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Hydrogen atom in a magnetic field: The quadrupole moment
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The quadrupole moment of a hydrogen atom in a magnetic fieldB for field strengths from 0 to 4.414
31013 G is calculated by two different methods. The first method is variational, and based on a single trial
function. The second method deals with a solution of the Schro¨dinger equation in the form of a linear
combination of Landau orbitals.
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I. INTRODUCTION

Plenty of works has been devoted study of a hydrog
atom in a magnetic field~see, e.g., Refs.@1–3#! and this
problem was among the first ever studied in quantum m
chanics. To a great extent, the reason for such interest is
to its importance in various branches of fundamental ph
ics: astrophysics, spectroscopy, solid state, and plasma p
ics. From a physical point of view, the first appearances
the influence of a magnetic fieldB on the atom are~i!
changes in binding energies, including the Zeeman le
splitting which removes a degeneracy; and~ii ! the develop-
ment of a nonvanishing quadrupole momentQab}BaBb as a
consequence of the deformation of the spherical-symmet
atomic shape. In contrast to the former phenomenon,
latter has not been thoroughly studied. Meanwhile, the
pearance of a quadrupole moment leads to a drastic ch
in the interaction of the atoms. A standard van der Wa
attraction which originates in the interaction of induced
poles is overtaken by quadrupole-quadrupole interac
~which is repulsive when atoms are situated along magn
line — see Refs.@4,5#!. In many applications~for instance,
for construction of an equation of state!, one needs to include
the effects of atom-atom interactions. For example, a st
of pressure ionization of a strongly magnetized hydrog
plasma was performed in Ref.@6# with a simple occupation
probability model, which was based on a calculation
quantum-mechanical atomic sizes@7#. This model is fully
adequate at sufficiently high temperaturesT. However, in
order to extend the domain of applicability to lowerT, where
the neutral fraction is large, electrical multipole interactio
of atoms should be taken into account. Therefo
quadrupole-quadrupole interaction can be significant at
tain plasma parameters.

For various quantum-mechanical states of the H atom
magnetic field, there have been accurate calculations of b
ing energies@8,9#, oscillator strengths@10#, and photoioniza-
tion rates@11#. Moreover, binding energies@7,12,13#, geo-
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metrical sizes, and oscillator strengths@7,13#, electric
quadrupole transition probabilities@14#, and photoionization
cross sections@15# have also been successfully calculated
an atommovingin a strong magnetic field~equivalent to an
atom in crossed magnetic and electric fields!, which is an
essentially three-dimensional system. Despite this progr
up to now the quadrupole moment was not studied basic
with perhaps a single exception@16#. A goal of the present
Brief Report is to carry out such a study for the ground st
using ~i! a variational method, and~ii ! a method based on
solution of the Schro¨dinger equation by expansion in Landa
orbitals with coordinate-dependent coefficients. We expl
a range of magnetic field strengthsB from 0 to the ‘‘relativ-
istic’’ field Br[me

2c3/(\e)54.41431013 G.

II. ASYMPTOTIC RESULTS

Hereafter, we will measure lengths in units ofa0
[\2/(mee

2)50.529 177 Å and energies in units of R
[ 1

2 e2/a0513.6057 eV. Assuming a constant uniform ma
netic field directed along thez axis, we take the vector po
tential A in the symmetric ~axial! gauge: (Ax ,Ay ,Az)
5(B/2)(2y,x,0). A natural parameter of the nonrelativist
theory is g5B/B0, where B0[me

2e3/(\3c)52.3505
3109 G. The field is called ‘‘strong’’ ifg*1.

Since the magnetic quantum number is equal to zero
the ground state, the Hamiltonian has the form

H52D2
2

r
1

g2

4
r2, r25x21y2. ~1!

Because of the axial symmetry of the problem, the com
nentsQab of the quadrupole tensor obey the following rel
tions ~e.g., Ref.@17#!:

Qxy5Qyz5Qzx50,

Qxx5Qyy52
1

2
Qzz5^z2&2^x2&. ~2!

In the weak-field limit, the usual perturbation theory giv
@16#
-
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2Qzz5
5

2
g22

615

32
g41•••. ~3!

In the opposite case of an ultrastrong field, lng@1, when
^x2&!^z2&, the longitudinal motion can be separated, wh
gives rise to the one-dimensional model@18#. In the ground
state,̂ z2& is mainly determined by the exponential tail of th
one-dimensional wave function,^z2&;(2E)21, whereE is
the binding energy. Using the method of Hasegawa
Howard @19# for an evaluation ofE, we find

2Qzz;
1

~ ln g!21
2 ln~ ln g!

~ ln g!3 1OS 1

~ ln g!3D ~4!

at g→`.

III. VARIATIONAL METHOD

In order to construct an adequate variational trial funct
C0, we follow a recipe formulated in Refs.@20–22#. That is,
the potentialV05(DC0)/C0 should reproduce the Coulom
singularity at the origin, and harmonic-oscillator behavior
large distances. Furthermore, the trial function should hav
correct functional expansion in coordinates at small a
large distances from the origin, as well as a correct exp
sion in powers ofB. Since the ground-state wave functio
has no nodal surfaces in configuration space, we may w
C05e2f, wheref is a smooth real function of coordinate
The asymptotic behavior of this function was calculated
Refs.@23,16#:

f5gr2/41O~r ! ~r→`!, ~5!

f5r 1g2~Ar31Brr21Cr21Dr2!1O~g4r 5! ~r→0!,
~6!

whereA,B,C, and D are known parameters. These expa
sions prompt to choose the seven-parametric trial functio

C05exp$2@a2r 21~a1r 31a2r2r 1a3r31a4rr 2!g

1~b1r41 b2r2r 2!g2/16#1/2%, ~7!

~cf. Refs.@16,22#!, wherea,a124, andb122 are variational
parameters. One can check that the effective potentialV0
corresponding to this trial function correctly reproduces
potential in Eq.~1! at r→0 ~Coulomb regime! and at r
→` ~Landau regime!. Furthermore, Eq.~7! gives a correct
functional form of the first corrections in powersB2 to the
exponential phase of the ground-state wave function~see
Ref. @23#! and, even more importantly, the functional form
the first correction to the Landau phase factor}Br2 at large
distances~for a detailed discussion, see Ref.@16#!. Thus Eq.
~7! takes into account the available information on t
ground-state wave function of Hamiltonian~1!.

IV. EXPANSION IN LANDAU ORBITALS

The shape of the atom is close to a sphere atB!B0 and to
a cylinder atB@B0. In the latter case, the expansion of t
06540
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atomic wave function over the Landau functions is approp
ate ~e.g., Refs.@7,8#!.

If there were no Coulomb attraction, then the transve
part of the wave function could be described by a Land
function Fns(r,w) @wherew is the polar angle in the (xy)
plane# which satisfies the equation

2
1

r

]

]r S r
]Fns

]r D2
1

r2

]2Fns

]w2
1

g2

4
Fns5~2n11!g.

~8!

~e.g., Ref.@24#!. Heren is the Landau quantum number an
s is the negative of thez projection of the electron orbita
momentum (n>0, s>2n). The Landau functions form a
complete orthogonal functional basis on the (xy) plane.

When the atom does not move as a whole across the fi
s is an exact quantum number. Thus a wave functionC can
be presented as

C~r !5(
n

Fns~r,f!gn~z!. ~9!

The sum in Eq.~9!, if truncated at somen5N, can be con-
sidered as a variational trial function. The one-dimensio
functionsgn are to be found numerically. The minimum o
the energy functional̂CuHuC& implies zero functional de-
rivatives:d^CuHuC&/dgn(z)50 (;n). Taking into account
Eq. ~8!, one arrives at a system of coupled differential equ
tions for the set ofgn(z) andE,

d2

dz2 gn~z!12(
n8

Vnn8
(s)

~z!gn8~z!5~E12ng!gn~z!, ~10!

where

Vnn8
(s)

~z!5E
0

`

rdrE
0

2p

dwFns* ~r,w!
1

r
Fn8s~r,w!. ~11!

The effective potentials@Eq. ~11!# can be reduced to a finite
sum of one-dimensional integrals feasible for numerical c
culation @7#.

Using the relations

S x2

y2D 5r 1r 26
1

2
~r 1

2 1r 2
2 !, ~12!

Agr 1Fns5An1sFn,s212An11Fn11,s21 ,

Agr 2Fns5An1s11Fn,s112AnFn21,s11 ,

wherer 6[re6 iw, one can calculate the expectation value

^z2&5 (
n>0

E
2`

`

z2ugn~z!u2dz, ~13!
2-2
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^x2&5^y2&

5g (
n>0

E
2`

`

@~2n1s11!ugn~z!u2

22A~n11!~n1s11!ugn* ~z!gn11~z!u#dz. ~14!

and finally the quadrupole momentQzz.
At g@1 the first termn50 dominates in the sum in Eq

~9!. Hence Eq.~14! results in ^x2&5^y2&'(s11)/g. It is
worthwhile to note that neglecting all terms in Eq.~9! except
the one atn50 is equivalent to the adiabatic approximatio
used in early works~e.g., Refs.@1,19#!.

V. RESULTS AND DISCUSSION

The results of our calculations of the binding energyE
and the quadrupole momentQzz are presented in Table I
When available, we compare the binding energy with
most accurate up-to-date results@9#.

The variational approach of Sec. III, based on asingle
seven-parametric function@Eq. ~7!#, gives a very high rela-
tive accuracy in the binding energy on the order of 1027 at
small magnetic fields, which then falls to 1022 at the largest
studied magnetic fields. Basically, this corresponds to
same absolute accuracy~on the order of 1027) in the total
energy for the whole explored range of magnetic fields. T
major parametersa and b1 are changed as a function o
magnetic field in a very smooth and slow manner, froma
;1, b1;0.9 for 109 G to a;3, b1;0.99 at 1013 G, re-
spectively. Other parameters also vary smoothly and slow

For the second method~Sec. IV!, we retain n,n8
50,1, . . . ,12 in thesystem of equations~10! and solve it for
the ground state atg>1 using the algorithm described i
Ref. @7#. Then we calculateQzz from Eq.~2! using Eqs.~13!
and ~14!.

In Table I we see that for the binding energy the meth
of expansion in the Landau orbitals turns out to be m
accurate atg*10, whereas the variational method of Sec.

TABLE I. Binding energyE and absolute value of the quadru
pole momentQzz at different magnetic fieldsB calculated~a! by the
variational method and~b! by expansion in the Landau basi
Rounded-off data from Ref.@9# are given for comparison.

B E ~Ry! 2Qzz~a.u.!
~a! ~b! Ref. @9# ~a! ~b!

0.1B0 1.095 05274 – 1.095 05296 0.0235 –
109 G 1.346 292 – 0.2185 –
B0 1.662 322 1.63 1.662 338 0.4155 0.38
1010 G 2.614 73 2.61 0.5085 0.48
10B0 3.4948 3.490 3.495 6 0.4370 0.447
1011 G 5.713 5.717 0.2806 0.290
100B0 7.5642 7.579 7.579 6 0.2071 0.217
1012 G 11.87 11.924 0.1228 0.1308
1000B0 15.23 15.325 15.324 9 0.0915 0.098
1013 G 22.5 22.77 0.0576 0.0620
Br 32.5 32.92 0.0380 0.0406
06540
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is superior at lower field strengths. This is confirmed by
comparison with the results of Ref.@9#. We emphasize tha
our methods give very close results for the quadrupole m
ment. This agrees with the qualitative behavior found in@16#.

The data in Table I can be approximated by t
expression

2Qzz'
jg7/4

0.33921~11j3!g7/4
, ~15!

where

j54 ln~110.212g1/4!.

This approximation reproduces the exact asymptotic beh
ior: 2Qzz;(ln g)22 at g→` and 2Qzz;

5
2 g2 at g→0. Its

deviation from the results in Table I does not exceed a f
percent in the whole range of studied magnetic fields.

Figure 1 showsuQzzu as a function ofg. Numerical results
obtained as described in Secs. III~shown by dots! and IV
~solid line! are compared with perturbation theories of ord
B2 andB4 ~lines marked ‘1’ and ‘2’, respectively! and with
the fit @Eq. ~15!# ~dashed line!. The quadrupole momen
grows smoothly with magnetic field increase, reaching
maximum atg'3 and then decreases. For the strongly elo
gated atom atg@1, the van der Waals constant can
roughly estimated asW;E^z2&3}(ln g)24. Thus W de-
creases atg→` at the same rate asQzz

2 . This means that the
distanceR, where the van der Waals potential;W/R6 be-
comes comparable with the quadrupole-quadrupole inte
tion potential;Q2/R5, tends to a finite value atg→`. Our
results may have an important impact on the modeling
relatively cool neutron star atmospheres, whose spectra
being measured with the x-ray telescopes onboard the
cently launchedChandraand XMM-Newtonspace observa
tories ~e.g., Refs.@25,26#!.

FIG. 1. Absolute value of the quadrupole momentQzz as a
function of g5B/(2.353109 G), calculated by the variationa
method~Sec. III! and the Landau orbital expansion approach~Sec.
IV !: numerical results are compared with perturbation theory@Eq.
~3!# @curve 1 corresponds to the first term in Eq.~3!, and curve 2 to
two terms# and the analytic fit@Eq. ~15!#. At g→0 the quadrupole
momentQzz tends to zero.
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