbitrary 6, x; or xp, I', and B), thermodynamic functions of
electron-ion plasmas are given in [1] by analytical fitting functions of y.. A numerical
inversion of p(fi.) then provides all thermodynamic parameters as functions of p.

Under the conditions formulated in [30, 31], which are typical for strongly magne-
tized neutron star atmospheres, radiation propagates in the form of two normal modes
with different elliptical polarizations. For so-called X-mode, the opacities are strongly
suppressed by the field at @ < @. This leads to suppression of the Rosseland opacities
(fitted in [15]) and increase of the atmosphere densities. The thermal radiation from the
atmosphere becomes polarized [32] and beamed [33] in a nontrivial way.

The two modes can partially convert to each other at certain p (for each ®) due
to the vacuum resonance, which arises from interference of the plasma and vacuum
polarizations [31]. This effect, which becomes very important in superstrong fields, has
been recently studied in Ref. [34] (see also references therein).

The conductive opacities are also strongly affected by the magnetic field. First, the
conduction becomes anisotropic, strongly suppressed in the direction transverse to
the field. Second, the conductivities are modified by the quantizing magnetic field. A
strongly quantizing field can change them by orders of magnitude; a weakly quantizing
field makes them oscillating (like the oscillations of thermodynamic quantities, men-
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tioned above). Fitting formulae for the conductive opacities due to electron-ion scatter-
ing have been derived in [35]. The impact of the magnetic fields on the thermal structure
of neutron star envelopes is discussed, ¢.g., in Ref. [36] and references therein.

Partial ionization and condensed surface

Now let us consider partially ionized and strongly magnetized matter. In this case, one
should take into account drastic changes of atoms and molecules, as well as formation of
exotic species (e.g., molecular chains [37]). Moreover, the internal degrees of freedom of
atoms, molecules, and ions become coupled to their center-of-mass motion. In addition,
the strong magnetic field can induce formation of a condensed surface. Many authors at-
tacked these problems during decades; a review can be found in [26]. The case of atomic
hydrogen remains the only one, where atomic calculations have been completed with al-
lowance for motion effects for any quantum states (bound [38] and continuum [39]),
and presented as analytical fitting formulae [40]. Based on these results, thermodynamic
functions of H plasmas have been calculated and tabulated for p, 7', and B values typical
for radio pulsars (B ~ 1012 — 10'3 G) [41, 42] and magnetars (B > 10'* G) [43]. These
results were subsequently employed for calculation of radiative opacities and polariza-
tion vectors of normal electromagnetic modes in partially ionized, strongly magnetized
H plasmas, and for modeling hydrogen atmospheres of neutron stars with strong mag-
netic fields — see [44] for review and references. Calculations of binding energies and
oscillator strengths have been published also for the bound states of the He™ ion [45, 46].

Apart from the one-¢lectron systems H and He™, there was no published calculations
of quantum-mechanical properties of moving atoms and ions in strong magnetic fields,
except for perturbational studies of restricted applicability ([47], and references therein).
Recently Mori and Heyl [48] have implemented the perturbational approach in calcula-
tions of the ionization and dissociation equilibrium of the helium plasma.

The studies of the atoms, ions, and molecules, which do not move with respect to
the field, have been much more numerous. Reviews can be found in [26] and in [1].
Especially note recent studies by Mori and Hailey [49] and Medin and Lai [50], who
obtained the most credible binding energies for astrophysically important atoms, ions,
and (in [50]) molecules, including the polymer chains, in strong magnetic fields. Mori
and Hailey [49] calculated also oscillator strengths of bound-bound transitions. Mori and
Ho [51] extended these calculations and used them for modeling strongly magnetized
neutron star atmospheres composed of mid-Z elements (carbon, oxygen and neon). For
bound-free transitions (photoionization), cross sections were calculated for H (with full
account of the motion effects [39, 42, 43]) and He (with motion treated by perturbation
[52]). Apart from H [41-43] and He [48], ionization equilibrium in strong magnetic
fields at temperatures and densities relevant for neutron star atmospheres was calculated,
although without full account of the motion effects, for C, O, Ne [51], and Fe [53].

Condensed surface. Inthe absence of the magnetic field, the temperature of neutron

star atmosphere exceeds the critical temperature of a phase transition, so that a con-
densed zero-pressure surface is not formed. However, a strong magnetic field changes
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this situation. Ruderman [37] pointed out that polymer chains aligned with the strong
magnetic fields should attract one another because of the quadrupole-quadrupole inter-
actions, and eventually form a solid. The magnitude of such interaction for hydrogen
chains was estimated by Lai and Salpeter [54] who concluded that hydrogen may form
a solid stellar surface at superstrong fields (B >> 1013 G).

Foriron and other heavy elements, the situation remained very uncertain until recently
(see [26] for review). A great step forward, however, has been done by Medin and
Lai [55], who calculated the electronic structure of one-dimensional infinite chains and
three-dimensional condensed matter in strong magnetic fields ranging from B = 1012 G
to 2 x 101> G using the density functional theory a local magnetic exchange-correlation
function appropriate in the strong field regime, and taking into account the electron
band structure. They computed the work function and studied the cohesive property of
three-dimensional condensed matter of H, He, C, and Fe at zero pressure, constructed
from interacting chains in a body-centered tetragonal lattice. Such three-dimensional
condensed matter is found to be bound relative to individual atoms, with the cohesive
energy increasing rapidly with increasing 5. Reflection and emission properties of a
condensed matter in strong magnetic fields and spectra and polarization of thermal
radiation emitted by such surface were studied in [56] (see also references therein).

CONCLUDING REMARKS

Surface layers of neutron stars possess a number of unusual properties due to the high
gravity (and therefore high densities of the envelopes) and strong magnetic fields. In
this brief review I have given only a little slice of the problems and developments
in the theory of neutron star envelopes. However, even this slice demonstrates the
immense richness of physical phenomena which are unique to neutron star envelopes,
especially those with strong and superstrong magnetic fields. Many of these phenomena
and properties require further study.
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