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ABSTRACT

Context. Simple models fail to describe the observed spectra of X-ray-dim isolated neutron stars (XDINSs). Interpretating these
spectra requires detailed studies of radiative properties in the outermost layers of neutron stars with strong magnetic fields. Previous
studies have shown that the strongly magnetized plasma in the outer envelopes of a neutron star may exhibit a phase transition to
a condensed form. In this case thermal radiation can emerge directly from the metallic surface without going through a gaseous
atmosphere, or alternatively, it may pass through a “thin” atmosphere above the surface. The multitude of theoretical possibilities
complicates modeling the spectra and makes it desirable to have analytic formulae for constructing samples of models without going
through computationally expensive, detailed calculations.
Aims. The goal of this work is to develop a simple analytic description of the emission properties (spectrum and polarization) of the
condensed, strongly magnetized surface of neutron stars.
Methods. We have improved our earlier work for calculating the spectral properties of condensed magnetized surfaces. Using the
improved method, we calculated the reflectivity of an iron surface at magnetic field strengths B ∼ 1012 G–1014 G, with various incli-
nations of the magnetic field lines and radiation beam with respect to the surface and each other. We constructed analytic expressions
for the emissivity of this surface as functions of the photon energy, magnetic field strength, and the three angles that determine the
geometry of the local problem. Using these expressions, we calculated X-ray spectra for neutron stars with condensed iron surfaces
covered by thin partially ionized hydrogen atmospheres.
Results. We develop simple analytic descriptions of the intensity and polarization of radiation emitted or reflected by condensed
iron surfaces of neutron stars with the strong magnetic fields typical of isolated neutron stars. This description provides boundary
conditions at the bottom of a thin atmosphere, which are more accurate than previously used approximations. The spectra calculated
with this improvement show different absorption features from those in simplified models.
Conclusions. The approach developed in this paper yields results that can facilitate modeling and interpretation of the X-ray spectra
of isolated, strongly magnetized, thermally emitting neutron stars.
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1. Introduction

Recent observations of neutron stars have provided a wealth
of valuable information, but they have also raised many new
questions. Particularly intriguing is the class of radio-quiet neu-
tron stars with thermal-like spectra, commonly known as X-ray
dim isolated neutron stars (XDINSs), or the Magnificent Seven
(see, e.g., reviews by Haberl 2007 and Turolla 2009, and ref-
erences therein). Some of them (e.g., RX J1856.5−3754) have
featureless spectra, whereas others (e.g., RX J1308.6+2127 and
RX J0720.4−3125) have broad absorption features with energies
∼0.2–2 keV. In recent years, an accumulation of observational
evidence has suggested that XDINSs may have magnetic fields
B ∼ 1013–1014 G and be related to magnetars (e.g., Mereghetti
2008).

For interpretating the XDINS spectra, it may be necessary to
take the phenomenon of “magnetic condensation” into account.

The strong magnetic field squeezes the electron clouds around
the nuclei, thereby increasing the binding and cohesive ener-
gies (e.g., Medin & Lai 2006, and references therein). Therefore
XDINSs may be “naked,” with no appreciable atmosphere above
a condensed surface, as first conjectured by Zane et al. (2002),
or they may have a relatively thin atmosphere, with the spectrum
of outgoing radiation affected by the properties of the condensed
surface beneath the atmosphere, as suggested by Motch et al.
(2003).

Reflectivities of condensed metallic surfaces in strong mag-
netic fields have been studied in several papers (Brinkmann
1980; Turolla et al. 2004; van Adelsberg et al. 2005;
Pérez-Azorín et al. 2005). Brinkmann (1980) and Turolla et al.
(2004) neglected the motion of ions in the condensed mat-
ter, whereas van Adelsberg et al. (2005; hereafter Paper I) and
Pérez-Azorín et al. (2005) considered two opposite limiting
cases, one that neglects the ion motion (“fixed ions”) and another
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where the ion response to the electromagnetic wave is treated
by neglecting the Coulomb interactions between the ions (“free
ions”). A large difference between these two limits occurs at
photon frequencies below the ion cyclotron frequency, but the
two models lead to almost the same results at higher photon en-
ergies. We expect that in reality the surface spectrum lies be-
tween these two limits (see Paper I for discussion). The results
of Paper I and of Pérez-Azorín et al. (2005) are similar, but differ
significantly from the earlier results. In particular, Turolla et al.
(2004) find that collisional damping in the condensed matter
leads to a sharp cutoff in the emission at low photon energies, but
such a cutoff is absent in Paper I and Pérez-Azorín et al. (2005).
It is most likely that this difference arises from the “one-mode”
description for the transmitted radiation adopted by Turolla et al.
(2004, see Paper I for details). All the previous works relied on a
complicated method of finding the transmitted radiation modes,
originally due to Brinkmann (1980). We replace it with the more
reliable method described below.

Ho et al. (2007, see also Ho 2007) fitted multiwavelength
observations of RX J1856.5−3754 with a model of a thin, mag-
netic, partially ionized hydrogen atmosphere on top of a con-
densed iron surface; they also discuss possible mechanisms of
creation of such a thin atmosphere. Suleimanov et al. (2009) cal-
culated various models of fully and partially ionized finite atmo-
spheres above a condensed surface including the case of “sand-
wich” atmospheres, composed of hydrogen and helium layers
above a condensed surface.

The wide variety of theoretical possibilities complicates the
modeling and interpretation of the spectra. To facilitate this task,
Suleimanov et al. (2010; hereafter Paper II) suggest an approx-
imate treatment, in which the local spectra, together with tem-
perature and magnetic field distributions, are fitted by simple
analytic functions. By being flexible and fast, this approach is
suited to constrain stellar parameters prior to performing more
accurate, but computationally expensive calculations of model
spectra. The reflectivity of the condensed surface was mod-
eled by a simple steplike function, which roughly described the
polarization-averaged reflectivity of a magnetized iron surface at
B = 1013 G, but depended neither on the magnetic field strength
B nor on the angle ϕ between the plane of incidence and the
plane made by the normal to the surface and the magnetic field
lines.

In the present work, the numerical method of Paper I and
the approximate treatment of Paper II are refined. We develop
a less complicated and more stable method of calculations and
construct more accurate fitting formulae for the reflectivities of a
condensed, strongly magnetized iron surface, taking the depen-
dence on arguments B and ϕ into account. The new fit reproduces
the feature near the electron plasma energy, obtained numeri-
cally in Paper I but neglected in Paper II. Two versions of the fit
are presented in Sect. 2 for the models of free and fixed ions dis-
cussed in Paper I. In addition to the fit for the average reflectivity,
we present analytic approximations for each of the two polariza-
tion modes, which allow us to calculate the polarization of radi-
ation of a naked neutron star. In Sect. 3 we consider the radiative
transfer problem in a finite atmosphere above the condensed sur-
face, including the reflection from the inner atmosphere bound-
ary with normal-mode transformations, neglected in the previous
studies of thin atmospheres. Conclusions are given in Sect. 4. In
Appendix A we describe the method of calculation for the re-
flectivity coefficients, which is improved with respect to Paper I.
In Appendix B we describe an analytic model of normal-mode
reflectivities at the inner boundary of a thin atmosphere.

2. Spectral properties of a strongly magnetized
neutron star surface

2.1. Condensed magnetized surface

Most of the known neutron stars have much larger magnetic
fields B than the natural atomic unit for the field strength B0 =
e3m2

ec/�3 = 2.35 × 109 G, which is set by equating the electron
cyclotron energy

Ece = �eB/mec = 115.77 B13 keV (1)

to the Hartree unit of energy mee4/�2. Here, me is the electron
mass, e the elementary charge, c the speed of light in vacuum,
� the Planck constant divided by 2π, and B13 = B/1013 G.
Fields with B � B0 profoundly affect the properties of atoms,
molecules, and plasma (see, e.g., Haensel et al. 2007, Chap. 4).
Ruderman (1971) suggested that the strong magnetic field may
stabilize linear molecular chains (polymers) aligned with the
magnetic field and eventually turn the surface of a neutron star
into the metallic solid state. Later studies have provided support
for this conjecture, although the surface density ρs and, espe-
cially, the critical temperature Tcrit below which such conden-
sation occurs remain uncertain. Order-of-magnitude estimates
suggest

ρs = 8.9 × 103 η AZ−0.6 B1.2
13 g cm−3, (2)

where A and Z are the atomic mass and charge numbers, and
η ∼ 1 an unknown numerical factor, which absorbs the the-
oretical uncertainty (see Lai 2001). The value η = 1 corre-
sponds to the equation of state provided by the ion-sphere model
(Salpeter 1954). More recent results of the zero-temperature
Thomas-Fermi model for 56Fe at 1010 G � B � 1013 G (Fushiki
et al. 1989; Rögnvaldsson et al. 1993) can be approximated
(within 4%) by Eq. (2) with η ≈ 0.2 + 0.0028/B0.56

13 , whereas
the finite-temperature Thomas-Fermi model of Thorolfsson et al.
(1998) does not predict magnetic condensation at all. The most
comprehensive study of cohesive properties of the magnetic con-
densed surface has been conducted by Medin & Lai (2006,
2007), based on density-functional theory (DFT). Medin & Lai
(2006) calculated cohesive energies Qs of the molecular chains
and condensed phases of H, He, C, and Fe in strong magnetic
fields. A comparison with previous DFT calculations by other
authors suggests that Qs may vary within a factor of two at B �
1012 G, depending on the approximations employed (see Medin
& Lai 2006, for references and discussion). Medin & Lai (2007)
calculated equilibrium densities of saturated vapors of He, C,
and Fe atoms and chains above the condensed surfaces and ob-
tained Tcrit at several values of B by equating the vapor density
to ρs. Unlike previous authors, Medin & Lai (2006, 2007) have
taken the electronic band structure of the metallic phase into ac-
count self-consistently. However, in the gaseous phase, they still
did not allow for atomic motion across the magnetic field and
did not take a detailed treatment of excited atomic and molecu-
lar states into account. Medin & Lai (2007) calculated the sur-
face density assuming that the linear molecular chains (directed
along B) form a rectangular array in the perpendicular plane and
that the distance between the nuclei along the field lines is the
same in the condensed matter as in the separate molecular chain
(Medin & Lai 2006; Medin 2012, priv. comm.). Medin & Lai
(2007) found that the critical temperature is Tcrit ≈ 0.08Qs/kB.
Their numerical results for 56Fe at 0.5 � B13 � 100 can be de-
scribed by expression Tcrit ≈ (5 + 2 B13) × 105 K for the critical
temperature and by Eq. (2) with η ≈ 0.55 for the surface density,
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with uncertainties below 20% for both quantities. An observa-
tional determination of the phase state of a neutron star surface
would be helpful for improving the theory of matter in strong
magnetic fields.

The density of saturated vapor above the condensed sur-
face rapidly decreases with decreasing T (Lai & Salpeter 1997).
Therefore, although the surface is hidden by an optically thick
atmosphere at T ≈ Tcrit, the atmosphere becomes optically thin
at T � Tcrit. Also, as suggested by Motch et al. (2003), there
may be a finite amount of light chemical elements (e.g., H) on
top of the condensed surface of a heavier element (e.g., Fe). In
addition, the same atmosphere may be optically thick for low
photon energies and transparent at high energies. The energy at
which the total optical thickness of a finite atmosphere equals
unity depends on the atmosphere column density, which can in
turn depend on temperature. At a fixed energy, the optical thick-
ness of the finite atmosphere is different for different photon po-
larizations, therefore the atmosphere can be thick for one po-
larization mode and thin for another. One should take all these
possibilities into account while interpreting observed spectra of
neutron stars.

2.2. Formation of the spectrum

2.2.1. Normal modes and polarization vectors

It is well known (e.g., Ginzburg 1970) that under typical con-
ditions (e.g., far from the resonances) electromagnetic radiation
propagates in a magnetized plasma in the form of extraordinary
(X) and ordinary (O) normal modes. These modes have different
polarization vectors eX and eO, absorption and scattering coef-
ficients, and refraction and reflection coefficients at the surface.
Gnedin & Pavlov (1973) studied conditions for the applicabil-
ity of the normal-mode description and formulated the radiative
transfer problem in terms of these modes.

Following the works of Shafranov (1967) and Ginzburg
(1970), Ho & Lai (2001) derived convenient expressions for the
normal mode polarization vectors in a fully ionized plasma for
photon energies E much higher than the electron plasma energy

Epe =
(
4π�2e2ne/me

)1/2 ≈ 0.0288
√
ρZ/A keV, (3)

where ρ is the density in g cm−3. In the complex representation
of plane waves with E ∝ e ei(k·r−ωt), in the coordinate system
where the z-axis is along the wave vector k, and the magnetic
field B lies in the (xz) plane, the polarization vectors are

eM(α) =
1√

1 + |KM(α)|2 + |Kz,M(α)|2

⎛⎜⎜⎜⎜⎜⎜⎝
iKM(α)

1
iKz,M(α)

⎞⎟⎟⎟⎟⎟⎟⎠ , (4)

We use the notation M = X and M = O for the extraordi-
nary and ordinary polarization modes, respectively. KM(α) and
Kz,M(α) are functions of the angle α between B and k. They
are determined by the dielectric tensor of the plasma and thus
depend on the photon energy E, as well as ρ, B, T and the
chemical composition. Ho & Lai (2003) calculated KM and stud-
ied the polarization of normal modes including the effect of
the electron-positron vacuum polarization, while Potekhin et al.
(2004) additionally considered an incomplete ionization of the
plasma.

2.2.2. Emission and reflection by a condensed surface

The condition E > Epe is usually satisfied for X-rays in neutron
star atmospheres, but not in the condensed matter. We consider a

Fig. 1. Illustration of notations. The z axis is chosen perpendicular to
the surface, and the (xz) plane is chosen parallel to the magnetic field
lines, which make an angle θB with the normal to the surface. The di-
rection of the reflected beam with wave vector kr is determined by the
polar angle θk and the azimuthal angle ϕ, and αr is the angle between
the reflected beam and the field lines. Thick solid lines show the re-
flected beam and magnetic field directions, thin solid lines illustrate the
coordinates, and dashed lines show the incident photon wave vector ki

and its quadrant. The lines marked e(i,r)
1,2 illustrate the basic polarizations

adopted for the description of reflectivities: e(i)
1,2 and e(r)

1,2 are perpendic-

ular to the wave vectors ki and ki, respectively; e(i,r)
1 are parallel to the

surface, and e(i,r)
2 lie in the perpendicular plane. The axes x′ and y′ lie in

the plane made by e(r)
1 and e(r)

2 , x′ being aligned in the plane made by B
and kr.

surface element that is sufficiently small for the variation in the
magnetic field strength and inclination to be neglected. We treat
this small patch as plane, neglecting its curvature and roughness.
We choose the Cartesian z axis perpendicular to this plane and
the x axis parallel to the projection of magnetic field lines onto
the xy plane. We denote the angle between the field and the z
axis as θB, the incidence angle of the radiation as θk, and the
angle in the xy plane made by the projection of the wave vector
as ϕ (Fig. 1). The angle between the wave vector and magnetic
field lines is given by

cosαi,r = sin θB sin θk cosϕ ∓ cos θB cos θk (5)

for the incident and reflected waves, respectively. The surface
emits radiation with monochromatic intensities

IE, j = J j BE/2 ( j = 1, 2). (6)

Here, the basis for polarization is chosen such that the waves
with j = 1 and 2 are linearly polarized parallel and perpendicular
to the incident plane, respectively (Fig. 1); IE, j dΣ dΩ dE dt gives
the energy radiated in the jth wave by the surface element dΣ, in
the energy band (E, E + dE), during time dt, in the solid angle
element dΩ around the direction of the wave vector k. We use
the function

BE =
Bν

2π�
=

E3

4π3�3c2(eE/kBT − 1)
, (7)

where Bν is Planck’s spectral radiance and kB the Boltzmann
constant. Dimensionless emissivities for the two polarizations,
normalized to blackbody values, are J j = 1−R j, where R j is the
effective reflectivity of mode j defined in Appendix A. The re-
flectivities depend on surface material, photon energy, magnetic
field strength B and inclination θB, and on the direction of k.
For nonpolarized radiation, it is sufficient to consider the mean
reflectivity R = (R1 + R2)/2 (see Paper I).
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2.2.3. Reflectivity calculation

A method for calculating reflectivity coefficients was devel-
oped in Paper I. However, it is not easy to implement. Though
it mostly produces correct results, in some ranges of model
parameters it can yield unphysical results, which are difficult
to distinguish from the correct ones. In the present work we
present an improved method that avoids this complication (see
Appendix A).

Using our new method, we calculated the spectral properties
of a condensed Fe surface and compared the results with those
in Paper I. As in Paper I, we considered two alternative models
for the response of ions to electromagnetic waves in the con-
densed phase: one neglects the Coulomb interactions between
ions, while the other treats ions as frozen at their equilibrium
positions in the Coulomb crystal (i.e., neglecting their response
to the electromagnetic wave).

In the first limiting case (thick lines in Fig. 2), the reflectivity
exhibits different behavior in three characteristic energy ranges:
E < Eci, Eci � E � EC, and E � EC, where

Eci = �ZeB/Amuc = 0.0635 (Z/A) B13 keV (8)

is the ion cyclotron energy, mu is the unified atomic mass unit,
and

EC = Eci + E2
pe/Ece. (9)

In addition, there is suppression of the reflectivity at E ∼ Epe;
the exact position, width, and depth of the suppression depend
on the geometry defined by the angles θB, θk, and ϕ.

In the opposite case of immobile ions (thin curves in Fig. 2),
the reflectivity has a similar behavior at E > Eci, but differs at
E � Eci. It does not exhibit the sharp change at E ≈ Eci, but
smoothly continues to the lower energies. As argued in Paper I,
we expect that the actual reflectivity lies between these two
extremes.

The new results, shown in Fig. 2, display the same qualita-
tive behavior as in Paper I, but exhibit considerable deviation
from the previous calculations for some geometric settings in
the energy range Eci � E � EC. Thus, the qualitative results and
conclusions of Paper I are correct, but the new method described
in Appendix A is quantitatively more reliable.

If θB = θk = 0, then an approximate analytic solution (ne-
glecting the finite electron relaxation rate in the medium; see
Paper I for discussion) is R ≈ (R+ + R−)/2, where

R(0)
± =
∣∣∣∣∣∣
n(0)
± − 1

n(0)
± + 1

∣∣∣∣∣∣
2

, n(0)
± =
⎡⎢⎢⎢⎢⎢⎣1 ± E2

pe

Ece(E ± Eci)

⎤⎥⎥⎥⎥⎥⎦
1/2

· (10)

Compared to the numerical results, Eq. (10) provides a good ap-
proximation at E � Eci. Therefore, we use it in the analytic fit
described below.

2.3. Results for iron surface

In the numerical examples presented below we assume a con-
densed 56Fe surface and use the estimate of the surface density
given by the ion-sphere model – that is, we set η = 1 in Eq. (2).

2.3.1. Mean reflectivity

In practice, the average normalized emissivity J = 1 − R is usu-
ally more important than the specific emissivities R j. In Paper II,

Fig. 2. Dimensionless emissivity J = 1 − R as a function of photon
energy E for a condensed Fe surface with B = 1013 G and T = 106 K.
The top panel shows several cases with varying θB and fixed θk = π/4,
ϕ = π/4. The bottom panel shows several cases with varying ϕ and
fixed θk = π/4, θB = π/4. These plots should be compared with Figs. 5
and 6 of Paper I.

R(E) was replaced by a constant in each of the three ranges men-
tioned in Sect. 2.2.3 (E < Eci, Eci < E < ẼC ≈ EC, and E > ẼC).
For simplicity, the values of these three constants were assumed
to depend only on θB and θk, but not on ϕ or B. Here we propose
a more elaborate and accurate fit, which is a function of E, B, θB,
θk, and ϕ, for the magnetic field range 1012 G � B � 1014 G and
photon energy range 1 eV � E � 10 keV. In the approximation
of free ions, the average reflectivity of the metallic iron surface
is approximately reproduced by

J =

⎧⎪⎪⎨⎪⎪⎩
JA in Region I,

JB (1 − JC) +
JC

1 + L
in Region II.

(11)

Region I is the low-energy region defined by the conditions
E < Eci and JA > JB. Region II is the supplemental range of
relatively high energies in which either of these conditions is vi-
olated. The functions JA, JB, and JC are mainly responsible for
the behavior of the emissivity at E < Eci, Eci < E � ẼC, and
E > ẼC, respectively, while the function L describes the line at
E ≈ Epe. The value

ẼC = Eci + Ẽpe
2
/Ece (12)

A121, page 4 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219747&pdf_id=2


A. Y. Potekhin et al.: Spectra of neutron stars with metallic surfaces

Fig. 3. Dimensionless emissivity J = 1 − R as a function of photon
energy E for condensed Fe surface at B = 1013 G (top panel), B =
1012 G and 1014 G (bottom panel), with magnetic field lines normal
to the surface, for two angles of incidence θk = 0 and θk = π/4, as
marked near the curves. Solid lines show our numerical results, and
dashed lines demonstrate the fit. For comparison, dotted lines reproduce
the simplified approximation used in Paper II.

is the energy at which the square of the effective refraction index

ñ2 = 1 − Ẽpe
2

Ece(E − Eci)
(13)

(analogous to Eq. (10)) becomes positive with increasing E in
the range E > Eci. In Eqs. (12) and (13),

Ẽpe = Epe

√
3 − 2 cos θk. (14)

The low-energy part of the fit in Eq. (11) is given by

JA = [1 − A(E)] J0(E), (15)

where

A(E) =
1 − cos θB
2
√

1 + B13
+

[
0.7 − 0.45

J0(0)

]
(sin θk)4 (1 − cosα), (16)

J0(E) = 1 − 1
2 (R(0)

− + R(0)
+ ), and R(0)

± are given by Eq. (10).

Accordingly, J0(0) = 4
(√

EC/Eci + 1
)−1 (√

Eci/EC + 1
)−1

. In
Eq. (16) and hereafter, α without subscripts denotes min(αr, αi).

In the intermediate energy range, Eci < E � ẼC, there is a
wide suppression of the emissivity. We describe this part by the
power-law interpolation between the values at Eci and ẼC:

JB = (E/ẼC)pJ(ẼC), where p =
ln[J(ẼC)/J(Eci)]

ln(ẼC/Eci)
· (17)

Fig. 4. Dimensionless emissivity J = 1 − R as a function of pho-
ton energy E for a condensed Fe surface with inclined magnetic field
(B = 1013 G, θB = π/4) and inclined incidence of radiation (θk = π/4
and four values of ϕ listed in the figure). Solid lines show our numer-
ical results for the model of free ions at T = 106 K, and short-dashed
lines demonstrate the fit. For comparison, the dotted line reproduces our
numerical results for ϕ = π/2 and T = 3 × 105 K.

The values J(Eci) and J(ẼC) are approximated as follows:

J(ẼC) =
1
2
+

0.05
1 + B13

(1 + cos θB sin θk)

−0.15(1 − cos θB) sinα, (18)

J(Eci) =
2n0

(1 + n0)2

(
1 +

cos θB − cos θk
2 (1 + B13)

)
, (19)

where n0 = (1 + E2
pe/2EceEci)1/2.

The steep slope at E > ẼC is described by Eq. (10) with Epe

replaced by Ẽpe:

JC =

{
4ñ/(1 + ñ)2 at E > ẼC,
0 at E � ẼC,

(20)

ñ being given by Eq. (13).
Finally, the lowering of J(E) at E > ẼC is fit by

L =

[
0.17Epe/EC

1 + X4
+ 0.21 e−(E/Epe)2

]
(sin θk)2 WL, (21)

X =
E − EL

2EpeWL
(1 − cos θk)−1,

EL = Epe

[
1 + 1.2 (1 − cos θk)3/2

] [
1 − (sin θB)2/3

]
,

WL = 0.8 (ẼC/Epe)0.2
√

sin(α/2)
[
1 + (sin θB)2

]
.

The line at EL disappears from the fit (L → 0) when radiation
is parallel to the magnetic field (α → 0). This property is not
exact; our numerical results reveal a remnant of the line at α →
0, which is relatively weak, but may become appreciable if the
magnetic field is strongly inclined (θB > π/4).

Examples of the numerical results for the normalized emis-
sivities are compared to the analytic approximation in Figs. 3–5.
For most geometric settings, the fit error lies within 10% in more
than 95% of the interval −3 < log10 E (keV) < 1. The remaining
<5% are the narrow ranges of E where J(E) sharply changes.
Exceptions occur for strongly inclined fields (θB > π/4) and
small ϕ, where the error may exceed 20% in up to 10% of the
logarithmic energy range.
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Fig. 5. Same as in Fig. 4, but for B = 1014 G and two values of ϕ.
For comparison, the dotted and long-dashed lines reproduce our numer-
ical results and analytic approximation, respectively, for the model of
fixed ions.

Our fit does not take the dependence of reflectivity on tem-
perature into account. Temperature of the condensed matter en-
ters in the calculations through the effective relaxation time,
which determines the damping factor (see Paper I). This dis-
regard is justified by the weakness of the T -dependence of the
results. With decreasing T , the transitions of R(E) between char-
acteristic energy ranges become sharper, and the feature at EL
becomes stronger. The bulk of our calculations employed in the
fitting was done at T ∼ 106 K. In Fig. 4, which shows the nu-
merical results at T = 106 K, an additional line is drawn at
T = 3 × 105 K, in order to illustrate the T -dependence.

A small modification of the proposed approximation can de-
scribe the alternative model of fixed ions (see Paper I). In this
case, it is sufficient to formally set Eci → 0 in the above equa-
tions and replace Eq. (17) by

JB =
J(ẼC)

1 − p + p (ẼC/E)0.6
, where p = 0.1

1 + sin θB
1 + B13

· (22)

As an example, in Fig. 5 the numerical results in the model of
fixed ions and the fit Eq. (22) are shown in addition to the free-
ion results.

2.3.2. Polarization

We also constructed approximations for the emissivities in each
of the two modes. Their functional dependence on E and geo-
metric angles in Fig. 1 is more complicated than the analogous
dependence for the average J = (J1 + J2)/2. We did not ac-
curately reproduce these complications, in order to keep the fit
relatively simple, but reproduced general trends. For j = 1, our
free-ion approximation has the same form as Eq. (11):

J1 =

{
JA1 in Region I,
JB1 (1 − JC) + JC(1 − RL) in Region II. (23)

Here, we retain JC given by Eq. (20). The shape of the line near
the plasma frequency is unchanged and is described by Eq. (21),

Fig. 6. Dimensionless emissivity for the linear polarization e1, J1 =
1 − R1, as a function of photon energy E for condensed Fe surface
at different magnetic field strengths and geometric settings. Top panel:
magnetic field B = 1013 G is normal to the surface, and angles of
radiation incidence are θk = 0, π/6, π/4, and π/3. Bottom panel:
B = 1013.5 G, magnetic field lines and the photon beam are both in-
clined at θB = θk = π/4, and the azimuthal angle takes values ϕ = 0,
π/4, and π/2. Solid lines show the numerical results, and dashed lines
demonstrate the fit.

but the line strength is different, since L enters Eq. (23) through
the function

RL = (sin θB)1/4
[
2 − (sinα)4

] L
1 + L

· (24)

The functions that describe emissivity in mode 1 at E < ẼC are

JA1 = [1 − A1] JA, (25)

A1 =
a1

1 + 0.6 B13 (cos θB)2
,

a1 = 1 − (cos θB)2 cos θk − (sin θB)2 cosα;

JB1 = (E/ẼC)p1 J1(ẼC), p1 =
ln[J1(ẼC)/J1(Eci)]

ln(ẼC/Eci)
, (26)

J1(Eci) = (1 − a1) J(Eci),

J1(ẼC) =
1
2
+

0.05
1 + B13

+
sin θB

4
·
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Fig. 7. Degree of linear polarization Plin (Eq. (28)) as a function of pho-
ton energy E for condensed Fe surface. The values of B, directions of
the field and the wave vector, and line types are same as in Fig. 6.

In the fixed-ion case, it is sufficient to set Eci → 0 and to replace
Eq. (26) by

JB1 =
J1(ẼC)

0.1 + 0.9 (ẼC/E)0.4
· (27)

For the second mode, no additional fitting is needed, because
R2 = 2R − R1 and J2 = 2J − J1.

Figure 6 compares the use of Eqs. (23)–(26) to numerical re-
sults. The upper panel shows the case where the field lines are
perpendicular to the surface. In this case the line at EL disappears
from mode 1, so the line in R seen in Fig. 3 for θk � 0 is entirely
due to mode 2. As soon as the field is inclined, the line is redis-
tributed between the two modes (the lower panel of Fig. 6). In
the latter case the numerical results show a more complex func-
tional dependence R1(E) in the range Eci < E < ẼC, which is
not fully reproduced by our fit, for the reasons discussed above.

The azimuthal angle ϕ enters the fit only through α. As a
consequence, the fit is symmetric with respect to a change in
sign of ϕ. This property may seem natural at first glance; how-
ever, we note that the numerical results do not strictly obey this
symmetry, which holds for the nonpolarized beam, but not for
each of the polarization modes separately. We have checked that
this is not a numerical artifact: because the magnetic field vec-
tor B is axial, there is no strict symmetry with respect to the (x, z)
plane. A reflection about this plane would require simultaneous
inversion of the B direction in order to restore the original re-
sults. However, as long as the electromagnetic waves are nearly
transverse (i.e., Kz in (4) and (A.24) are small), the asymmetry

is weak, allowing us to ignore it and thus keep the fit relatively
simple.

The analytic approximations in Eqs. (11) and (23) allow
one to evaluate the degree of linear polarization of the emitted
radiation

Plin = (J1 − J2)/2J = (R2 − R1)/(2 − 2R). (28)

For example, the two panels of Fig. 7 show Plin for the same
directions of the magnetic field and the photon beam as in the
respective panels of Fig. 6. We see that the analytic formulae,
originally devised to reproduce the normalized emissivities, also
reproduce the basic features of Plin(E). Although the feature at
E ∼ Epe is absent in the top panel of Fig. 6, it reappears in the
top panel of Fig. 7 due to the contribution of R2 in Eq. (28).

3. X-ray spectra of thin atmospheres

3.1. Inner boundary conditions

Propagation of radiation in an atmosphere is described by two
normal modes (see Sect. 2.2.1). At the inner boundary of a thin
atmosphere, an incident X-mode beam of intensity IX

E gives rise
to reflected beams in both modes, whose intensities are propor-
tional to IX

E , and analogously for an incident O-mode. Therefore,
the inner boundary conditions for radiation transfer in an atmo-
sphere of a finite thickness above the condensed surface can be
written as

IX
E (θk, ϕ) = 1

2 JX(θk, ϕ)BE(T ) + RXX(θk, ϕ) IX
E (π − θk, ϕ)

+RXO(θk, ϕ) IO
E (π − θk, ϕ), (29)

IO
E (θk, ϕ) = 1

2 JO(θk, ϕ)BE(T ) + ROO(θk, ϕ) IO
E (π − θk, ϕ)

+ROX(θk, ϕ) IX
E (π − θk, ϕ), (30)

where IM
E (M = X,O) are the specific intensities of the X- and

O-modes in the atmosphere at ρ = ρs, RMM′ are coefficients
of reflection with allowance for transformation of the incident
mode M′ into the reflected mode M, and JM are the normalized
emissivities. The latter can be written by analogy with J1,2 as
JX = 1 − RX and JO = 1 − RO, where RX = RXX + RXO and
RO = ROO + ROX (cf. Paper I).

Ho et al. (2007) retained only the emission terms 1
2 JMBE on

the right-hand sides of Eqs. (29), (30). The reflection was taken
into account in Paper II, but calculations were performed ne-
glecting ROO, ROX, and RXO, under the assumption that RXX is
equal to R and does not depend on ϕ. Here we use a more re-
alistic, albeit still approximate, model for RMM′ , described in
Appendix B.

3.2. Results

Here, we illustrate the importance of the correct description of
the reflection for computations of thin model atmospheres above
a condensed surface. To this end, we have calculated a few model
atmospheres with normal magnetic field (therefore, θB = ϕ = 0,
and αr = αi = θk), taking the model with B = 4 × 1013 G,
effective temperature Teff = 1.2 ×106 K, and surface density Σ =
10 g cm−2 as a fiducial model. In the fiducial model the free-ions
assumption for condensed-surface reflectivity is used.

For these computations we use the numerical code described
in Suleimanov et al. (2009), with a modified iterative procedure
for temperature corrections. We evaluate these corrections using
the Unsöld-Lucy method (e.g., Mihalas 1978), which gives a bet-
ter convergence for thin-atmosphere models than other standard
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Fig. 8. Emergent spectra (top panel) and temperature structures (bottom
panel) for the fiducial model atmosphere (solid curve) and for model at-
mospheres that are calculated using the fixed-ions approximation for the
reflectivity calculations (dashed curves), and the inner boundary condi-
tion from Paper II (dotted curves). In the top panel the diluted blackbody
spectrum that fits the high-energy part of the fiducial model spectrum is
also shown (dash-dotted curve).

methods. In our case, the deepest atmosphere point is the up-
per point of the condensed surface. The temperature correction
at this point is obtained as follows: the total flux at the bound-
ary between the atmosphere and the condensed surface is fixed
and, therefore, the following energy balance condition has to be
satisfied:

H0 =
σSBT 4

eff

4π
=

1
2

∫ ∞
0

dE
∫ 1

−1

(
IX
E (μ) + IO

E (μ)
)
μ dμ

= Btot kRL + JR + H−. (31)

Here, σSB is the Stefan-Boltzmann constant, μ = cos θk, and

Btot =

∫ ∞
0

BE dE ,

kRL =
1

2 Btot

∫ ∞
0

BE dE
∫ 1

0
(1 − R) μ dμ,

JR =
1
2

∫ ∞
0

dE

×
∫ 1

0

(
IX
E (μ)(RXX + ROX) + IO

E (μ)(RXO + ROO)
)
μ dμ,

H− =
1
2

∫ ∞
0

dE
∫ 0

−1

(
IX
E (μ) + IO

E (μ)
)
μ dμ. (32)

Fig. 9. Top panel: dimensionless emissivities for coefficients of reflec-
tion RXX (dashed curve), RXO (dotted curve), ROX (dash-dot-dotted
curve), and ROO (dash-dotted curve). The quantities are calculated at
the bottom of the fiducial model atmosphere for the angle between the
radiation propagation and magnetic field, θk = 10◦, together with the to-
tal dimensionless emissivity (solid curve). Bottom panel: dimensionless
outward specific intensities (inner boundary condition) at the bottom
of the fiducial model atmosphere for the X-mode (solid curve) and O-
mode (dashed curve). For comparison, the dotted curve shows the same
for the X-mode, calculated using the inner boundary condition from
Paper II (in this case the dimensionless specific intensity of the O-mode
equals 0.5).

Generally, the condition (31) is not fulfilled at a given temper-
ature iteration. Therefore, we perform a linear expansion of the
integrated blackbody intensity:

H0 = (Btot + ΔBtot)kRL + JR + H−, (33)

and find a corresponding temperature correction

ΔT =
π

4σSBT 3

(
1

kRL

(
H0 − Btot kRL − JR − H−

))
. (34)

This last-point correction procedure is stable and has a conver-
gence rate similar to the Unsöld-Lucy procedure at other depths.

We also changed the depth grid for a better description of
the temperature structure in thin-atmosphere models. In semi-
infinite model atmospheres that do not have a condensed surface
as a lower boundary, a logarithmically equidistant set of depths is
used. However, in thin-atmosphere models, such a set yields in-
sufficient accuracy at the boundary between the atmosphere and
condensed surface. To improve the description of the boundary,
we divide the model atmosphere into two parts with equal thick-
nesses and use logarithmically equidistant depth grids for each
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Fig. 10. The same as in Fig. 9, but for θk = 60◦.

of them. In the upper part the grid starts from outside (the closest
points are at the smallest depths), while in the lower part it starts
from the condensed surface (the closest points are at the deepest
depths). This combined grid allows us to describe the whole at-
mosphere with the desired accuracy of 1% for the integral flux
conservation.

In Fig. 8 we show the emergent spectra and temperature
structures for three different model atmospheres with the same
fiducial set of physical parameters. The model spectrum com-
puted using the inner boundary condition described in Paper II
(the “old model”) significantly differs from the two other model
spectra computed using the improved boundary conditions of
Eqs. (29), (30). The latter two models are calculated using the
free (fiducial model) and fixed ions (alternative model) assump-
tions for the condensed surface reflectivities.

The differences between the spectra and the temperature
structures of these two models are very small. The atmo-
sphere temperature near the condensed surface with fixed ions is
slightly smaller than the temperature near the condensed surface
with free ions. The flux in the spectrum of the fiducial model is
approximately twice that of the alternative model at photon en-
ergies E smaller than the iron cyclotron energy Eci = 0.118 keV.
At larger energies the spectra are very close to each other. We
note that the old model has been computed using the free-ions
assumption.

The difference in the emergent spectra between the old and
new model atmospheres is significant. In the old model, there is
a deep depression of the spectrum between Eci and EC with an
emission-like feature around the absorption line at the proton cy-
clotron energy Ecp = 0.252 keV. In the new spectra this complex

Fig. 11. Top panel: total emergent spectrum of the fiducial model (solid
curve), together with emergent spectra in the X-mode (dashed curve)
and in the O-mode (dash-dotted curve). The blackbody spectrum with
T = Teff is also shown (dotted curve). Bottom panel: emergent specific
intensities of the fiducial model for six angles θ.

feature between Eci and EC is completely different. The total de-
pression is not significant, but instead of the flux increase, there
appears a deep absorption feature at photon E � Ecp. This ab-
sorption corresponds to the bound-bound transitions in hydrogen
atoms in strong magnetic field (Hb−b feature).

It is clear that this difference arises due to the inner bound-
ary condition. The bottom panels of Figs. 9 and 10 illustrate the
difference in the outgoing flux at the boundary between the at-
mosphere and the condensed surface for the old and new models.
This difference is especially large for the flux in the X-mode. In
the old model we assumed complete reflection in the X-mode;
therefore, the reflected flux was small as the atmosphere was
optically thin at these energies. As a result we found a small
emergent flux at these energies. In the new models, we have sig-
nificant mode transformation due to reflection, which causes an
appreciable part of the energy from the O-mode to convert into
the X-mode; the converted photons then almost freely escape
from the atmosphere. The reflectivity coefficients RMM′ for two
angles θk are shown in the upper panels of Figs. 9 and 10.

The total equivalent widths (EWs) of the complex absorption
features in the spectra of the new models are smaller than the EW
of this feature in the spectrum of the old model. Nevertheless,
they are still significant, with EW ≈ 220−250 eV, if the con-
tinuum is assumed to be a diluted blackbody spectrum that fits
the high-energy tail of the model. The parameters of the diluted
blackbody spectrum are a color correction factor fc = T/Teff =
1.2, and a dilution factor D = 1.1−4. The range of values for
EW is sufficient to explain the observed absorption features of
XDINSs (for reviews, see Haberl 2007; Turolla 2009).
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Fig. 12. Comparison of emergent spectra (top panel) and temperature
structures (bottom panel) of the fiducial model (solid curves) with the
semi-infinite model atmosphere (dashed curves) and with the thinner
(Σ = 1 g cm−2) model atmosphere (dotted curves), but with the same
magnetic field.

The new and old spectra are strongly polarized, with most of
the energy radiated in the X-mode (see Fig. 11, upper panel).
We note that, for the parameters of the fiducial model, the
vacuum resonance density occurs between the X and O mode
photon decoupling densities. Therefore, the polarization signal
does not exhibit a rotation of the plane of polarization between
low and high energies. In contrast, models that exhibit this ef-
fect, considered by Lai & Ho (2003) and van Adelsberg & Lai
(2006), have a lower magnetic field and higher effective temper-
ature, causing the vacuum resonance to occur outside the X and
O photospheres.

The angular distribution of the emergent flux is different in
the two models (Fig. 11, bottom panel), especially at photon en-
ergies between EC and 4EC. In the old model, the angular distri-
bution is peaked around the surface normal. In the new model,
the emergent radiation is almost isotropic, with a peak around
the surface normal at the broad Hb−b absorption feature.

The influence of the atmosphere thickness on its emergent
spectrum and the temperature structure is illustrated in Fig. 12.
A thinner atmosphere with Σ = 1 g cm−2 has an insignificant
Hb−b absorption feature because it is formed at higher column
densities (≈1–2 g cm−2). The fiducial model has the smallest
temperature at these column densities among all the models. As
a result, the Hb−b absorption feature is most significant in the

Fig. 13. Comparison of emergent spectra (top panel) and temperature
structures (bottom panel) of the fiducial model (solid curves) and the
model atmosphere with different magnetic field (B = 1014 G), but with
the same surface density (dashed curves).

spectrum of this model. The spectrum of the semi-infinite atmo-
sphere has a hard tail and does not have any feature at Eci.

The importance of the Hb−b absorption feature decreases if it
is located far from the maximum of the spectrum. This is illus-
trated by the comparison of the fiducial model with the model
calculated for B = 1014 G (Fig. 13). In the latter case, the Hb−b
absorption feature is less visible and cools the atmosphere at col-
umn densities about a few g cm−2 less efficiently, although the
EW decreases insignificantly.

3.3. Discussion: toward models of observed spectra

Our calculations are presented for a local patch of the neutron-
star surface with particular values of Teff and B. By taking sur-
face distributions of Teff and B into account, one can construct
an emission spectrum from the entire neutron star; however this
spectrum is necessarily model-dependent, as the Teff and B dis-
tributions are generally unknown. If these distributions are suffi-
ciently smooth, then integration over the surface makes absorp-
tion features broader and shallower, as demonstrated, e.g., in the
case of cooling neutron stars with dipole magnetic fields and
semi-infinite (Ho et al. 2008) or thin (Paper II) partially ion-
ized hydrogen atmospheres. As shown in Paper II, smearing of
the features is stronger, if the crustal magnetic field has a strong
toroidal component, but weaker, if radiation is formed at small
hotspots on the surface, where B can be considered as constant.
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Using the results of Paper II, Hambaryan et al. (2011) fitted ob-
served phase-resolved spectra of XDINS RBS 1223 and derived
constraints on temperature and magnetic field strength and distri-
bution in the X-ray emitting areas, their geometry, and the grav-
itational redshift at the surface. The present, more detailed ap-
proximations for the reflectivities can be directly used to refine
these fits and constraints.

In our numerical examples presented above, we evaluated
the density of the condensed matter using Eq. (2) with η = 1.
An eventual correction to this approximation is rather straight-
forward, once ρs is accurately known. Indeed, the density enters
calculations through Epe ∝ √η (Eq. (3)) and through the damp-
ing factor (Paper I). The latter dependence is relatively weak,
therefore, it is sufficient to correct Epe in the expressions pre-
sented in Sect. 2.

As mentioned in Sect. 3.2, the model spectra are highly po-
larized at the stellar surface. However, the observed polariza-
tion signal is affected by propagation of the photons through
the neutron-star magnetosphere. In addition to redshift and light
bending effects near the stellar surface, the mode eigenvectors
evolve adiabatically along with the direction of the changing
magnetic field in the magnetosphere (see, e.g., Heyl & Shaviv
2002). The adiabatic evolution continues until the photons near
the polarization limiting radius, rpl, which is typically many stel-
lar radii from the surface. At rpl, the modes couple, with the
intensities and eigenvectors frozen thereafter (in addition, sig-
nificant circular polarization can be generated in some cases,
for example, in radiation from rapidly rotating neutron stars; see
van Adelsberg & Lai 2006, and the references therein).

The main effect of adiabatic photon propagation in the mag-
netosphere is on the synthetic polarization signal from a finite
region of the neutron-star surface. (There is an additional ef-
fect for photons propagating through a quasi-tangential region
of magnetic field near the stellar surface; in the majority of cases
this “QT effect” can be neglected – see Wang & Lai 2009, for
details.) Since the mode properties are fixed at large distances
from the star, where the magnetic field is aligned for photon tra-
jectories from different areas on the star, the polarization signal
is not as diminished due to variation in the surface magnetic field
as might be expected if vacuum polarization effects are ignored
(see Heyl & Shaviv 2002; Heyl et al. 2003). Thus, it is possible
that polarization features of the local thin atmosphere models de-
scribed above may be retained in spectra from a finite region of
the neutron star. Observed spectra and polarization signals have
been presented in the literature, employing several atmosphere
models for emission from the entire surface (Heyl et al. 2003)
and from a finite sized hotspot (van Adelsberg & Perna 2009).

4. Conclusions

We have improved the method of Paper I for calculating spec-
tral properties of condensed magnetized surfaces. Using the im-
proved method, we calculated a representative set of reflectiv-
ities of a metallic iron surface for the magnetic field strengths
B = 1012 G–1014 G. Based on these calculations, we con-
structed analytic expressions for emissivities of the magnetized
condensed surface in the two normal modes as functions of five
arguments: energy of the emitted X-ray photon E, field strength
B, field inclination θB, and the two angles that determine the pho-
ton direction. We considered the alternative limiting approxima-
tions of free and fixed ions for calculating the condensed surface
reflectivity.

We improved the inner boundary conditions for the radia-
tion transfer equation in a thin atmosphere above a condensed

surface. The new boundary condition accounts for the transfor-
mation of normal modes into each other caused by reflection
from the condensed surface. To implement this condition we
suggested a method for calculating reflectivities RMM′ in the nor-
mal modes used for model atmosphere calculations, based on
analytic approximations to the reflectivities.

We computed a few models of thin, partially ionized hy-
drogen atmospheres to investigate the influence of the new
boundary condition on their emergent spectra and temperature
structures. The allowance for mode transformations makes the
complex absorption feature between Eci and EC less significant
and the atomic absorption feature more important. Nevertheless,
the equivalent widths of this complex absorption feature in the
emergent spectra are still significant (≈200–250 eV) and suffi-
cient to explain the observed absorption features in the spectra
of XDINSs. Models of thin atmospheres with inclined magnetic
fields are necessary for detailed descriptions of their spectra. We
plan to compute such models with vacuum polarization and par-
tial mode conversion in a future paper.
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Appendix A: Improved reflectivity calculation

In this appendix, we describe several improvements to the meth-
ods of Paper I that have enabled us to produce a general, efficient
code, free of numerical difficulties, which computes the correct
value of the reflectivities over the full range of parameters used
in neutron-star atmosphere modeling.

In general, each incoming linearly polarized wave E(i)
1 =

A1e(i)
1 and E(i)

2 = A2e(i)
2 is partially reflected, giving rise to re-

flected and transmitted fields1

E(r)
j = A j

2∑
m=1

rm j e(r)
m , E(t)

j = A j

2∑
m=1

tm j e(t)
m . (A.1)

As shown in Paper I, the dimensionless emissivities for the two
orthogonal linear polarizations are J j = 1 − R j, where

R j = |r j1|2 + |r j2|2 ( j = 1, 2). (A.2)

The reflected field amplitudes r11, r12, r21, and r22 were cal-
culated in Paper I using an eighth-order polynomial in the
refraction index n j to determine the properties of the transmitted
modes. The transmitted wave can be described by two normal
modes, thus, most of the roots obtained from that polynomial
represent unphysical solutions to the equations. The conditions
to identify the correct roots were derived in Appendix B of
Paper I, with the requirements that the corresponding reflectivi-
ties satisfy R1,R2 � 1 and that the function R(E) be continuous.
However, for some values of the model parameters, the unphys-
ical roots can satisfy the physical constraints on the solution.

Here we propose an improved method, based on a fourth-
order polynomial, which allows for easy elimination of the un-
physical roots.

1 We use the inverse order of the subscripts in rm j and tm j with respect
to the one used in Paper I.
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A.1. Transmitted modes

A significant simplification of the equations describing the trans-
mitted mode properties can be obtained by writing the transmit-
ted wave vector as

nj =
c
ω

k j = n j

[
sin θ j (cosϕ x̂ + sin ϕ ŷ) + cos θ j ẑ

]
= sin θk (cosϕ x̂ + sin ϕ ŷ) + nz, j ẑ, (A.3)

where x̂, ŷ, ẑ are unit vectors along the x, y, z axes, respec-
tively, and the quantities cos θ j, sin θ j are complex numbers sat-
isfying the condition: cos2 θ j + sin2 θ j = 1 (cf. Appendix B of
Paper I). The second equality in Eq. (A.3) follows from Snell’s
Law, n j sin θ j = sin θk, and the definition nz, j ≡ n j cos θ j.

From Maxwell’s equations for the transmitted modes,

λ · E = 0, (A.4)

λ ≡ ε + nj ⊗ nj − n2
j I, (A.5)

where ε is the dielectric tensor of the medium (see Eq. (13) of
Paper I), I is the unit tensor, and E is the electric field vector.
If we note that n2

j = n2
j

(
sin2 θ j + cos2 θ j

)
= sin2 θk + n2

z, j, and
apply the condition detλ = 0 to obtain a nontrivial solution to
Eq. (A.4), the result is a fourth-order polynomial in nz, j:

a4n4
z, j + a3n3

z, j + a2n2
z, j + a1nz, j + a0 = 0, (A.6)

a4 = 1 + sin2 θk/
(
εzz − sin2 θk

)
, (A.7)

a3 = 2 sin θk cosϕ εxz/
(
εzz − sin2 θk

)
, (A.8)

a2 = ηxxγyy + ηyyγxx − ηxyγyx − ηyxγxy − βxyβyx, (A.9)

a1 = ηyyβxx − ηxyβyx − ηyxβxy, (A.10)

a0 = ηxxηyy − ηxyηyx, (A.11)

where the coefficients have the values:

ηxx = εxx − sin2 θk sin2 ϕ − ε2xz/
(
εzz − sin2 θk

)
, (A.12)

ηxy = εxy + sin2 θk sinϕ cosϕ + εxzεyz/
(
εzz − sin2 θk

)
, (A.13)

ηyx = −εxy + sin2 θk sinϕ cosϕ − εxzεyz/
(
εzz − sin2 θk

)
, (A.14)

ηyy = εyy − sin2 θk cos2 ϕ + ε2yz/
(
εzz − sin2 θk

)
, (A.15)

βxx = −2 sin θk cosϕεxz/
(
εzz − sin2 θk

)
, (A.16)

βxy =
(
εyz cosϕ − εxz sin ϕ

)
sin θk/

(
εzz − sin2 θk

)
, (A.17)

βyx = −
(
εxz sinϕ + εyz cosϕ

)
sin θk/

(
εzz − sin2 θk

)
, (A.18)

γxx = −1 − sin2 θk cos2 ϕ/
(
εzz − sin2 θk

)
, (A.19)

γxy = γyx = − sin2 θk sin ϕ cosϕ/
(
εzz − sin2 θk

)
, (A.20)

γyy = −1 − sin2 θk sin2 ϕ/
(
εzz − sin2 θk

)
, (A.21)

The fourth order polynomial defined by Eqs. (A.6)–(A.21) has
much better numerical properties than the eighth-order polyno-
mial described by Eq. (A.4) of Paper I. We find that a stable,
efficient method for solving Eq. (A.6) can be obtained by defin-
ing the matrix

M ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−a3/a4 −a2/a4 −a1/a4 −a0/a4

1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (A.22)

and noting that the eigenvalues of M are equal to the roots of
Eq. (A.6). We use the ZGEEV subroutine of the LAPACK li-
brary (Anderson et al. 1999) to compute the eigenvalues of M.

Of the resulting four roots, only two correspond to physical so-
lutions for the transmitted waves. To identify the correct roots,
we write the spatial variation of the transmitted electric field
as E j (r) ∝ exp

(
iω n j · r/c

)
. The amplitude of the electric

field must decay in the transmitted wave region, leading to the
condition:

Im(n j) ≤ 0. (A.23)

At all energies and angles for the range of magnetic fields B =
1012−1015 G, condition (A.23) identifies two physical solutions
to Eq. (A.6). Using these values for n j , we write the polarization
vectors for the transmitted wave as

e(t)
j =

1√
1 + |K(t)

j |2 + |K(t)
z, j|2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
K(t)

j
1

K(t)
z, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (A.24)

K(t)
j = −

γxyn2
z, j + βxynz, j + αxy

γxxn2
z, j + βxxnz, j + αxx

, (A.25)

K(t)
z, j =

εxz − sin θk sin ϕnz, j −
(
εxz + sin θk cosϕnz, j

)
K(t)

j

εzz − sin2 θk
· (A.26)

A.2. Reflectivity calculation

Once the quantities n j and e(t)
j are known, the reflectivity of the

medium can be calculated using the boundary conditions for
Maxwell’s equations at the condensed matter surface:

ΔE × ẑ = 0, (A.27)

ΔB × ẑ = 0, (A.28)

where ΔE ≡ E(i) + E(r) − E(t) and ΔB ≡ B(i) + B(r) − B(t) are
the differences between the fields above (incident and reflected)
and below (transmitted) the condensed surface. For the detailed
forms of the fields, see Sect. 3.1 of Paper I. Writing out the com-
ponents of (A.27) and (A.28) for the two orthogonal linear polar-
izations of the incident wave yields a system of equations for the
amplitudes of the reflected and transmitted modes, analogous to
Eq. (A.6) of Paper I. This set of equations can be solved as two
independent linear systems with complex coefficients, such that

C ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
r11 r12
r21 r22
t11 t12
t21 t22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− cosϕ cos θk sin ϕ
− sinϕ − cos θk cosϕ

− cos θk sin ϕ − cosϕ
cos θk cosϕ − sinϕ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (A.29)

where

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cosϕ cos θk sin ϕ
sinϕ − cos θk cosϕ

− cos θk sin ϕ cosϕ
cos θk cosϕ sin ϕ

−1 −1,
e(t)

1,x e(t)
2,x,

sin θk cosϕe(t)
1,z − nz,1e(t)

1,x sin θk cosϕe(t)
2,z − nz,2e(t)

2,x

sin θk sin ϕe(t)
1,z − nz,1 sin θk sin ϕe(t)

2,z − nz,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and e(t)

j,x = e(t)
j · x̂, e(t)

j,z = e(t)
j · ẑ. We solve the complex systems

using the ZGESV subroutine of the LAPACK library (Anderson
et al. 1999).

The corrected results for the case of a magnetized iron sur-
face (to be compared with Paper I) are presented in Sect. 2.2.3.
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Appendix B: Approximations for reflectivities
at the bottom of a thin atmosphere

B.1. Reflectivities of the normal modes in terms of rmj

In general, the interface between the thin atmosphere and mag-
netic condensed surface has reflection and transmission prop-
erties that are different from those of the condensed surface in
vacuum. Therefore, a separate calculation of the reflectivity co-
efficients rm j is needed for every set of atmosphere parameters.
However, assuming that the atmosphere is sufficiently rarefied,
we may approximately replace these coefficients by those in vac-
uum. Under these conditions, the plane waves in the atmosphere
are almost transverse, so we can approximately set Kz,M → 0 in
Eq. (4). Then each incident and reflected wave can be expanded
over the linear polarization vectors e1 and e2 that have been em-
ployed in the reflectivity calculation.

For the incident (i) and reflected (r) beams, we define or-
thonormal vectors e(i,r)

1 = ẑ × k/| ẑ × k| = ẑ × k̂i,r/| sin θk |,
e(i)

2 = k̂i × e(i)
1 , and e(r)

2 = e(r)
1 × k̂r, where k̂ denotes the unit

vector along k. In the notations of Fig. 1,

k̂i,r = sin θk cosϕ x̂ + sin θk sin ϕ ŷ ∓ cos θk ẑ, (B.1)

e(i)
1 = e(r)

1 = − sinϕ x̂ + cosϕ ŷ, (B.2)

e(i,r)
2 = cos θk (cosϕ x̂ + sin ϕ ŷ) ± sin θk ẑ, (B.3)

where the upper and lower signs in ∓ cos θk are for the inci-
dent and reflected waves, respectively. The coordinates in which
Eq. (4) is written are (x′, y′, z′) (Fig. 1), defined according to re-
lations ŷ′ = B × k/|B × k| and x̂′ = ŷ′ × k̂.

The electric field of the incoming ray with unit amplitude
and polarization M′ (M′ =X or M′ =O) can be written as

e(i)
M′ = c(i)

M′1e(i)
1 + c(i)

M′2e(i)
2 , (B.4)

where c(i)
M′ j = e(i)

M′ · e(i)
j . According to Eqs. (A.1) and (B.4), the

reflected field is

r′XM′e
(r)
X + r′OM′e

(r)
O =

2∑
m=1

2∑
j=1

rm jc
(i)
M′ je

(r)
m . (B.5)

The amplitudes r′XM′ and r′OM′ of the reflected-field components
in the X- and O-modes, respectively, are given by the solution of
the linear system

⎛⎜⎜⎜⎜⎜⎝ c
(r)
X1 c(r)

O1

c(r)
X2 c(r)

O2

⎞⎟⎟⎟⎟⎟⎠
(

r′XM′

r′OM′

)
=

(
r11 r12
r21 r22

) ⎛⎜⎜⎜⎜⎜⎝ c
(i)
X1 c(i)

O1

c(i)
X2 c(i)

O2

⎞⎟⎟⎟⎟⎟⎠ , (B.6)

where c(r)
M j = e(r)

M · e(r)
j . Since the incident X- and O-modes are

incoherent, the normal mode reflectivities in Eqs. (29) and (30)
are

RMM′ = |r′MM′ |2. (B.7)

According to Eq. (4),

c(i,r)
M j =

iK(i,r)
M x̂′i,r · e(i,r)

j + ŷ
′
i,r · e(i,r)

j√
1 + |K(i,r)

M |2
, (B.8)

where K(i,r)
M = KM(αi,r). The explicit expressions for the scalar

products in Eq. (B.8) are

ˆx′
i,r
· e(i,r)

1 = sin θB sin ϕ/sinαi,r, (B.9)

ˆy′
i,r
· e(i,r)

1 = (cos θB sin θk ± sin θB cos θk cosϕ)/sinαi,r, (B.10)

ˆx′
i,r
· e(i,r)

2 = (∓ cos θB sin θk − sin θB cos θk cosϕ)/sinαi,r, (B.11)

ˆy′
i,r
· e(i,r)

2 = ± sin θB sin ϕ (cos2 θk −sin2 θk)/ sinαi,r. (B.12)

Caution should be used when employing approximations for rm j
in Eq. (B.6) if one of the normal modes is almost completely
reflected, that is, RMM′ ≈ 1. Such a situation occurs for the
X-mode at Eci < E < EC, if both k and B are close to nor-
mal (see Paper I). In this case the fit error may exceed (1− RXX)
and result in RXX > 1, which is unphysical. In particular, the fit-
ting formulae presented below may occasionally give RXX a few
percent above 1 at very small θB and θk. In such instances one
should truncate the mode-specific reflectivities, recovered from
the fit, so as to fulfill the general condition 0 < RMM′ < 1.

B.2. Approximations for rmj

For calculating RMM′ according to Sect. B.1, we use an analytic
model of the complex reflectivity coefficients rm j, which agrees
with the approximations derived in Sect. 2.3 and roughly repro-
duces the computed dependences of rm j = |rm j| exp(iφm j) on E
for many characteristic geometry settings. For the squared mod-
uli we use the following expressions:

|r12|2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 in Region I,
fE (1 − JB1) (1 − JC)
+JCRL(1 − sin θB sin2 ϕ)/2 in Region II,

(B.13)

|r21|2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 in Region I,
fE (1 + JB1 − 2JB) (1 − JC)
+JCRL sin θk (1 − cosα)/2 in Region II,

(B.14)

|r11|2 = 1 − J1 − |r12|2, |r22|2 = 1 − J2 − |r21|2, (B.15)

and fE ≡ E/(E+ ẼC/2). The functions J1, J2, JB, JC, JB1, and RL

are defined in Sect. 2.3. In the case of the free-ions model, small
accidental discontinuities at the boundary of Region I are elimi-
nated by truncating |r11|2 and |r22|2 from above by their values at
E = Eci. Our approximations for the complex phases are

φ11 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
π in Region I,
−π fL, if E > ẼC,

π + π
E − Eci

ẼC − Eci
otherwise,

(B.16)

φ22 =

{
π fL, if E > ẼC,
φ11 otherwise, (B.17)

φ12 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−π/2 in Region I,
π/2 − 2π fL, if E > ẼC,

π
E − (Eci + ẼC)/2

Eci − ẼC
otherwise,

(B.18)

φ21 = φ12 + π, (B.19)

where

fL =

[
1 + exp

(
5

EL − E

EL − ẼC

)]−1

·
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