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Comment on “Equation of state of a dense and magnetized fermion system”
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Contrary to what is claimed by Ferrer et al. [Phys. Rev. C 82, 065802 (2010)], the magnetic field of a neutron
star cannot exceed 1019 G and the thermodynamic pressure of dense magnetized fermion gas is isotropic.
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The authors of a recent paper [1] construct thermodynamics
of charged fermions in a strong magnetic field B where
the Landau quantization of orbital motion is important and
thermodynamic quantities depend on B. The subject attracts
considerable attention, with the most important applications to
neutron stars possessing strong magnetic fields. The authors
conclude that (i) the magnetic field in a neutron star can exceed
1019 G and (ii) the gas of particles in a quantizing magnetic field
has anisotropic pressure. We point out that both statements are
inaccurate.

Maximum field strength. The well-known estimate based
on the virial theorem [2] gives the maximum magnetic field
in a neutron star Bmax ∼ 1018 G [3]. The authors of Ref. [1]
claim that this estimate can be relaxed. As an alternative, they
propose arbitrary simplistic parametrizations of mass density
ρ and field strength B as functions of the radial coordinate r

within the star, treating the parameters of these functions as
“totally arbitrary.” For certain values of these parameters they
obtain Bmax > 1019 G.

However, the density and field distributions are not arbi-
trary, but must satisfy stability equations for a magnetized
star with a realistic equation of state. Detailed self-consistent
numerical simulations (for example, [4,5]) show that, de-
pending on the adopted equation of state in the stellar core,
Bmax takes values of (0.3–3.0) × 1018 G, in disagreement with
Ref. [1] but in good agreement with Ref. [3]. A large variety
of equations of state were explored in numerical simulations
[4]. The obtained ρ and B distributions are different from
artificial distributions of Ref. [1], leading to different values
of Bmax.

Isotropy of pressure. The consideration of the pressure in
Ref. [1] is based on the articles by Canuto and Chiu [6] who
showed that kinetic pressures pkin

‖ and pkin
⊥ of charged particles

along and across B, calculated as ensemble averages of respec-
tive currents of kinetic momenta, are different. The authors of
Ref. [1] repeat the consideration [6] using a more general
formalism and arrive at the same conclusions. According to
Refs. [1,6], the total anisotropic pressure is the sum of the
magnetic pressure related to the Maxwell stress tensor, and
the kinetic pressure. The longitudinal and transverse kinetic
pressures are pkin

⊥ = −� − MB and pkin
‖ = −�, where �

is the grand-canonical potential per unit volume and M is
the magnetization (directed along B in the quasistationary
approximation adopted in these studies).

However, the deficiency of the approach of Ref. [6] was
pointed out long ago by Blandford and Hernquist [7]. It is
well known that the total microscopic electric current density
j is composed of the free (or conduction) current term jf and
bound current term jb due to magnetization (the dynamical
polarization contribution to jb in the quasistationary approxi-
mation is negligible). The magnetization current density equals
(in Gaussian units) jb = c ∇ × M; in case of boundaries, this
volume current should be supplemented by the surface current
cM × B/B (see, e.g., Ref. [8]). The total thermodynamic
pressure P in a magnetized plasma is the sum of the kinetic
pressure and an additional contribution due to the Lorentz force
density related to the magnetization currents. If we compress
a plasma across B, then the magnetization current density
induces an additional contribution MB to the force density. As
a result, the transverse component of the total (thermodynamic)
plasma pressure equals pkin

⊥ + MB = pkin
‖ , so that the total

plasma pressure P = −� is isotropic.
In spite of the simplicity of the above arguments, they are

sometimes ignored in the literature, like in Ref. [1]. Therefore,
in order to make them still more transparent, let us illustrate
the pressure isotropy with two graphic examples.

As the simplest example, consider a plasma contained
in a finite cylinder in vacuum with a uniform external B
field along the cylinder axis. At equilibrium in the absence
of external forces, the sum of the force densities exerted
on the side wall of the cylinder by the transfer of kinetic
momenta of plasma particles and by the surface magne-
tization current equals pkin

⊥ + MB = −�. It is the same
as the force density pkin

‖ = −� exerted on the head wall.
Hence the plasma pressure, which can be determined in this
experiment by measuring forces on the cylinder walls, is
isotropic.

As another example, more relevant to astrophysics, consider
a volume element in a magnetized star. Let the element be
sufficiently small and distributions of B, temperature T , and
gravitational acceleration g be sufficiently smooth, so that
we can assume constant B, T , and g within this volume.
Let the z axis be directed along g. Then ρ and �(ρ,B, T )
depend on z, resulting in z-dependent magnetization M =
−∂�(ρ, B, T )/∂ B. Hydrostatic balance implies that the
density of gravitational force, ρg, be balanced by the density
of forces created by plasma particles (the gradient of kinetic
pressure and Lorentz force due to plasma magnetization).
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Now let us compare two limiting cases. If B is parallel
to g, the z component of the Lorentz force is absent, and
we get the standard equation of hydrostatic equilibrium ρg =
dpkin

‖ /dz = dP/dz = −d�/dz.
If B is perpendicular to g, then the kinetic pressure

gradient dpkin
⊥ /dz acts in parallel with the Lorentz force density

BdM/dz. Note that in our case dM/dz �= 0, simply because
dρ/dz �= 0 (ρ depends on z) in the gravity field. Since B and
T are constant,

dM

dz
= ∂M(ρ, T , B)

∂ρ

dρ

dz
= −∂2�(ρ, T , B)

∂ρ ∂B

dρ

dz
. (1)

Then the equilibrium condition takes the same standard form

ρg = dpkin
⊥

dz
+ B

dM

dz
= d

dz
(−� − MB) + B

dM

dz
= −d�

dz
.

Thus, the gradient dρ/dz = −(∂�/∂ρ)−1ρg does not
depend on B-field direction, which means that the hydrostatic
equilibrium is determined by the isotropic thermodynamic
pressure P , in accordance with the results of Ref. [7].

Since the forces created by bound currents are small in
the majority of applications, the equations of magnetohy-

drodynamics (MHD) are commonly derived neglecting the
magnetization. However, the magnetization term is easily
recovered by substituting the general expression j = jf + jb

into the microscopic Lorentz force density j × B/c that is
included in the derivation of MHD equations from the first
principles (e.g., [9], Chap. VIII). Moreover, thermodynamics
of magnetized media is well studied in the theory of magnetics
(e.g., [9], Chap. IV). Of course, everyone is free to use
anisotropic kinetic pressure in MHD equations and add the
magnetization force density explicitly. However, it seems
more natural to follow the traditional approach and use the
isotropic thermodynamic pressure that automatically includes
the contribution of the magnetization.
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