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Liquid crystals in the mantles of neutron stars
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Abstract

Recent calculations indicate that in the outer parts of neutron stars nuclei are rod-like or slab-like, rather than roughly
spherical. We consider the elastic properties of these phases, and argue that they behave as liquid crystals, rather than rigid
solids. We estimate elastic constants and discuss implications of our results for neutron star behavior. q 1998 Published by
Elsevier Science B.V. All rights reserved.

PACS: 26.60.qc; 61.30.-v; 62.20.Dc; 97.60.Jd
Keywords: Dense matter; Liquid crystals; Elasticity, elastic constants; Neutron stars

w xIn the standard picture 1 , the outer part of a
neutron star is a solid from the bottom of the ocean
of melted iron at a density r;106–108 g cmy3

Ž .depending on temperature down to the boundary
with the core of the star at a density of order the
saturation density of nuclear matter, r ;3=1014 gs

cmy3, and matter consists of roughly spherical atomic
nuclei arranged on a regular bcc lattice. Charge
neutrality is provided by a background of electrons,
and, at densities in excess of about 4=1011 g cmy3,
there is a neutron liquid between the nuclei. How-
ever, recent work indicates that, in roughly half of
the matter by mass in what is traditionally referred to
as the ‘‘crust’’ of a neutron star, the nuclei are very
aspherical, and have the form of essentially infinitely

Žlong rods or infinitely extended slabs for a review,
w x. w xsee Ref. 2 . Following Ref. 3 , we shall refer to

these phases as mesomorphic phases, since they have
properties intermediate between liquids and solids.

The possibility of nuclei in matter at sub-nuclear
densities adopting very non-spherical shapes was
first pointed out in the context of stellar collapse by

w xRavenhall et al. 4 , and confirmed by other authors
w xusing other models 5–8 . With increasing density,

nuclei become first rods, then slabs. This is followed
by two ‘‘inside-out’’ phases in which there are cylin-
drical or spherical ‘‘bubbles’’ in the nuclear matter.
Subsequently the transition to the uniform liquid
phase occurs. For neutron star matter with dripped

w xneutrons, Lorenz et al. 9 found a similar sequence
of phase transitions, and these conclusions were

w xconfirmed by other investigators 10,11 .
Mechanical properties of the outer parts of neu-

tron stars are important in attempting to understand
many aspects of neutron star behavior, including
glitches in the pulse repetition rate, magnetic field
evolution, and neutron star models for g-ray bursts
w x12–14 . Our purpose in this Letter is to discuss the
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elastic properties of the mesomorphic phases and
estimate elastic constants.

We shall concentrate on the phases with rod-like
and slab-like nuclei, since they are expected to be the

w xdominant ones. According to Ref. 9 , these
‘‘spaghetti’’ and ‘‘lasagna’’ phases constitute, re-

1 1spectively, roughly and of the mass lying be-5 2

tween the core and the ordinary solid crust, where
w xnuclei are roughly spherical. In Ref. 11 these pro-

1 1portions are found to be about and . Thus the2 3

fraction of mass in the bubble phases is relatively
small.

As a model, we shall assume uniform rods and
slabs. For symmetric nuclear matter, Thomas–Fermi

w xcalculations 7 have confirmed that these simple
configurations are the thermodynamically favorable
ones. Clearly there is no increase in energy if rods or
slabs are displaced in directions that lie in the plane
of the slabs, or along the rods. Consequently there is
no restoring force for certain sorts of distortion, and
they thus have the elastic properties of liquid crys-
tals. In the ‘‘lasagna’’ and ‘‘spaghetti’’ phases, mi-
croscopic calculations indicate that there is positional
order in one and two directions, respectively, main-
tained by the Coulomb repulsion of rods and slabs
w x4–9 . Accordingly, they conform to the definitions

w xof columnar phases and smectics A 3 . More com-
Žplex positionally ordered phases e.g., smectics C,

.cholesterics are precluded by the symmetry of the
equilibrium shapes of the nuclei. At the temperatures

Ž 8 .of neutron star interiors ;10 K positionally dis-
Ž .ordered nematic phases are unlikely, since one

would expect the ordering temperature of rods and
plates to be comparable with the melting temperature
for matter with spherical nuclei, ;1010 K. We
emphasize, however, that the physical reasons for the
spatial structure of the mesomorphic phases in the
laboratory and in neutron stars are very different. For
laboratory liquid crystals, the non-spherical shape of
the molecules drives the tendency to form rod-like
and slab-like structures, while in neutron stars, it is a
spontaneous symmetry breaking brought about by
the competition between the nuclear surface energy
and the Coulomb energy. In the neutron star case,
the basic objects, nucleons, from which structures
are constructed are spherical, while in laboratory
liquid crystals, the basic ingredients are non-spheri-
cal molecules.

To calculate energies of these phases we adopt a
generalized liquid drop model, with bulk, surface
and Coulomb energies. In the deformations that we
study in this paper we assume that the total density
remains constant. Distortion can lead to a redistribu-
tion of neutrons between nuclear matter and neutron
matter, but this is small because bulk energy densi-
ties are large compared with those of surface and
Coulomb energies. Therefore we may assume that
the fractions of the total volume occupied by nuclear
matter and neutron matter, and their local densities
remain constant, and consequently only the Coulomb
and surface energies are altered.

We begin by estimating the elastic constants for
the layered phase. Since there is complete rotational
symmetry about the axis perpendicular to the layers,
which we denote by Oz, this phase is similar to a
smectic A liquid crystal, and the energy density due

w xto deformation may be written in the form 3
2B E u K 2121 2E s y = u q = u , 1Ž . Ž .Ž .d H H22 E z 2

where u is the displacement of layers in the z
direction. The first term is associated with a change

Ž .of interlayer distance Fig. 1a . The shear shown in
Fig. 1b is equivalent, due to rotational invariance, to
reducing the interlayer spacing, an effect taken into
account by the second term in the square brackets.
The second-order elastic constant K is associated1

with splay deformations. As a first case, we consider
a distortion that maintains the planar character of the
slabs but changes the layer spacing, which we denote
by 2 r . The surface energy per unit volume, Ec s

scales as ry1, while the Coulomb energy per unitc

volume, E scales as r 2, and therefore in equilib-C c

Fig. 1. Linear deformations. Cross sections of the slabs and rods
in equilibrium are indicated by full lines, and, after deformation,
by the hatched areas. a: compression perpendicular to the slabs
Ž .rods ; b: shear; c: transverse shear in the columnar phase; the

Ž .primitive translation vectors a , a and their counterparts in the1 2
Ž .reciprocal lattice k , k are also shown.1 2
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rium these energies satisfy the condition E s2 Es 0 C 0
w x2,4 , which determines r . Here the subscript ‘‘0’’c

denotes equilibrium values. From the same scaling
law we conclude that a small departure from equilib-
rium associated with a change d r of r results in anc c

increase of energy
2

dE s3E d r rr . 2Ž . Ž .sqC C 0 c c

Ž .Applying Eqs. 1 to the same deformation, we
1 2Ž .obtain E s B d r rr , whence it follows thatd c c2

Bs6E . 3Ž .C 0

In order to estimate K , let us consider a har-1
Ž . Ž .monic perturbation u x su cos kx , assuming that0

Ž .2 Ž .2its wavelength is large: kr <1 and ku <1.c 0

Then the deformation energy averaged over x is
43 1 4 2² :E s B ku q K k u . 4Ž . Ž .d 0 1 064 4

The first term in this expression dominates when
Ž .1r2 4u 4l, where ls K rB . To order k , the0 1

relative change in the surface energy averaged over
x is

² :DEs 2 41 3s ku y ku . 5Ž . Ž . Ž .0 04 64Es 0

If one includes curvature contributions to the surface
energy one finds that the first order terms average to
zero, while the second order ones give an additional
contribution bk 4 u2r2 to this equation, where b is0

the ratio of the second-order curvature coefficient to
the surface tension. For symmetric nuclear matter,
according to the estimate of Bennett and Ravenhall
w x Ž .215 , bfy 0.4 fm .

It is convenient to express the charge density of
nuclei as a Fourier series, and for the distortion given
above one finds

r x , z s r exp imp zrr q inkx . 6Ž . Ž . Ž .Ý m n c
mn

Ž .y 1 Ž .Ž . nHere r s r mp sin mp r rr y im n p N c
Ž .J mp u rr , r being the charge density of pro-n 0 c p

tons inside nuclei, r the halfwidth of the slab, andN

J the Bessel function of order n, and the summationn

is over all integers. The spatial average of the
Coulomb energy is

< < 22p rX m n² :E s , 7Ž .ÝC 2 22k q mprr q nkŽ . Ž .mn T F c

where k is the Thomas–Fermi screeningT F

wavenumber, and the prime on the summation indi-
cates that the term with msns0 is excluded. In

Ž .the absence of distortion u s0 , the screening0

correction can be neglected in evaluating the
Coulomb energy, since k 2

<ry2 , as argued inT F c
w x Ž .Refs. 7,16 , and the summation over m in Eq. 7

Ž .2Ž .2yields E s2p r r 1yw r3, in agreementC 0 p N
w xwith Ref. 4 . Here w is the fraction of space occu-

pied by nuclear matter, and wsr rr for the smec-N c

tic case. From the equilibrium condition E s2 Es 0 C 0

and the fact that the surface energy is given by
E swsrr , where s is the surface tension of thes 0 N

interface between nuclear matter and neutron matter,
Ž .1r3Ž 2Žit follows that in equilibrium r s 3ws 4pr 1N p

.2 .y1r3yw . Thus the Coulomb energy in equilib-
rium varies as the two thirds power of the surface
tension.

Although k may be large compared with k, theT F

effects of screening may be neglected also in calcu-
lating the change in the Coulomb energy due to

² : ² :distortion, DE s E yE , because r s0C C C 0 0 n

for any nonzero value of n. Thus we find

2 j 2 j² :DE s r r y1 a j kr rp ,Ž . Ž . Ž . Ž .ÝC p N j c
jG1

8Ž .

where

` 2 `8 sin mp wŽ .
2 j 2a j s n J mj ,Ž . Ž .Ý Ýj n3 2 4q2 jp w mms1 ns1

9Ž .
Ž .with jsp u rr . In particular, we obtain a j s0 c 1

2 Ž .2 Ž . 2 Ž .2 wŽpj 1yw r3 and a j spj 1yw 1q2
2 . 2 2 x2wy2w p r45qj r4 . The leading Coulomb

contribution to the energy due to distortion is
Ž .2yE ku r2. This exactly cancels the correspond-C 0 0

Ž .ing surface term in Eq. 5 , as it must on general
Žgrounds. By comparing the sum of the Coulomb Eq.

Ž .. Ž Ž ..8 and surface Eq. 5 contributions to the energy
Ž .due to distortion with the general expression 4 we

find

K s2 E 1q2wy2w2 r 2r15. 10Ž . Ž .1 C 0 c

The curvature correction to this expression is 4bE ,C 0

which may be neglected since r is typically ;10c

fm.
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In the calculations above we assumed that the
thickness of a slab measured along Oz remains
unperturbed. In reality, the slab will be thinner near

Ž .the extrema of u x and thicker near the extrema of
E urE x. Allowance for this effect, however, yields a

² :contribution to E containing an additional smalld
Ž 2 2 . 2factor ; k qk r relative to the terms alreadyT F c

considered.
Finally, we remark that, even though at finite

temperatures strict long range positional order of
layered phases will be destroyed according to the
standard Landau-Peierls argument, our theoretical
estimates of elastic constants should be a good ap-
proximation at low temperatures.

Now we turn to the columnar phase. We assume
the rods to have a circular cross section of radius rN

and define r by the condition that the density ofc

rods per unit area is 1rp r 2. Then the scaling lawsc
Ž .that lead to Eq. 2 hold also for this case.

The lowest energy configuration is one with rods
on a two-dimensional triangular lattice. We choose
Oz to be the axis of the D symmetry. Displace-h

ments are then described by a two-dimensional vec-
Ž .tor us u ,u , and the energy of deformation isx y

2 2B E u E u C E u E ux y x y
E s q q yd ž / ž /2 E x E y 2 E x E y

22 2E u E u K E ux y 3
q q q 2ž / ž /E y E x 2 E z

2 XX 4E u E u E u B E ux yXqB q q .ž / ž /ž /E x E y E z 2 E z

11Ž .

The first two lines of this formula reproduce Eq.
Ž . w x7.28 of Ref. 3 . The constant B is associated with
uniform transverse compression or dilation, C with

Ž .transverse shear Fig. 1c , and K with bending.3

The third line contains higher-order terms. The
last one may be important when amplitudes of longi-

Ž XX.1r2tudinal deformations exceed K rB . The term3

with BX provides a non-linear coupling of transverse
and longitudinal deformations, which causes, among
other effects, a breakdown of linear elasticity and

Žhydrodynamics at large scales see §8.3–§8.4 of Ref.
w x.3 . In the case of smectics, an analogous coupling

is provided by the cross term coming from the
Ž .expression in square brackets in Eq. 1 .

The terms B, BX, and BXX stem from the energy
increase due to the change of the cross section of the
unit cell. A longitudinal shear E u rE zsD accompa-x

nied by uniform transverse compression E u rE xsx

E u rE ysD
Xr2 maintains the triangular lattice buty

leads to a change of the lattice spacing proportional
Ž X.1r2 Ž 2 .1r4 Ž . Ž .to 1qD r 1qD . Then Eqs. 2 and 11

3 X 3 XX 3yield Bs E , B sy E , and B s E .C 0 C 0 C 02 4 8

The two other constants are associated with defor-
mations that are not a simple scaling of the triangular
lattice. We estimate them in a way analogous to that
for smectics. Imposing a perturbation of the form
Ž .u z su coskz and Fourier transforming, we arrive0

at the expression
22 22p wr J k Pu 2 J k rŽ . Ž .X p n lm 0 1 lm N² :E s ,ÝC 22 2 ž /k rk qk q nkŽ . lm Nlmn T F lm

12Ž .

where k s lk qmk is a reciprocal lattice vector.lm 1 2

In the absence of transverse deformation, k and k1 2
1r2 y1'Ž .are vectors of length 8pr 3 r , with an anglec

Žpr3 between them Fig. 1c; we shall assume that k2
.is directed along Oy . With u s0, only the term0

ns0 survives, and neglecting k , we recover Eq.T F
Ž . w x10 of Ref. 6 for E . The analytic formula ob-C 0

tained by replacing the hexagonal unit cell by an
w xequivalent cylinder 4 ,

2E s pr2 r r w ln 1rw y1qw ,Ž . Ž . Ž .Ž .C 0 p N

13Ž .

turns out to be very accurate at the values of w at
which the ‘‘spaghetti’’ phase is expected 1: it under-
estimates E for the hexagonal cell by less thanC 0

0.6% at w-0.35, which is several times smaller
than the difference due to inclusion of a realistic
screening wavenumber k f0.4 ry1. Since for theT F c

columnar case the surface energy is E s2wsrr ,s N
Ž .1r3Ž 2w Ž . x.y1r3one finds r s 2s pr ln 1rw y1qwN p

in equilibrium.

1 The columnar phase is favored for w between a lower limit of
Ž0.15–0.20 and an upper limit of 0.30–0.35 and an upper limit of
. w xw for the layered phase is about 0.60–0.65 4–7 .
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A transverse shear E u rE ysD changes k byx 1 y
1r2'Ž . Ž .2p 3 Drr Fig. 1c . Numerical summation ofc
Ž .the series 12 and identification of the term quadratic

in D yields the elastic constant C, shown in Fig. 2a.
In the relevant range of w, it can be approximated as

Ž . Ž . Ž . Žlog CrE f2.1 wy0.3 dashed line . This es-10 C 0

timate of C is only a first approximation, since we
have kept the cross sections of rods circular, whereas

.in reality they can adjust their form to the shear .
Ž .Finally, using a finite u in Eq. 12 , performing0

the summation and identifying the term proportional
to k 4 u2 , we determine the bend constant K , which0 3

is plotted in Fig. 2b. In the physically relevant range
Ž . 2of w, K s 0.064y0.067 E r . The term propor-3 C 0 c

tional to k 4 u4 yields for BXX the value obtained0

earlier.
The fact that matter in neutron stars near the

boundary of the core has the elastic properties of
liquid crystals rather than a crystalline solid will
have important consequences for a number of as-
pects of neutron star behavior. First, the maximum
elastic energy that can be stored in the crust will be
reduced, and this should be taken into account in
models of glitch phenomena and starquakes that
depend on the deviations of the figure of the star

Ž w x.from that for a fluid see, for example, Ref. 12 . It
is not possible to make a quantitative estimate of the
reduction of the elastic rigidity of the outer parts of
the star without a detailed model for the orientation
of the liquid-crystal phases, but since these phases
are estimated to make up roughly half of the matter
by mass outside the core, one might expect the
effective elastic rigidity to be reduced by roughly a
factor of 2. Since the‘‘plate tectonics’’ of liquid
crystals is likely to be very different from that of
crystalline solids, a second problem where the elastic

Fig. 2. Shear constant C and bend constant K of the columnar3

phase.

properties will be crucial is in models of the evolu-
tion of neutron star magnetic fields that invoke such

w xprocesses 13 . Other applications are to the propaga-
tion of elastic distortions, and to the energy of
defects in the liquid-crystal structure.

In our discussion above we assumed that in the
absence of deformation the spacings of rods and
slabs had their equilibrium values. However, in real-
ity, this may not be the case, since to alter the
spacing requires a major rearrangement of the proton
distribution. Just how easy it is to do this depends on
how slabs and rods are connected to each other, and
the related question of what defects are present.
Should the spacing be smaller than its equilibrium
value, there will be a positive contribution to the

Ž .Ž .2elastic energy of the form E r2yE = u ,s C H
which gives a restoring force linear in the deforma-
tion. Should the spacing be larger, this contribution
will be negative, which gives a tendency to rotation
and leads to spontaneous deformation analogous to

w xthe Helfrich effect in conventional liquid crystals 3 .
Eventually the spacing will approach equilibrium,
either by spontaneous reconnection of rods and slabs
or by motion of defects.

To summarize, the above considerations indicate
that matter near the boundary with the core of a
neutron star has the elastic properties of a liquid
crystal, rather than a conventional solid. To distin-
guish this region from that further out in the star, we
consider it appropriate to refer to it as the ‘‘mantle’’
rather than as part of the ‘‘crust’’. It is clear that the
properties of neutron stars need to be reconsidered in
light of this new understanding.
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