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Abstract. High magnetic fields in neutron stars, B ∼ 1011 −
1013 G, substantially modify the properties of atoms and their

interaction with radiation. In particular, the photoionization

cross section becomes anisotropic and polarization dependent,

being strongly reduced when the radiation is polarized perpen-

dicular to the field. In a number of previous works based on

the adiabatic approximation the conclusion was drawn that this

transverse cross section vanishes for frequencies ω smaller than

the electron cyclotron frequencyωc = eB/(mec). In other works

(which employed a different form of the interaction operator)

appreciable finite values were obtained, ∼ σ0γ
−1 near the pho-

toionization threshold, where σ0 is the cross section without

magnetic field, and γ = B/(2.35× 109 G). Since it is the trans-

verse cross section which determines the properties of radiation

emitted from neutron star atmospheres, an adequate interpreta-

tion of the neutron star thermal-like radiation requires a resolu-

tion of this controversy.

In the present work we calculate the atomic wave functions

for both discrete and continuum states by solving the coupled

channel equations allowing the admixture between different

Landau levels, which provides much higher accuracy than the

adiabatic approximation. This enables us to resolve the above

contradiction in favour of the finite transverse cross sections at

ω < ωc. Moreover, for any form of the interaction operator the

non-adiabatic corrections appear to be substantial for frequen-

cies ω >∼ 0.3ωc. The non-adiabatic treatment of the continuum

includes coupling between closed and open channels, which

leads to the autoionization of quasi-bound energy levels associ-

ated with the electron cyclotron (Landau) excitations and gives

rise to Beutler–Fano resonances of the photoionization cross

section. We calculate the autoionization widths of these quasi-

bound levels and compare them with the radiative widths. The

correlation of the open channels is responsible for the modi-

fication of the cross section above the Landau thresholds. The
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results are important for investigations of the radiation emergent

from the surface layers of neutron stars.
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cesses: autoionization – magnetic fields – stars: neutron

1. Introduction

The proper interpretation of the recently discovered surface ra-

diation of isolated pulsars (e.g., Ögelman 1995) requires knowl-

edge of the elementary processes in magnetic neutron star atmo-

spheres (Pavlov et al. 1995). Among such processes, ionization

of atomic hydrogen is important both conceptually, due to the

simplicity of the hydrogen atom, and practically, because of the

presumably strong gravitational stratification of the neutron star

atmospheres.

Although the photo- and autoionization of atoms have

been thoroughly investigated at the magnetic field strengths

B ∼ 105 − 109 G (e.g., Merani et al. 1995, and references

therein), none of these works can be directly extended to the

typical pulsar field strengths B >∼ 1011 G. First, the atomic

wave functions at the pulsar fields are nearly cylindrical, while

atB = 109 G the ground state atom is still nearly spherical. Sec-

ond, the Landau levels at the pulsar fields are displaced much

more distantly, which alters the spectrum qualitatively. These

qualitative features arise when the parameter γ = h̄ωc/(2Ry) =

B/(2.35 × 109 G) exceeds unity. Here ωc = eB/(mec) is the

electron cyclotron frequency, and Ry = mee
4/(2h̄2) = 13.6 eV

is the Rydberg energy.

The photoionization processes at γ � 1 have been consid-

ered in a number of papers: first analytically by Hasegawa &

Howard (1961) and Gnedin et al. (1974), and then both ana-

lytically and numerically by Schmitt et al. (1981), Wunner et

al. (1983b), Mega et al. (1984), Miller & Neuhauser (1991),
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Potekhin & Pavlov (1993) (hereafter Paper I), Bezchastnov &

Potekhin (1994) (B&P), and Kopidakis et al. (1996) (KVH).

All these papers, except for the two latter ones, employed the

adiabatic approximation for the atomic wave functions. B&P

and KVH studied the effect of atomic motion across the field

on the photoionization process. Here we consider the particular

case of atoms at rest. In this case the approach of KVH, who

did not include electron cyclotron excitations, reduces back to

the adiabatic one. There was no non-adiabatic treatment of the

final state by B&P or by KVH.

The photoionization cross sections obtained in the cited pa-

pers appeared to be strikingly different. Some authors (e.g.,

KVH) concluded that, for the non-moving atom, the cross sec-

tion for photons polarized perpendicular to the field vanishes

in the most important frequency range ω < ωc, while others

(e.g., Paper I) presented finite transverse cross sections which,

although suppressed by the strong magnetic field, are still sig-

nificantly larger than, e.g., the Thomson cross section. Since

the properties of radiation emitted from magnetic atmospheres

are mainly determined by the transversely polarized photons

(Pavlov et al. 1995), the different values of transverse cross sec-

tions should then result in quite different spectra and angular

distributions of the radiation.

The first goal of the present paper is to resolve this contra-

diction, which is of crucial importance for modeling the neutron

star atmospheres. We shall prove that the discrepancy is caused

solely by using the adiabatic approximation and is eliminated

as soon as this approximation is abandoned. The zero values of

the transverse cross section arise from using the so-called ve-

locity form of the interaction potential, which (contrary to the

alternative length form) leads to inadequate results when used in

the adiabatic approximation. The two representations yield the

same nonzero transverse cross sections when the more accurate

non-adiabatic approach is applied.

Our second principal goal is to extend the consideration

of the photoionization to the domains of magnetic fields and

photon energies where the adiabatic approximation does not

provide sufficient accuracy. For instance, more than a dozen ra-

dio pulsars have magnetic fields in the range ∼ 1010 − 1011 G;

the corresponding dimensionless fields, γ ∼ 4 − 40, although

they exceed unity, are not sufficiently high to neglect the non-

adiabatic effects on the atomic properties. The non-adiabatic

effects are also expected to be considerable for photon ener-

gies not very small as compared to the electron cyclotron en-

ergy, h̄ωc ' 1.2(B/1011 G) keV (Paper I). The spectral flux

is maximal at these X-ray energies for effective temperatures

∼ 4 × 106(B/1011 G) K characteristic of hot polar caps of ra-

dio pulsars. Such radiation has been observed from a number of

pulsars by ROSAT , and new observations are under way with

ASCA. For lower temperatures, more typical at the surfaces

of cooling neutron stars, the radiation of such energies is still

observable from nearby objects.

Among the non-adiabatic effects, particularly interesting are

some new qualitative features of photoionization, which arise

from including non-adiabatic terms in the final (continuum)

state as well as in the initial state. In this approach, due to cou-

pling to the continuum of lower Landau levels, the autoioniza-

tion of quasi-bound atomic states, enters naturally into the con-

sideration, giving rise to the so-called Beutler–Fano resonances

below the thresholds of the electron cyclotron excitations. Com-

parison of the autoionization widths of the quasi-bound levels

with the radiative widths shows that autoionization is important

at relatively low fields, B <∼ 3 × 1011 G. Our results demon-

strate that the corresponding spectral features are expected to be

observable in the thermal-like spectra of neutron stars with the

next generation of X-ray satellites (particularly, ASTRO–E).

In addition, above the electron cyclotron thresholds, different

ionization channels are no longer independent of each other

(as they were in the adiabatic approximation). The correlation

of the channels is responsible for considerable modification of

the photoionization cross sections, which should be observable

in the spectra and light curves of the EUV/X-ray radiation of

neutron stars.

2. Atomic wave functions

2.1. Coupled channel equations

The early studies of the hydrogen atom in strong magnetic fields

have been based on the adiabatic approximation (e.g., Canuto

& Ventura 1977). In this approximation the wave function of

the relative motion ψsη(r) is factorized into a transverse part

Φns(r⊥) and a longitudinal part gsηn (z), where z is the relative

coordinate along the magnetic field, and r⊥ = (x, y). The trans-

verse part is just the Landau function which describes the trans-

verse motion of a free electron in a magnetic field, n being the

Landau quantum number, and s the negative of the z-projection

of the electron orbital momentum (n ≥ 0, s ≥ −n). The quan-

tum number η = ±1 refers to the z-parity of the wave function.

If the atom does not move as a whole across the field, which is

the case of interest here, both η and s are exact quantum num-

bers, whereas n can be considered as a “good quantum number”

at γ � 1. The longitudinal wave function gsηn (z) obeys a one-

dimensional Schrödinger equation with a potential obtained by

averaging the Coulomb potential over the transverse coordi-

nates. The total energy of an atom is the sum of the longitudinal

and transverse energies, E = E‖ + E⊥
ns, with

E⊥
ns =

[

n + (n + s)me/mp

]

h̄ωc, (1)

where the term (n+s)me/mp accounts for the finite proton mass

(Herold et al. 1981).

In more recent studies the atomic wave functions have been

calculated using various numerical approaches (e.g., Xi et al.

1992, and references therein). At γ >∼ 1, the most convenient

approach has been proposed by Simola & Virtamo (1978) and

developed by Rösner et al. (1984) and Potekhin (1994) (Pa-

per II). It is based on the expansion of the wave function over

the complete orthogonal set of the Landau functions Φns in the

xy plane. Since, for non-moving atoms, s is an exact quantum
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number, the corresponding sum drops out, and we arrive at the

reduced expansion

ψsη(r) =

∞
∑

n′=nmin

Φn′s(r⊥) gsηn′ (z) , (2)

where nmin = 0 for s ≥ 0 , and nmin = −s for s < 0 . The func-

tions gsηn (z) can be found from the following system of coupled

differential equations obtained by substituting the expansion (2)

into the Schrödinger equation, multiplying it by Φ
∗
ns(r⊥) and

integrating over r⊥,

[

− h̄2

2µ

d2

dz2
+ V s

nn(z) + E⊥
ns − E

]

gsηn (z)

= −
∑

n′/=n

V s
nn′ (z) gsηn′ (z) , (3)

where µ is the reduced mass. The set of the effective one-

dimensional potentials is determined as

V s
nn′ (z) = 〈ns| − e2/r|n′s〉⊥ ≡ (Φns| − e2/r|Φn′s) =

− e2

am

√
2

∫ ∞

0

In+s,n(ξ)In′+s,n′ (ξ)(ξ + z2/2a2
m)−1/2dξ , (4)

where Inn′ are the Laguerre functions (Sokolov & Ternov 1968),

am = aBγ
−1/2 is the magnetic length, and aB = h̄2/(mee

2) is

the Bohr radius. Neglecting the non-diagonal (n′ /= n) effec-

tive potentials decouples the system and brings us back to the

adiabatic approximation. The choice of the maximum Landau

number nmax for truncating expansion (2) is dictated by the de-

sired accuracy — the more terms one retains the higher accuracy

of the wave function is provided.

For any given set of the conserved quantities s and η, each

term in expansion (2) is referred to as a channel, and the sys-

tem (3) is the system of coupled channel equations. The whole

set of nmax − nmin + 1 channels is separated into two groups.

The first one includes open channels n = nmin, . . . , n0 − 1, for

which E > E⊥
ns. The second group embraces closed channels

n = n0, . . . , nmax, for which the opposite inequality, E < E⊥
ns,

holds.

2.2. Bound states

In the adiabatic approximation, the right hand side in (3) van-

ishes and the channels are uncoupled. The bound states have

negative longitudinal energies, i. e., correspond to the closed

channels. The discrete energy levels are enumerated at speci-

fied s, and n by a longitudinal quantum number ν = 0, 1, 2, . . .;
the states having ν = 0 are known as tightly bound, while those

with ν ≥ 1 are hydrogen-like. The longitudinal quantum num-

ber fully determines the z-parity of the state, η = (−1)ν , so

that the quantum number η becomes redundant and is usually

omitted.

In the non-adiabatic approach, the RHS in (3) couples the

state |nsν〉 into other channels, n′ /= n, comprising both bound

states (closed channels) and continuum states (open). The wave

functions ψnsν(r) =
∑

n′ Φn′s(r)⊥ gnsνn′ (z) and the energy lev-

els Ensν can be designated by a leading term n′ = n of the ex-

pansion (2), if γ is large enough. Only the states with n = nmin

can be truly bound. In other words, the energies Ensν corre-

spond to truly bound states only when all the channels are closed.

Coupling of the closed channels shifts the level energies from

the adiabatic values and admixes higher Landau orbitals to the

bound state.

A non-adiabatic computer code for calculating the bound

state wave functions of the hydrogen atom moving in a strong

magnetic field has been described in Paper II. Here we apply

this code (for the particular case of the non-moving atom) to

obtain the initial state |i〉 of an atom subject to photoionization.

2.3. Continuum

The final atomic state |f〉 in the photoionization process lies

in the continuum, Ef > E⊥
nmins

, i. e., at least one associated

channel is open. All previous publications on photoionization

in very strong magnetic fields treat the final state adiabatically,

i.e. 〈r|f〉 = Φns(r⊥) g(f )(z). The simplest approach for the adi-

abatic continuum wave function is the Born approximation, used

by Gnedin et al. (1974) for the non-moving atom and general-

ized by KVH to the case of motion across the field. It assumes

the longitudinal wave function of the final state to be of the form

g(f )(z) = exp(±iknz), (5)

where kn =
√

2µ(Ef − E⊥
ns)/h̄ is the electron wave number,

± denotes the direction of motion of the outgoing electron. A

more accurate approach (e. g., Paper I) replaces exp(±iknz) by

a function g(f )(z) numerically determined from the correspond-

ing uncoupled equation; this function turns into (5) asymptoti-

cally, at |z| → ∞ (up to a logarithmic phase factor).

In the non-adiabatic approach, the open (continuum) chan-

nel is coupled to closed channels and to other open channels (if

the number of open channels n0 − nmin > 1). This coupling of

open and closed channels causes, in particular, autoionization

of the quasi-bound states (states of positive energy which would

be bound in the absence of coupling — see Section 2.4). The

coupling of different open channels can be conveniently treated

in terms of the reactance matrix Rnn′ (Seaton 1983). In the

strong magnetic field case, the R-matrix can be introduced as

follows.

System (3) of nmax − nmin + 1 coupled equations has

(for a given parity η) nmax − nmin + 1 linearly independent

solutions (basis vectors g(n)sη = [g(n)sη
nmin

, . . . , g(n)sη
nmax

]) satis-

fying physically meaningful boundary conditions. It is con-

venient to enumerate the solutions similarly to the channels:

n = nmin, nmin + 1, . . . , nmax (then g(n)sη
n′ → g(n)sη

n δnn′ when

the coupling switches off). Each of these solutions forms a wave

function ψ(n)
sη (r) =

∑

n′ Φn′s(r⊥) g(n)sη
n′ (z) which comprises

n0 − nmin open channels and nmax − n0 + 1 closed channels.

For unbound solutions (n = nmin, . . . , n0−1) of a given z-parity,

it is sufficient to construct real longitudinal wave functions for
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positive z, which satisfy the following asymptotic conditions at

z → +∞:

g(n,real)
n′ (z) ∼ δnn′ sin φn′ (z) + Rnn′ cosφn′ (z) (6)

for n′ = nmin, . . . , n0 − 1, and g(n,real)
n′ (z) → 0 for n′ =

n0, . . . , nmax. (Hereafter, in this and the following subsections,

we omit the indices s and η for brevity.) In Eq. (6),

φn′ (z) = kn′z + (kn′aBme/µ)−1 ln(kn′z) (7)

is the z-dependent part of the phase. With the continuum wave

functions normalized to unity in an interval of length Lz , the

R-matrix satisfies the following symmetry relation,

kn′Rnn′ = knRn′n. (8)

The real basis of the wave functions g(n,real)
n′ (z) is convenient

for calculations, but it still is to be transformed into the basis

of outgoing waves, appropriate to photoionization. This is done

by analogy with the usual theory (Seaton 1983). For an electron

outgoing in the positive z direction, the following asymptotic

condition at z → +∞ holds for the n-th solution:

g(n,out)
n′ (z) ∼ δnn′ exp[ iφn′ (z)] + S†

nn′ exp[−iφn′ (z)], (9)

where S† is the Hermitean conjugate scattering matrix. Now, if

we compose a (n0 − nmin) × (nmax − nmin + 1) matrix function

G(z) of the elements g(n)
n′ (z) (with n the first and n′ the sec-

ond subscript), then we can obtain a set of the outgoing wave

functions from the matrix equation

G(out) = 2i(1 + iR)−1G(real). (10)

The S† matrix is expressed in terms of the R matrix as S† =

−(1 + iR)−1(1 − iR).

Note that the longitudinal wave functions satisfying the

asymptotic condition (9) should be multiplied by a common

factor in order to ensure the correct normalization of the wave

functionψ(f,out)(r). It follows from the unitarity of theS-matrix

that this factor equals (2Lz)−1/2, where Lz is the z-extension

of the periodicity volume of the final state.

2.4. Autoionizing states

The adiabatic and exact approaches treat in a fundamentally dif-

ferent way quasi-bound states associated with excited Landau

levels. Since the adiabatic approximation allows no coupling

between the Landau orbitals, a separate set of bound states ap-

pears below each Landau level n. These states, however, lie in

the n′ < n continuum, and may therefore decay into the contin-

uum via two processes. The first one is a spontaneous emission

of photons, which broadens these levels significantly in strong

magnetic fields. This process has been thoroughly studied by

Wunner et al. (1983a). The second one is autoionization, which

could not be accounted for in the earlier work based on the

adiabatic approach. In the non-adiabatic treatment, due to the

coupling, the electron in a quasi-bound state can escape to in-

finity via any of the open channels n′ < n.

The quasi-bound autoionizing states manifest themselves as

resonances of the continuum wave function. For weaker mag-

netic fields (γ < 1) such states have been studied, e.g., by

Friedrich & Chu (1983). Near a quasi-discrete level a reso-

nance condition is satisfied, leading to a great amplification of

the longitudinal coefficient gn(z). Thus, the shape of the wave

function near the origin becomes similar to that calculated in

the adiabatic approximation for the quasi-bound state. At large

distances, where gn(z) decreases exponentially, the contribu-

tion of the orbitals n′ < n dominates, which can be interpreted

as electron leakage from the quasi-bound state.

The general theory of autoionizing states has been described,

e. g., by Friedrich (1991). Here we briefly discuss it for the case

of the strongly magnetized hydrogen atom. Let the electron en-

ergy E be close to an energy Ead
nν at which there would be a

bound state in the closed channel n in the absence of channel

coupling. To consider coupling of the channel n to an open

channel n′ < n, one can retain the two corresponding terms

in expansion (2) and two equations in the system (3), assum-

ing there are no other quasi-discrete levels close to Ead
nν . Let

gad
n′ (z) and ḡad

n′ (z) be the two linearly independent solutions for

the uncoupled open channel (e. g., with asymptotic behaviour

gadn′ (z) ∼ sin[φn′ (z) + δad] and ḡad
n′ (z) ∼ cos[φn′(z) + δad] at

z → ∞, where δad is the adiabatic phase shift, and φn′ (z) is

defined by Eq. (7)), and gad
nν(z) be the solution for the uncou-

pled closed channel. Then, by analogy with the nonmagnetic

case, the solution of the two coupled channel equations can be

presented in the form

gn′ (z) = cos δc gad
n′ (z) + sin δc ḡad

n′ (z) , (11)

gnν(z) = − sin δc
Unν,n′

Γ
a
nν,n′/2

gad
nν(z) , (12)

where δc is an additional asymptotic phase shift due to channel

coupling,

tan δc = −
Γ

a
nν,n′/2

E − Enν
. (13)

In Eqs. (12) and (13),

Γ
a
nν,n′ =

2µLz

h̄2kn′

|Unν,n′ |2 (14)

is the (partial) autoionization width of the quasi-bound state

|nν〉,

Unν,n′ =

∫

gad
nν(z)Vn,n′ (z) gad

n′ (z) dz (15)

is the coupling matrix element, andEnν is the resonance energy

(slightly shifted from Ead
nν — see Friedrich 1991). Note that

Eqs. (14) and (15) can be derived directly with the help of the

usual perturbation theory.

Thus, it follows from Eqs. (11) and (12) that coupling of the

closed and open channels distorts the open channel wave func-

tion and admixes the bound state |nν〉 to the continuum. The
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strength of the admixture is given by the square of the ampli-

tude in front of the bound wave function gad
nν(z) in Eq. (12); its

dependence on energy is determined by the resonance function

(Breit–Wigner profile) which coincides with the derivative of

the phase shift δc with respect to energy,

dδc
dE

=
Γ

a
nν,n′/2

(E − Enν)2 + (Γa
nν,n′/2)2

. (16)

The closed channel n is most strongly coupled with the open

channel n′ = n− 1. If we want to include coupling with all the

open channels, the total autoionization width can be evaluated

as Γ
a
nν =

∑n−1

n′=nmin
Γ

a
nν,n′ . As we shall see, the interference of

the coupled states leads to the Beutler–Fano resonances in the

energy dependence of the radiative transitions.

3. Interaction with radiation

3.1. Matrix element of the interaction

The cross section for ionizing an atomic state |i〉 into a contin-

uum state |f〉 due to interaction with a photon of frequency ω,

wave vector q, and polarization vector e, can be written as (e.g.,

KVH)

σi→f =
3

8α3

Ry

h̄ω

√

Ry

E
‖
f

Lz

aB

|〈f |M̂ |i〉|2 σTh, (17)

where α = e2/(h̄c), and M̂ is the dimensionless interaction

operator. Its “velocity” representation involves the kinetic mo-

mentum operator π = p + (e/2c)B×r:

M̂ (π) = M̂ (π)
0 + δM̂ (π), (18)

where

M̂ (π)
0 = aB exp(iqr)

[

2

h̄
e · π − i(q × e)z

]

, (19)

and δM̂ (π) denotes corrections of order (me/mp). It will be

shown that these corrections can be appreciable, when the ve-

locity representation is used. Approximately one can write

δM̂ (π) ≈ me

mp

aB

2

h̄
e ·

(

p− e

2c
B × r

)

. (20)

The first term in the square brackets in Eq. (19) represents the

electron current or “velocity” term in the interaction potential,

while the second term corresponds to the interaction of the radi-

ation magnetic field with the magnetic spin moment of the elec-

tron. We have neglected spin flip transitions, which are unim-

portant at B <∼ 1013 G, according to Wunner et al. (1983b) and

KVH, and fixed the electron spin antiparallel to the magnetic

field. Besides, we have omitted the term eq (B&P) from the

square brackets, assuming the transverse polarization.

Using Eq. (2) for both atomic states, we obtain

〈f |M̂ |i〉 =
∑

nn′

〈n, f |〈n, sf |M̂ |n′, si〉⊥|n′, i〉‖, (21)

where the subscripts ⊥ and ‖ denote the transverse (cf. Eq. (4))

and longitudinal matrix elements, respectively. The inner (trans-

verse) matrix element in Eq. (21) can be calculated analytically,

using the well known properties of the electron Landau quantum

states (e.g., Canuto & Ventura 1977), so that 〈f |M̂ |i〉 reduces

to the sum of one-dimensional quadratures.

3.2. Transverse polarization: analytical consideration

Using the commutation relations for the Hamiltonian, the matrix

element 〈f |M̂ |i〉 can be rewritten in the “length form” (Paper I):

〈f |M̂ (π)|i〉 = 〈f |M̂ (r)|i〉, (22)

M̂ (r) = M̂ (r)
0 + δM̂ (r), (23)

M̂ (r)
0 = iaB exp(iqr)

[

2meω

h̄
e · r

(

1 − h̄ω

2mec2

− q · π
meω

)

− (q × e)z

]

. (24)

Here, as well as in Eq. (18), δM̂ denotes corrections ∼ me/mp.

For exact atomic states |i〉 and |f〉, the two representa-

tions are equivalent. However, the equivalence (22) breaks

down in the adiabatic approximation. The most striking dif-

ference occurs for transitions within the ground Landau state

when the photons are polarized perpendicular to the magnetic

field. It was recently confirmed by KVH that in this case

〈0, sf |M̂ (π)|0, si〉⊥ = 0 identically, if one neglects the small

corrections due to δM̂ (π). One actually finds an exact cancella-

tion of the contributions arising from the velocity and the spin

interaction terms in Eq. (19). At the same time, the represen-

tation (24) leads to a non-zero cross section1. Some analytical

estimates help to resolve this apparent contradiction (see also

Appendix A of Paper I).

Since series (21) converges rapidly at γ � 1, we can expect

that it is sufficient to keep only the leading terms in it. In the

velocity representation, the zero-order term 〈0, sf |M̂ (π)
0 |0, si〉⊥

vanishes (KVH). Retaining the first-order terms, we obtain

〈f |M̂ (π)|i〉 ≈ 〈1, f | 〈1, sf |M̂ (π)
0 |0, si〉⊥ |0, i〉‖

+ 〈0, f | 〈0, sf |M̂ (π)
0 |1, si〉⊥ |1, i〉‖

+ 〈0, f | 〈0, sf |δM̂ (π)|0, si〉⊥ |0, i〉‖. (25)

Which of the three terms in Eq. (25) dominates, depends on the

magnetic field strength and transition considered.

In the length representation, the zero-order term dominates:

〈f |M̂ (r)|i〉 ≈ 〈0, f | 〈0, sf |M̂ (r)
0 |0, si〉⊥ |0, i〉‖. (26)

Let us consider, for simplicity, the dipole approximation, q → 0.

It has been shown in Paper I (see also Sect. 4) that this approxi-

mation can be safely used at h̄ω � αmec
2 ln γ ∼ 300 ln γ Ry.

1 The spin term (q × e)z , omitted in Paper I, cannot be responsible

for this result, as was assumed by KVH. Indeed, the transverse cross

section in Paper I remains non-zero even for photons directed along

the field, in which case the spin term turns out to vanish identically.
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For θ = 0, Eq. (25) then yields

〈f |M̂ (π)|i〉 ≈ 2i
√
γ
[

e+(〈0, f |1, i〉‖ + ζ
√
sf )δsf ,si+1

− e−(〈1, f |0, i〉‖ + ζ
√
si)δsf ,si−1

]

, (27)

where e± = (ex ± iey)/
√

2 are the cyclic components of the

vector e, and

ζ =
me

mp

〈0, f |0, i〉‖. (28)

The terms with ζ represent the leading contribution due to

δM̂ (π). Analogously, from Eq. (26) we obtain

〈f |M̂ (r)|i〉 ≈ 2i
√
γ

ω

ωc

[

e+
√
sf δsf ,si+1

+ e−
√
si δsf ,si−1

]

〈0, f |0, i〉‖. (29)

Conditions under which Eqs. (27) and (29) give similar cross

sections are obtained by equating their right-hand sides:

〈0, f |1, i〉‖ ≈ √
sf

(

ω

ωc
− me

mp

)

〈0, f |0, i〉‖, (30)

or

〈1, f |0, i〉‖ ≈ −√
si

(

ω

ωc
+
me

mp

)

〈0, f |0, i〉‖, (31)

where sf = si + 1 or si = sf + 1, respectively. The term

me/mp comes from δM̂ (π) through Eqs. (27), (28). Note that

the terms me/mp can give a substantial correction (especially

near the photoionization thresholds, h̄ω ∼ ln2 γ Ry) in very

strong fields, when γ ln−2 γ is not negligible in comparison with

mp/me.

Our analytical estimates (Appendix A) and numerical re-

sults (Sect. 4) confirm that the approximate relationships (30),

(31) are indeed satisfied if ω � ωc. Thus, in the adiabatic ap-

proximation (for n = n′ = 0), the length representation of the

interaction matrix element, employed in Paper I, enables one to

calculate the leading contribution to the transverse cross section

which is missed when the velocity representation is used. On

the other hand, it makes no difference which representation is

used if the post-adiabatic corrections are included.

3.3. Interference of open and closed channels: Beutler–Fano

resonances

As we have discussed in Sect. 2.4, coupling of a closed chan-

nel n to open channels, particularly to the channel n − 1, re-

sults in a resonance admixture of the quasi-bound state to the

continuum. Interference of the two final coupled states leads

to Beutler–Fano resonances in the photoabsorption spectrum

(e. g., Friedrich 1991). According to Eqs. (11) and (12) (for

n′ = n − 1), the transition matrix element, for the final elec-

tron energy close to the energy of the quasi-bound state, can be

presented as

〈f |M̂ |i〉 = M1 cos δc (1 − q tan δc) , (32)

where

q =
M2

M1

Uf

Γ
a
f/2

(33)

is the shape parameter of the Beutler–Fano resonance (Uf ≡
Unsfνf ,n−1, Γ

a
f ≡ Γ

a
nsfνf ,n−1 — see Eqs. (14) and (15)),

M1 = (gad
n−1,sf

|〈n− 1, sf |M̂ |nisi〉⊥|gnisiνi
)‖ (34)

is the matrix element in the absence of coupling,

M2 = −(Γa
f/2Uf )(ḡad

n−1,sf
|〈n− 1, sf |M̂ |nisi〉⊥|gnisiνi

)‖

+ (gad
nsfνf

|〈nsf |M̂ |nisi〉⊥|gnisiνi
)‖ (35)

is the coupling correction. The cross section is proportional to

|〈f |M̂ |i〉|2 = |M1|2 cos2 δc |1 − q tan δc|2

= |M1|2 F (ε, q) , (36)

where

F (ε, q) =
|q + ε|2
1 + ε2

(37)

is the Beutler–Fano function,

ε = − cot δc = 2(E − Ensfνf
)/Γa

f (38)

is the reduced energy. The function F (ε, q) tends to unity in

the very far wings of the resonance, at |ε| � max(1, |q|). If q
is real (e. g., in the dipole approximation), it turns to zero at

ε = −q and is maximal (Fmax = 1+q2) at ε = 1/q. In the limit of

very weak coupling, Uf → 0, we have q ∝ U−1
f → ∞, q2

Γ
a
f

remains finite, and the Beutler–Fano resonance turns into the

delta-function (superimposed onto the bound-free continuum)

which describes the bound-bound transition in the absence of

coupling.

4. Results

We present here example photoionization cross sections, calcu-

lated in accordance with the approach described above. In all

cases the hydrogen atom is assumed to be initially in its ground

state. Basically we have employed the velocity representation of

the interaction matrix element, including into M̂ (π) all the non-

dipole and finite-mass corrections (Paper I), as well as the spin

term (KVH). The results are compared with those obtained with

the length representation, the adiabatic, and dipole approxima-

tions. Some details of the numerical techniques used are given

in Appendix B.

Our first principal result is that atω � ωc Eqs. (30) and (31)

do hold with a high accuracy (the difference does not exceed

1–2% at h̄ω <∼ 30 Ry), thus confirming the considerations of

Sect. 3.2 and Paper I. In the calculations we have also included

higher terms of the expansions (2) and (21); however, the chan-

nels n, n′ > nf + 1 proved to be unimportant. We have also

checked the importance of the spin term, and found it to be neg-

ligible, by switching it on and off numerically. On the contrary,
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Fig. 1. Total cross sections of the photoionization of the ground state H

atom at the magnetic field strengthB = 1013 G. The curves are labelled

by the symbols +, ⊥, and ‖, corresponding respectively to σ+ (right

circular polarization at θ = 00), σ⊥ (polarization vector transverse toB

at θ = 900), andσ‖ (polarization alongB at θ = 900). Numerical results

(solid lines) are compared with the dipole approximation (short-dashed

lines) and with the adiabatic results of Paper I (long-dashed lines)

the corrections due to the finite proton mass are appreciable. If

the terms me/mp on the right-hand side of Eqs. (30), (31) were

omitted, then the inaccuracy would increase to 10% at γ = 1000.

Clearly, this would introduce an inaccuracy of about 20% in the

cross section.

Fig. 1 shows the cross section as a function of the photon

energy h̄ω for photoionization from the ground level, at a mag-

netic field strength B = 1013 G (h̄ωc = 8509 Ry); the cross

sections plotted are for photons propagating along the mag-

netic field (θ = 0◦) with the right circular polarization (σ+),

and propagating perpendicular to the field (θ = 90◦) with the

linear polarizations parallel (σ‖) and perpendicular (σ⊥) to B.

Short-dashed lines correspond to the dipole approximation. We

see that at θ = 900 the non-dipole corrections are unimportant

for σ‖ and σ⊥ at h̄ω <∼ 104 Ry. This confirms the validity of

the transverse dipole approximation in this energy range and

justifies neglecting the spin term, as it depends on the trans-

verse wave vector only. On the other hand, the inaccuracy of

the longitudinal dipole approximation becomes perceptible at

h̄ω >∼ (2− 3)× 103 Ry, which is seen from the deviation of the

short-dashed line from the solid one for σ+.

For comparison, the results of Paper I (length representa-

tion) which do not include the non-adiabatic and spin terms are

shown by long-dashed lines. The agreement with the adiabatic

approach of Paper I, which involved the length form of the inter-

action matrix element, is fairly good at h̄ω <∼ 103 Ry. Note that

the velocity form would lead to vanishing σ+ and σ⊥ (KVH).

The agreement with the adiabatic results becomes worse as

ω approaches ωc from below, which is caused by the grow-

ing role of the “side” terms (closed channels n > 0) in

Eq. (21). Fig. 2 demonstrates the cross sections at B = 1012 G

Fig. 2a and b. Same as Fig. 1 for B = 1012 G. The symbol ‘−’ cor-

responds to the left circular polarization at θ = 00. Numerical results

for σ− and σ‖ are plotted with the dot-dashed line, numerical results

for σ+ and σ⊥ with the solid line. The long-dashed and short-dashed

lines correspond to the adiabatic (Paper I) and dipole approximations,

respectively. a Circular polarization (σ±) at θ = 00. b Linear polariza-

tion (σ⊥, σ‖) at θ = 900

(h̄ωc = 850.87 Ry). We see that the adiabatic approximation

(long dash) may serve only as an order-of-magnitude estimate

at ω ∼ ωc, whereas at ω <∼ (0.2−0.3)ωc the agreement is good

again. For the magnetic field chosen, the channel n = 1 opens

at the (threshold) energies h̄ω = 862.79, 863.25 and 863.72 Ry

for sf = −1, 0 and 1, respectively (these would be the n = 1

thresholds for the left, right and longitudinal polarizations in the

dipole approximation). Immediately above the thresholds, the

adiabatic approximation forσ− andσ⊥ becomes sufficiently ac-

curate again, as has been predicted in Paper I. Photoionization

from the ground state is strictly forbidden for the left polar-

ization below the n = 1 threshold. Above the threshold, the

corresponding cross section σ− appears to be strongly underes-

timated in the dipole approximation (see the left panel of Fig. 2).

The importance of the factor exp(iqr) in this case is explained

by approximate coincidence of the photon and electron wave

numbers, as discussed in Paper I. The dipole approximation is

inadequate also for σ‖ (right panel of Fig. 2) above the n = 1

threshold because it misses the channel n = 1, sf = −1, which

gives the main contribution just at these energies. For this polar-

ization, the adiabatic approximation (long-dashed lines) proves

to be inaccurate as well, mainly because of the admixture of the

(open) channels n = 0 and n = 1.

The solid and short-dashed curves for the non-adiabatic

cross sections presented in Fig. 2 do not include values within

∼ 30 Ry just below the n = 1 threshold. Within this gap com-

plex resonance structures arise in the photoionization cross sec-

tions, too narrow to be resolved in the scale of Fig. 2. An exam-

ple of such structures is shown in an expanded scale in Fig. 3a

and b. The resonances are associated with the quasi-bound au-

toionizing states |1, sf , νf 〉 admixed to the continuum |0, sf 〉.
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Fig. 3a and b. Same as Fig. 2 in the energy range near the Landau

threshold. a Circular polarization (σ±) at θ = 00. b Linear transverse

polarization (σ⊥) at θ = 900. Superimposed on the same diagram, the

dotted curves show the “bound-bound” absorption profiles calculated

without allowance for coupling of the closed and open channels; the

shapes of these profiles are determined by the radiative deexcitation of

the upper levels (see text for details)

Their shape in the dipole approximation (short-dashed lines) is

typical for the Beutler–Fano resonances (see Sect. 3.3) with a

negative q parameter: the peaks (at E = E1sfνf
+(2q)−1

Γ
a
1sfνf

)

are followed by troughs (at E = E1sfνf
− qΓa

1sfνf
/2). If

|q| � 1 for a given resonance (which is fulfilled for the res-

onances shown in Fig. 3a and b), then the FWHM of the peak

coincides with the autoionization width Γ
a
1sfνf

(see Sect. 2.4),

and the distance between the peak maximum and the trough

minimum is ' |q|Γa
1sfνf

/2 � Γ
a
1sfνf

. For instance, for the

main peak of σ+(E), which is associated with the autoionizing

state |1, 1, 0〉, we have Γ
a
110 ' 0.01 Ry and q ' −200. Reso-

nances of the same nature have been obtained previously for the

case of lower magnetic fields, γ � 1 (cf. Delande et al. 1991;

O’Mahoni & Mota-Furtado 1991). For strong magnetic fields

(and, consequently, higher photon energies), non-dipole cor-

rections change the shape of the resonances so that the shape

becomes different for different polarizations and angles θ. In

particular, the parameter q is no longer real, which results in

non-zero values of the trough minima shifted from their posi-

tions obtained in the dipole approximation. An additional effect

entering when we go beyond the dipole approximation is the ap-

pearance of additional dipole-forbidden peaks overlapping with

the dipole-allowed resonances. For instance, for σ⊥, the peak at

h̄ω ' 856.4 Ry, associated with the quasi-bound state |1, 1, 0〉,
is preceded by another one, at h̄ω ' 854.5 Ry, attributable to

the state |1, 0, 0〉, transitions to which are dipole-forbidden (due

to a “transverse dipole” selection rule, see also Ventura et al.

1992). Similarly, dipole-forbidden transitions (i.e. opening of

the n = 1, s = 1 continuum) are responsible for the jump of σ+

at 863.7 Ry.

Fig. 4. Total cross sections of the photoionization of the ground state

H atom at the magnetic field strength B = 1011 G. Solid and dash-dot

lines correspond to the right and left circular polarizations, respec-

tively, at the incidence angle θ = 00; short-dash and long-dash lines

correspond to the transverse and longitudinal linear polarizations at

θ = 900

The second, much weaker and narrower resonance (its au-

toionization width is only ' 1.5 × 10−4 Ry) in Fig. 3a is as-

sociated with the hydrogen-like quasi-bound state |1, 1, 2〉. It

is not observed in Fig. 3b because of the orders of magnitude

stronger background absorption due to the transition to the con-

tinuum state nf = 1, sf = −1, which is allowed at θ /= 0

and whose threshold lies below this hydrogen-like quasi-bound

level. In fact, there exist other Beutler–Fano resonances, related

to the transitions to more excited quasi-bound states, but they

are much too weak and narrow to play any role in the computed

spectrum, so that we do not display them here. For the same rea-

son, we also do not show the autoionizing resonances of σ‖. For

the longitudinal polarization, only transitions to the odd states

are allowed at θ = 900. Therefore only hydrogen-like autoioniz-

ing states can contribute to σ‖. The corresponding resonances,

however, are extremely weak and narrow (Γa < 10−4 Ry).

Fig. 4 shows the cross sections at a weaker field,B = 1011 G.

This field strength was not considered in Paper I because the

adiabatic approximation may become too crude in this case. The

present non-adiabatic treatment allows us to include this (and

lower) field strength(s) into the consideration. Several Landau

thresholds appear in the observationally relevant energy range

in this case. Fig. 5 demonstrates the resonances associated with

these thresholds.

The cross section for the right circular polarization at θ = 00

(solid lines in Figs. 4, 5) reveals a relatively broad resonance

below each n-th Landau threshold associated with the tightly

bound autoionizing states |n, 1, 0〉 (their peaks lie at h̄ω = 87.6,

173.0 and 258.4 Ry, and the autoionizing widths are Γ
a =

0.014, 0.016, and 0.014 Ry, for n = 1, 2, 3, respectively). A

sequence of weaker and narrower resonances is further seen to

converge to a corresponding threshold. These are related to the

even hydrogen-like autoionizing states |n, 1, 2〉, |n, 1, 4〉, . . .
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Fig. 5a–c. Same as Fig. 4 for the energy ranges near the first three

Landau thresholds (panels a, b and c, respectively)

Analogous features for the left polarization (dot-dashed

curves), associated with the states |n,−1, 0〉, |n,−1, 2〉, . . .,
are seen for n ≥ 2. The states |1,−1, ν〉 are not coupled to the

continuum (if the motion across the magnetic field is neglected)

and do not contribute to the photoionization cross section. On

the contrary, coupling of the states |n,−1, 0〉 for n ≥ 2 is rela-

tively strong (e. g., Γ
a
n−10 = 0.014 and 0.016 Ry for n = 2 and

3, respectively), and the corresponding resonances dominate in

Fig. 5b,c. The cross section σ⊥ for the transverse polarization at

θ = 90◦ (short dashes) shows autoionization resonances associ-

ated with both |n, 1, ν〉 (for n ≥ 1) and |n,−1, ν〉 (for n ≥ 2)

because e⊥ = (e+ + e−)/
√

2 is composed of both circular po-

larizations.

For the longitudinal polarization (long dashes), transitions to

odd states are only allowed at θ = 900. The strongest resonance

(at h̄ω = 90.0 Ry) in Fig. 5a corresponds to the state |1, 0, 1〉
(Γa

101 ' 0.0008 Ry). Other odd-state resonances (barely seen in

Fig. 5a) are considerably weaker. At higher Landau thresholds,

all resonances of this type are weak and narrow.

The Beutler–Fano resonances in Figs. 3 and 5 were calcu-

lated assuming that autoionization is the only channel for de-

cay of the quasi-bound states, so that other mechanisms which

could lead to additional broadening of the resonances can be

neglected. However, an excited state can always decay via spon-

taneous emission of a photon, and it is known (e. g., Wunner et

al. 1983a) that the rate of the radiative decay can be very high in

strong magnetic fields. The relative importance of the radiative

and autoionization decays is determined by the relation between

the autoionization width Γ
a and radiative width Γ

r. If Γ
a � Γ

r,

then most electrons excited to the quasi-bound state rapidly es-

cape into the continuum, and the shape of the photoabsorption

resonances is determined by the autoionization. In the opposite

case, spontaneous emission occurs faster than autoionization,

so that absorption of radiation at resonance energies is not ac-

companied by photoionization, and the shape of the resonance

is described by the Lorentz profile of the width Γ
r. Thus, it is

important to compare Γ
a and Γ

r for a given level in order to

evaluate which of the two processes is more important.

Fig. 6. Autoionization widths of a few states |n, s, ν〉 (labels

near the curves) vs. magnetic field. For n = 2, the total widths,

Γ
a
2sν = Γ

a
2sν,0 + Γ

a
2sν,1 are shown. The autoionization widths of

the states |2,−1, ν〉 coincide with those of the states |1, 1, ν〉. The

long-dashed curves show the radiative widths Γ
r
n of the levels with

n = 1 and 2. The dots in the left panel show the values of the

autoionization widths of the states (from top to bottom) |1, 0, 0〉,
|1, 1, 0〉, |1, 0, 1〉 and |1, 1, 1〉 calculated by Friedrich and Chu (1983)

for B = 2.35 × 109 G (γ = 1)

The (total) autoionization widths for a few levels |1, s, ν〉
and |2, s, ν〉 are plotted as a function of B in Fig. 6. We see

that they decrease with increasing B, being quite different for

different autoionizing states. To understand qualitatively the be-

haviour of the widths, consider, for instance, the dependence of

the coupling matrix element U1sν,0, Eq. (15), which couples the

n = 1 quasi-bound states to the n = 0 continuum, on the di-

mensionless magnetic field γ. A characteristic length, ∼ aM =

aBγ
−1/2, of the effective potential V10(z) in Eq. (15), which de-

termines the limits of integration over z, is much smaller than a

typical size, ∼ a‖ (∼ aB/ ln γ for ν = 0, and ∼ aB(ν + 1)/2 for

ν > 0), of the bound wave function gad
1ν(z). Therefore, in the in-

tegrand of Eq. (15), we have gad
1ν(z) ∼ a

−1/2

‖ for the even quasi-

bound states, and gad
1ν(z) ∼ a

−1/2

‖ (aM/a‖) for the odd states.

The continuum wave function gad
0 (z) depends on the product

kz ∼ (2γ)1/2(z/aB) <∼
√

2. Taking into account that a char-

acteristic magnitude of V10(z) is ∼ e2/aM ∼ (e2/aB)γ1/2, we

arrive at the following estimates for the autoionization widths at

γ � 1: Γ
a
1sν ∝ γ−1/2 ln γ for the tightly bound states, ∝ γ−1/2

for the hydrogen-like even states, and∝ γ−3/2 for the hydrogen-

like odd states. Similar behaviour is observed for the autoion-

ization widths of the states with n > 1.

The radiative widths are mainly determined by the transi-

tions |nsν〉 → |n − 1, s + 1, ν〉; at γ � 1 the widths depend

only on the Landau quantum number n and the magnetic field,

Γ
r
n =

8

3
α3nγ2 , (39)

whereα is the fine structure constant. In fact, (39) coincides with

the well-know cyclotron width for cyclotron transitions of free

electrons (e. g., Daugherty & Ventura 1978). We see from Fig. 6

that the radiative width exceeds all the autoionization widths at
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B >∼ 6 × 1011 G for n = 1, and B >∼ 4 × 1011 G for n = 2.

This means that at very high magnetic fields the quasi-bound

states are destroyed via radiative decay rather than via autoion-

ization, and the shape of the resonances of the photoabsorp-

tion cross section is determined predominantly by the radiative

broadening. At lower magnetic field, the shape of the resonances

may be determined by different mechanisms for different quasi-

bound levels. For instance, Γ
a � Γ

r for the leading resonances

in Fig. 5 (e.g. associated with the |1, 1, 0〉, |2,−1, 0〉, |2, 1, 0〉
states), whereas weaker resonances are subject to stronger ra-

diative broadening.

To illustrate the expected effect of radiative de-excitation

on the photoabsorption spectra, we added to Fig. 3 Lorentz pro-

files of the “bound-bound” transitions to the states |1, 1, 0〉 and

|1,−1, 0〉 (dotted lines). The height and the shape of the profiles

are determined by the radiative width (Γr
1 = 0.19 Ry) and the

oscillator strengths (f000,110 = 3.1 × 10−5, f000,1−10 = 1.987).

Note that |1,−1, 0〉 is the truly bound state (for atoms at rest),

and transitions to it are actually the strongest amongst all the

transitions from the ground state, so that this “cyclotron absorp-

tion” dominates in the photoabsorption spectrum near the n = 1

Landau threshold. It should also be mentioned that the transition

|0, 0, 0〉 → |1, 1, 0〉 is forbidden in the adiabatic approximation;

its oscillator strength is provided by the admixture of |1, 0, 0〉
to the ground state, and |0, 1, 0〉 to the excited state.

5. Conclusions

We have studied photoionization cross sections of the hydro-

gen atom in magnetic fields B ∼ 1011 − 1013 G, typical for

pulsars. We have used exact interaction matrix elements, in-

cluding effects of finite proton mass, non-dipole and spin in-

teraction terms. Unlike previous authors, we use non-adiabatic

wave functions for the initial and final states of the atom. This

accurate treatment yields the following conclusions.

First, it resolves the acute contradiction of previous works

concerning the cross section for photons polarized transversely

to the magnetic field at energies h̄ω < h̄ωc. This cross sec-

tion is finite, being orders of magnitude larger than σTh near

the threshold, in agreement with Paper I. This is shown to have

no connection with neglecting the spin interaction, as was as-

sumed by KVH. Moreover, at ω � ωc the present results nearly

coincide quantitatively with those in Paper I. We have proven

that the zero values of σ+ and σ⊥, obtained by a number of

authors following Schmitt et al. (1981), do not represent the re-

ality but arise from their using the velocity representation of the

interaction matrix elements in combination with the adiabatic

approximation for the wave functions. This combination led

those authors to miss the main contribution in the cross section.

Second, the non-adiabatic treatment includes autoionization

of the quasi-discrete levels associated with the Landau excita-

tions. These levels are considered as truly discrete in the adia-

batic approximation. Autoionization manifests itself in the pho-

toionization cross sections as Beutler–Fano resonances near the

quasi-discrete levels; the shape of the resonances is determined

by correlation between closed and open channels. We have cal-

culated the autoionization widths for the most important reso-

nances in a wide range of magnetic fields and have shown that

they exceed the radiative widths if the magnetic field is not too

strong, B <∼ 1011 G.

Third, we have shown that the adiabatic results significantly

deviate from the exact ones not only near the resonances, but

in a rather wide range of photon energies, unless the condition

ω � ωc is satisfied. Above the Landau threshold, this deviation

is due to correlation between different open photoionization

channels.

In this paper we restrict ourselves to the particular case of an

atom which does not move across the field. It has been shown

by Pavlov & Mészáros (1993), B&P and KVH that transverse

atomic motion leads to the opening of additional channels of

ionization. In the particular case of slow motion, however, our

present consideration allows one to decide between the small

transverse cross sections presented by KVH and orders of mag-

nitude larger cross sections obtained by B&P — in favour of the

larger ones.
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Appendix A: derivation of Eqs. (30), (31)

In this section, we derive an approximate relation between non-

adiabatic corrections which, according to Eq. (27), determine

the interaction matrix element in the velocity representation for

the transverse polarization, and the adiabatic overlap integral

〈0, f |0, i〉‖ which enters Eq. (29) for the matrix element in the

length representation.

Let us consider the quantum states |a〉 and |b〉 (na = nb = 0)

belonging to adjacent s-manifolds: sa = s, sb = s + 1. The

longitudinal coefficients in Eq. (2) are given by the set of coupled

differential equations (3) with the effective potential (4). At

γ � 1, the non-diagonal effective potentials are small compared

to the diagonal ones, and the non-adiabatic admixtures gn/=0

are small respectively. Retaining only the leading terms in the

equation for g0(z), we have
[

h̄2

2µ

d2

dz2
+ Ea − s

me

mp

h̄ωc

]

g(a)
0 (z) = V (s)

00 (z)g(a)
0 (z), (A1)

[

h̄2

2µ

d2

dz2
+ Eb − (s + 1)

me

mp

h̄ωc

]

g(b)
0 (z)

= V (s+1)
00 (z)g(b)

0 (z). (A2)

Keeping the first-order terms in the equation for g(a)
1 (z), we

obtain
[

h̄2

2µ

d2

dz2
+ Ea −

(

1 + s
me

mp

)

h̄ωc

]

g(a)
1 (z)

= V (s)
11 (z)g(a)

1 (z) + V (s)
01 (z)g(a)

0 (z). (A3)
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Here the terms Vn1gn with n ≥ 2 are neglected.

Multiplying Eq. (A1) by g(b)
0 (z) and Eq. (A2) by g(a)

0 (z), sub-

tracting them by terms and integrating over z, we arrive at the

approximate relation

(

Ea − Eb +
me

mp

h̄ωc

)

〈0, a|0, b〉‖

= 〈0, a|V (s)
00 − V (s+1)

00 |0, b〉‖. (A4)

Analogously, from Eqs. (A2) and (A3) we obtain

[

Ea − Eb −
(

1 − me

mp

)

h̄ωc

]

〈1, a|0, b〉‖

= 〈0, a|V (s)
01 |0, b〉‖ + 〈1, a|V (s)

11 − V (s+1)
00 |0, b〉‖. (A5)

The second term on the right-hand side should be omitted in

the approximation considered. Indeed, according to Eq. (4), the

difference of two diagonal effective potentials can be expressed

in terms of non-diagonal ones,

V (s)
11 (z) − V (s+1)

00 (z) = (s + 1)−1/2

×
[√

s + 2V (s)
02 (z) − V (s)

01 (z)
]

, (A6)

and thus the last term in Eq. (A5) represents a second order

correction. Analogously, the difference on the right-hand side

of Eq. (A4) equals

V (s)
00 (z) − V (s+1)

00 (z) = (s + 1)−1/2V (s)
01 (z). (A7)

Comparison of Eqs. (A4) and (A5) yields now:

〈1, a|0, b〉‖
〈0, a|0, b〉‖

≈
√
s + 1

Ea − Eb + (me/mp)h̄ωc

Ea − Eb − (1 −me/mp)h̄ωc
. (A8)

Applying this result to radiative transitions between a lower state

|i〉 and an upper state |f〉, neglectingme/mp in the denominator,

and assuming ω � ωc, we arrive at Eqs. (30) and (31).

Appendix B: details of computation

B.1. Solving the Schrödinger equation

Bound state wave functions are calculated using the multicon-

figurational Hartree–Fock technique described in Paper II.

Continuum wave functions are sought in the form (2), sep-

arately for each z-parity. The set of Eqs. (3) for the longitudinal

coefficients is rearranged in two coupled subsystems, which are

solved by two-step iterations. In the first step, the equations for

the open channels (n, n′ = nmin, . . . , n0 − 1) are solved, the

contribution to the right-hand side from the other group of or-

bitals (n′ = n0, . . . , nmax) being fixed. In the second step, the

longitudinal wave functions of the closed channels (n, n′ ≥ n0)

are adjusted to the open-channel functions (n′ < n0) found in

the preceding step. The procedure is then repeated; typically,

a few such iterations are sufficient to reach convergence. The

only exception occurs in the resonance energy region, where

the number of iterations increases up to 20–30, and the method

finally fails in narrow energy regions corresponding to the very

top of the peaks. Nevertheless, as can be seen in our figures, we

are still able to trace substantial parts of the resonance profiles.

The first step of each iteration is performed by the out-

ward integration, employing the explicit fourth-order Runge–

Kutta scheme (e.g., Fletcher 1988) for the vector function

g = (g(f )
0 , . . . , g(f )

n0−1). The integration extends to the point

z0 ∼ 102am, where the off-diagonal effective potentials become

negligible. The second step, solving the longitudinal equations

for gn≥n0
provided that gn<n0

are fixed, does not differ from

that described in Paper II. After the iterative process ends, one

extra integration for each orbital is required to proceed beyond

z0, where the orbitals are already uncoupled.

B.2. Rearrangement

The outward integration for the open channels is performed with

the initial conditions arbitrarily chosen as gn(0) = g′n(0) = 0

for all n < n0 except n = j, whereas we chose gj(0) = 1 or

g′j(0) = 1 depending on parity. In this way we obtain an arbitrary

set of n0 linearly independent wave functions ψ(j,arb)(r), j =

nmin, . . . , n0 − 1. This set has to be rearranged, in order to meet

the asymptotic conditions (6):

g(n,real)
n′ (z) =

n0−1
∑

j=nmin

anjg
(j,arb)
n′ (z), (B1)

where the coefficients anj constitute the rearrangement matrix

A. In order to obtainA, first, the integration is extended to a point

zas � e2/min(Ef −E⊥
nsf

), where the asymptotic behaviour is

reached. The minimum longitudinal energy here is to be taken

over all open channels, i.e. for n = 0, . . . , n0 −1. An outermost

part of this integration may be performed by a faster scheme, cf.

Paper I. Then, using Eq. (B1) together with Eq. (6), we arrive at

the algebraic system:

n0−1
∑

j=nmin

g(j,arb)
n′ (zas)anj − cosφn′ (zas)Rnn′

= δnn′ sin φn(zas),
n0−1
∑

j=nmin

d

dz
g(j,arb)
n′ (zas)anj + φ′

n′ (zas) sin φn′ (zas)Rnn′

= δnn′φ′
n(zas) cosφn(zas), n, n

′ = 0, . . . , n0 − 1, (B2)

the phase φn being defined in Eq. (7). For each given n, the

2(n0 −nmin)×2(n0 −nmin) system (B2) is solved to get the nth

row of the matrices A and R. Since the matrix of this algebraic

system does not depend on n, the FACT/SOLVE code (Fletcher

1988) is most useful.

Longitudinal matrix elements, which enter Eq. (21), are cal-

culated along with the functions g(j,arb) at the last stage of the

integration for each specific j. They still need to be transformed

into the matrix elements for the outgoing states. According to

Eqs. (B1) and (10), this transformation of the array of matrix el-

ements is performed by the matrix i
√

2/Lz(1 + iR)−1A, which

acts on the subscript j related to a channel. The square root

multiplier ensures the necessary normalization (Sect. 2.2).
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