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Tayler instability with Hall effect in young neutron stars
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Collapse calculations indicate that the hot young neutron stars rotate differentially so that strong toroidal magnetic field
components should exist in the outer shell where also the Hall effect appears to be important when the Hall parameter
β̂ = ωBτ exceeds unity. The amplitudes of the induced toroidal magnetic fields are limited by the current-induced Tayler
instability. An important characteristics of the Hall effect is its distinct dependence on the sign of the magnetic field. We
find for fast rotation that positive (negative) Hall parameters essentially reduce (increase) the stability domain. It is thus
concluded that the toroidal field belts in young neutron stars induced by their differential rotation should have different
amplitudes in both hemispheres which later are frozen in. Due to the effect of magnetic suppression of the heat conductivity
also the brightness of the two hemispheres should be different. As a possible example for our scenario the isolated neutron
star RBS 1223 is considered which has been found to exhibit different X-ray brightness at both hemispheres.
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1 Introduction

Progenitors of neutron stars are high-mass stars with more
than eight solar masses that develop a degenerate iron core.
If the core mass approaches the Chandrasekhar limit it be-
comes gravitationally unstable and implodes. The collapse
comes to a temporary end if nuclear densities are reached.
At that stage the rebounding inner core drives a shock wave
into the outer core, a mechanism that is currently believed
to be responsible for the appearance of supernova.

If the core of the supergiant rotates already rapidly the
neutron star will be born as a fast rotator with an angular
velocity near the break-off value, i.e. 1 kHz. This value ex-
ceeds the rotation rate of the fastest young pulsars known
by one order of magnitude so that the question arises how a
critically rotating protoneutron star (PNS) spins down. One
possibility is the angular momentum loss by gravitational
wave emission via unstable r-modes (Friedman & Schutz
1978; Andersson 1998; Stergioulas & Font 2001; Lindblom,
Tohline & Vallisneri 2001). As the viscous damping of the
r-modes is smallest at temperatures around 109 K, this insta-
bility works best as long as the neutron star remains hot. Up
to 90% of the rotational energy can be removed in that way
from the newly formed neutron star within hours. Other pos-
sibilities involve angular momentum transport due to non-
axisymmetric instabilities also connected with gravitational
waves.

Following Burrows (1987), entropy-driven convection
may play an essential role in the neutrino-mediated super-
nova explosion scenario since it enhances the neutrino lu-
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minosities in the post-collapse stage. Such a convection
might be important with regard to a standard-dynamo ac-
tion in PNS (Thompson & Duncan 1993). If, on the other
hand, additionally differential rotation exists in the tur-
bulent domain, then an αΩ -dynamo can work producing
strong toroidal magnetic fields (Bonanno, Rezzolla & Urpin
2003; Bonanno, Urpin & Belvedere 2006). Indeed, hy-
drodynamic simulations of rotational supernova core col-
lapse have shown that even a nearly rigidly rotating ini-
tial core results in a strongly differentially rotating post-
collapse neutron star (Mönchmeyer & Müller 1989; Janka
& Mönchmeyer 1989; Dimmelmeier, Font & Müller 2002;
Kotake et al. 2004; Ardeljan, Bisnovatyi-Kogan & Moi-
seenko 2005; Burrows et al. 2007). Any nonhomologous
collapse creates necessarily some degree of differential ro-
tation if angular momentum is conserved locally during col-
lapse. The models reveal a strong differential rotation in the
azimuthally averaged angular velocity (Ott et al. 2005). Dif-
ferential rotation may furthermore be generated by r-modes
via nonlinear effects (Rezzolla, Lamb & Shapiro 2000) or
simply by accreting falling-back material (Watts & Anders-
son 2002).

1.1 Differential rotation and magnetic fields

In the presence of a poloidal field BR, differential rotation
with a shear q produces a toroidal field component by in-
duction. The ratio of the resulting field to the original one
after the time τ can simply be estimated as

ε ≡ Bφ

BR
� qΩ τ if ε < Rm, (1)
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with Rm as the magnetic Reynolds number of the differen-
tial rotation. For high Rm the differential rotation may in-
duce strong toroidal fields. Also flux compression will play
an important role in amplification of both poloidal fields and
toroidal fields (Burrows et al. 2007). However, the result-
ing magnetic field transports angular momentum outwards
and feedbacks the differential rotation. The timescale of this
backreaction is

τ =
μ0 ρ qΩL2

BRBφ
=

μ0 ρ qΩL2

εB2
R

. (2)

With ε � qΩτ one finds

τ �
√

μ0ρL

BR
, (3)

i.e. the Alfvén travel time of 1 . . . 10 s (Shapiro 2000).
Hence, after Eq. (1), ε � 100 . . .1000. Typical values of
the neutron stars have been used: ρ � 1013 g/cm3, Ω � 100
s−1, L � 105 cm (the crust thickness) and BR � 1012 G.
Note that for ε � 1000 the differential rotation is immedi-
ately destroyed. We find ε < 1000 (i.e. Btor < 1015 G) as a
necessary condition for the existence of differential rotation
over several rotation periods. This value is a rather small
value insofar as

εmax � Rm =
ΩL2

η
� 1012 cm2/s

η
, (4)

so that for η <∼ 109 cm2/s the critical ε is exceeded. It is ob-
vious that with smaller values a differential rotation cannot
survive. It is an open question whether such values of η can
be reached in neutron stars (see Naso et al. 2008).

The diffusion time L2/η for η � 109 cm2/s is also 10 s
which, however, would also be the decay time of the differ-
ential rotation for magnetic Prandtl number Pm ≥ 1. With
such high values of viscosity a prescribed differential rota-
tion cannot exist longer than a few rotations.

In the present paper we assume that differential rotation
exists for at least 10 s (∼ 100 rotations). During this time
r-modes are excited producing gravitational waves. The vis-
cosity must thus be <∼109 cm2/s. This value corresponds
to a Reynolds number of 1000. The microscopic magnetic
Prandtl number Pm, however, is very large for neutron stars
(ν � 10 cm2/s, η � 10−6 cm2/s). We thus also continue
with a high magnetic Prandtl number for the unstable fluid
crust matter, say Pm � 100 so that η � 107 cm2/s. In that
case the magnetic diffusion time exceeds the viscous time
by a factor of 100 and the magnetic Reynolds number is
of order 105. The differential rotation could thus generate
huge toroidal fields with ε � 105 which, however, should
be unstable.

Therefore, in the present paper the stability of strong
toroidal magnetic fields against nonaxisymmetric perturba-
tions is probed in order to find their real upper limits. We
are thus considering the magnetic (Tayler) instability un-
der the influence of differential rotation and for high mag-
netic Prandtl numbers. The toroidal field is assumed to dom-
inate the poloidal field (ε � 1) so that the stability of only
a toroidal field can be considered. To that end, as will be
shown in the next Sect., also the influence of the Hall effect
in neutron stars should be taken into account.

1.2 Magnetic fields and Hall effect in neutron stars

Neutron stars have the strongest magnetic fields even found
with fields exceeding 1013 G for young (∼107 yr) radio and
X-ray pulsars, and 108–1010 G for much older (∼1010 yr)
millisecond pulsars. This correlation between field strength
and age suggests that these very different strengths are due
to the field decay rather than to differences between differ-
ent neutron stars.

Jones (1988) and Goldreich & Reisenegger (1992) have
proposed that the correlation between the magnetic field of
the neutron star and its age is due to the Hall drift. Since
the Hall effect enters the diffusion equation for B as a
quadratic nonlinearity, it necessarily leads to a timescale
inversely proportional to |B|. The Hall effect is therefore
attractive for explaining the variations in the decay rates
(for B ∼ 1013 G the field should evolve on a 107 year
timescale while for B ∼ 1010 G it should evolve on a 1010

year timescale).
There is a bulk of literature about the existence of the

Hall effect in neutron stars. The main findings may be sum-
marized as follows. The Hall effect strongly depends on the
magnetic field amplitude and the temperature of the neutron
star. In the presence of strong magnetic fields the magnetic
diffusivity is anisotropic and is given by a tensor whose
components along the magnetic field are η‖, the compo-
nents perpendicular to the magnetic field are η⊥, and the
off-diagonal Hall component ηH. For more details concern-
ing the generalized Ohm’s law in multi-component plasma
we refer to the papers Yakovlev & Shalybkov (1991) and
Shalybkov & Urpin (1995).

With Hall effect included the magnetic induction equa-
tion takes the general form

∂B

∂t
− ηΔB = rot(u × B − β rotB × B), (5)

with η ≡ η⊥ and β = c/4πene, where ne is the electron
number density. It is useful to define a Hall diffusivity as
ηH ≡ βB. The Hall effect becomes important if β̂ > 1,
where

β̂ =
ηH

η⊥
=

τOhm

τHall
. (6)

For magnetic fields smaller than some critical value, Bcr,
η⊥ = η0 where η0 is the magnetic diffusivity without an
applied magnetic field. If B > Bcr than η⊥ increases as B2

for increasing magnetic field. The Hall magnetic diffusiv-
ity, on the other hand, is proportional to the magnetic field
value. As a result, the Hall effect can be important only for
not too strong magnetic fields (probably not for magnetars).

The critical magnetic field can vary significantly within
the neutron star envelopes depending on chemical composi-
tion, temperature and density. According to Potekhin (1999)
the critical magnetic field is ∼1012 G for iron composition
with temperature 107 K and density 1011 g/cm3. Detailed
calculations of the electrical conductivity in neutron star
crusts (Cumming, Arras & Zweibel 2004) indicate that the
Hall time scale under such parameters is indeed shorter than
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the Ohmic decay time, which means that β̂ > 1. One finds1

that for iron (Z = 26, A = 56) with ρ = 1013 g/cm3 the
β̂ varies from 10−3B12 for T = 1010 K to 3B12 for 108 K.
Note, however, that for the same plasma the Hall parameter
β̂ reaches a maximal value of ∼10 already for B ∼ 1013

G and decreases for higher magnetic field values such as
observed for magnetars.

Hence, it makes sense to ask for the consequences of the
Hall term for young neutron stars with fields of B12 > 1
which can be imagined – and this is the point here – as
toroidal field due to the induction of a differential rotation
existing in the first 10 s of its evolution. Important is only
the assumption that the (early) phase of the existence of dif-
ferential rotation is accompanied by β̂ of order unity for the
resulting toroidal fields. Obviously, for not too strong fields
β̂ linearly depends on the magnetic amplitude so that we
can write
β̂ = β0

√
PmHa = β0 S, (7)

with S as the Lundquist number (see below). The parameter
β0 does not depend on the magnetic field2. β0 is of order
0.01 for β̂ � 10 and S � 103 where the latter estimate is
quite characteristic for the situation of Fig. 1.

It is easy to show that the magnetic Prandtl number
should be much larger than unity for typical neutron star en-
velope parameters. To estimate the magnetic Prandtl num-
ber one should use η⊥ instead of η0 and obtains smaller
magnetic Prandtl numbers for the parameters where the Hall
effect is important.

2 Tayler instability

Too strong toroidal fields become unstable against the
Tayler instability. Tayler (1961, 1973) and Vandakurov
(1972) considered the stability of the fields against nonax-
isymmetric disturbances and showed that for an ideal fluid
the necessary and sufficient condition for stability is
d

dR
(RB2

φ) < 0. (8)

An almost uniform field would therefore be unstable against
nonaxisymmetric perturbations with m = 1 being the most
unstable mode.

Criterion (8) cannot directly be applied to fields under
the influence of differential rotation. In a first step to under-
stand the interaction of toroidal magnetic fields and differ-
ential rotation we have modelled a Taylor-Couette container
with two corotating cylinders where the radial rotation law
is hydrodynamically stable. An electric current flows par-
allel to the rotation axis through the conducting fluid, thus
producing a nearly uniform toroidal magnetic field. It be-
comes unstable against nonaxisymmetric perturbations for
nonrotating cylinders but only for a rather strong magnetic
field. If measured in terms of Hartmann numbers,

Ha =
B0R0√
μ0ρνη

, (9)

1 see http://www.ioffe.rssi.ru/astro/conduct/
2 Other possible notations are β̂ = Rb = ae = ωBτ .

Fig. 1 The stability domain (hatched) for outer cylinder rotating
with 50% of the inner cylinder (μΩ = 0.5), the magnetic field is
almost uniform (μB = 1), the perturbations are nonaxisymmetric
(m = 1). Note the destabilizing action of high magnetic Prandtl
numbers (here Pm = 100).

with R0 =
√

(Rout − Rin)Rout, this is at about Ha = 150
(see Fig. 1). In case of rotating cylinders without mag-
netic field the rotation law may be so flat that it is hydro-
dynamically stable. One finds that differential rotation is
strongly destabilizing for large magnetic Prandtl numbers.
We thus expect that the toroidal magnetic fields induced by
the differential rotation are limited by the described current-
induced instability.

In the present paper the stability problem for strong
toroidal magnetic fields under the influence of differential
rotation and the Hall effect is considered. We shall see that
in this case even the sign of the toroidal field (with respect
to the global rotation) will play an important role.

3 The basic equations

The basic state in the cylindrical system is UR = Uz =
BR = Bz = 0 and

Uφ = RΩ = aR +
b

R
, Bφ = AR +

B

R
, (10)

where a, b, A and B are constant values defined by

a = Ωin
μΩ − η̂2

1 − η̂2
, b = ΩinR2

in

1 − μΩ

1 − η̂2
,

A =
Bin

Rin

η̂(μB − η̂)
1 − η̂2

, B = BinRin
1 − μB η̂

1 − η̂2
. (11)

Here is

η̂ =
Rin

Rout
, μΩ =

Ωout

Ωin
, μB =

Bout

Bin
, (12)

with Rin and Rout as the radii, Ωin and Ωout the angular ve-
locities, and Bin and Bout as the azimuthal magnetic fields
of the inner and the outer cylinders. The possible magnetic
field solutions which do not decay are plotted in Fig. 2.

We are interested in the linear stability of the back-
ground state (10). In that case, the perturbed quantities of
the system are given by

uR, RΩ + uφ, uz, bR, Bφ + bφ, bz. (13)
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Fig. 2 (online colour at: www.an-journal.org) The possible ra-
dial profiles of the toroidal magnetic field between the two cylin-
ders. The value of the intersection of each of the profiles with the
right vertical axis is the corresponding μB-value. The profiles in
the hatched domain are stable against axisymmetric perturbations
while the cross-hatched area is also stable against nonaxisymmet-
ric perturbations. The current-free solution Bφ ∝ 1/R is given by
the red line.

As usual the perturbations are developed in normal modes
of the form

F = F (R) ei(kz + mφ + ωt). (14)

Terms of the form (13) and (14) are inserted into the induc-
tion equation (5) with the Hall effect included and linearized
about the zero-order state. The result is
∂B

∂t
− ηΔB = E − βH (15)

with

ER =
1
R

(imuRBφ − imRΩbR) , (16)

Eφ = −dBφ

dR
uR + ΩR

dbR

dR
+

dΩ
dR

RbR −

− Bφ
duR

dR
− Bφikuz + ΩbR + ikΩRbz, (17)

Ez =
1
R

(imuzBφ − imRΩbz) (18)

and the Hall terms

HR =
1

R2

(
− dBφ

dR
ikR2bR + BφkmRbφ −

− BφikRbR − Bφm2bz

)
, (19)

Hφ =
1

R2

(
− dBφ

dR
imRbz − BφimR

dbz

dR
−

− 2BφikRbφ − BφkmRbR + Bφimbz

)
, (20)

Hz =
1

R2

(
dBφ

dR2
R2bR +

dBφ

dR
R2 dbR

dR
+

dBφ

dR
imRbφ +

+ 2
dBφ

dR
RbR + BφimR

dbφ

dR
+ BφR

∂bR

∂R
+

+ 2Bφimbφ + Bφm2bR

)
. (21)

The dimensionless numbers of the problem are the magnetic
Prandtl number (Pm), the Hartmann number (Ha) and the
Reynolds number (Re), i.e.

Pm =
ν

η
, Ha =

BinR0√
μ0ρνη

, qRe =
ΩinR2

0

ν
, (22)

where R0 = [Rin(Rout − Rin)]1/2 is the characteris-
tic length scale. The magnetic Reynolds number is
Rm = Pm Re and the Lundquist number is S =

√
Pm Ha.

We use R0 as a unit of length and R−1
0 as a unit of the

wave number, η/R0 as a unit of the perturbed velocity, Ωin

as a unit of angular velocity and ω, and Bin as a unit of
magnetic fields (basic and disturbed).

In normalized quantities Eq. (15) may be written in the
form

iωRm b = D(b) + Ê − β̂H (23)

with

ÊR =
1
R

(
imB̂uR − imR Rm Ω̂bR

)
, (24)

Êφ = −B̂′uR − ikB̂uz − B̂
duR

dR
+ Rm

×
(

RΩ̂
dbR

∂R
+ R

dΩ̂
dR

bR + Ω̂bR + ikRΩ̂bz

)
, (25)

Êz =
im
R

(
B̂uz − RmΩ̂Rbz

)
. (26)

Here we have used the notations

Ω = ΩinΩ̂ and Bφ = BinB̂. (27)

The diffusion terms are

DR(b) =
d2bR

dR2
− m2

R2
bR − k2bR +

+
1
R

dbR

dR
− 2im

R2
bφ − bR

R2
, (28)

Dφ(b) =
d2bφ

dR2
− m2

R2
bφ − k2bφ +

+
1
R

dbφ

dR
+

2im
R2

bR − bφ

R2
(29)

and

Dz(b) =
d2bz

dR2
− m2

R2
bz − k2bz +

1
R

dbz

dR
. (30)

In the same way the normalized momentum equation can be
written as

Re
[
∂u

∂t
+ (U∇)u + (u∇)U

]
=

D(u) −∇P + Ha2 (rotB × b + rotb × B) , (31)

so that

iω Reu + Re G = D(u) −∇P + Ha2L (32)

with

GR = imΩ̂uR − 2Ω̂uφ, (33)

Gφ = (R2Ω̂)′
uR

R
+ imΩ̂uφ, (34)
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Gz = Ω̂ imuz (35)

and

LR = +
im
R

B̂bR − 2
B̂

R
bφ, (36)

Lφ =
1
R

(RB̂)′bR +
im
R

B̂bφ, (37)

Lz = +i
m

R
B̂bz. (38)

The perturbed flow as well as the perturbed magnetic field
are source-free, i.e.
duR

dR
+

uR

R
+ i

m

R
uφ + ikuz = 0 (39)

and
dbR

dR
+

bR

R
+ i

m

R
bφ + ikbz = 0. (40)

An appropriate set of ten boundary conditions is needed to
solve the system. No-slip conditions as well as zero normal
components for the velocity on the walls result in

uR = uφ = uz = 0. (41)

The boundary conditions for the magnetic field depend on
the electrical properties of the walls. The tangential currents
and the radial component of the magnetic field vanish on
conducting walls hence

dbφ

dR
+

bφ

R
= bR = 0. (42)

These boundary conditions may hold both for R = Rin and
for R = Rout.

4 Results

The equations have been solved for a simple model. The
normalized gap width between the cylinders is 0.5 and
the rotation law is rather flat approaching Ω ∝ R−1 hence
μΩ = 0.5. The toroidal field in the gap is almost uniform
(μB = 1) but it is not current-free. This field violates (8)
and is therefore Tayler-unstable with a critical Hartmann
number of about 150 (Rüdiger et al. 2007). This instabil-
ity is strongly modified by the differential rotation. The re-
sults are given in the Fig. 3 for the Hall parameters β0 =
−0.01, 0, and 0.01. The Hall parameter β0 and the mag-
netic Prandtl number are the free parameters of the system.
Note, however, that due to (7) only

√
Pmβ0 is a physical

parameter in the definition of the Hall quantity β̂. As only
the combination of β0Ha comes into the equations we can
fix the sign of β0 and make the calculations for positive and
negative Ha values or we can fix Ha as positive and use
both signs of β0. We prefer the second possibility so that
the results for positive and negative β0 correspond to oppo-
site magnetic field orientations.

The solid line for β0 = 0 in Fig. 3 (bottom) is identical
with the marginal limit between stability and instability in
Fig. 1. We find the system as destabilized by the rotation for
high magnetic Prandtl numbers (Pm = 100). In contrast,

Fig. 3 Tayler instability (m = 1) for various magnetic Prandtl
numbers Pm and with Hall effect. μB = 1, μΩ = 0.5. The curves
are labeled by the Hall parameter β0. Note that positive β0 reduces
the stability domain while negative β0 increases it.

for Pm = 1 the (differential) rotation stabilizes the flow
(Fig. 3, top), which demonstrates the significant differences
between the solutions with large and small magnetic Prandtl
numbers.

In all these cases, however, the Hall effect acts in the
same direction. For positive β the stability domain is re-
duced and for negative β the stability domain is increased.
The stabilization (destabilization) by negative (positive)
Hall β is a very common phenomenon of all the models.
In other words, positive Bφ (i.e. β > 0) lead to smaller crit-
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Astron. Nachr. / AN (2009) 17

ical field amplitudes than negative Bφ (i.e. β < 0). Hence,
if indeed the nonaxisymmetric Tayler instability limits the
strength of the induced toroidal fields Bφ then the resulting
amplitudes are different for different signs of Bφ due to the
Hall effect.

4.1 Cell structure

The cell structure of the neutrally stable modes is repre-
sented by the resulting vertical wavenumber k. From the
normalizations it follows the relation

δz

Rout − Rin
=

π

k

√
η̂

1 − η̂
(43)

for the vertical cell size in units of the gap width so that for
η̂ = 0.5

δz

Rout − Rin
=

π

k
. (44)

Hence, for k � π the cells are spherical while for k > π
they are flat. Both possibilities are realized in the calcula-
tions. In Fig. 4 the results for Pm = 100 are extended to
much higher values of the magnetic Reynolds number. The
difference of the stability domains for different Hall param-
eters even grows as the rotation increases. The curves are
marked with the corresponding wave number values. The
cells always tend to be flat we find that for negative β the
cells are less flat but they are rather flat for positive β. Thus,
not only the stability domains strongly differ for the Tayler
instability for opposite signs of the Hall parameter but also
the shape of the nonaxisymmetric Tayler vortices depends
on that sign. If indeed realized in neutron stars then the sign
of the toroidal magnetic field (in relation to the rotation axis)
can easily be read from the observations.

Figure 4 also demonstrates the effect of the rotational
quenching of the nonaxisymmetric Tayler instability. If the
rotation is too fast compared with the Alfvén velocity the in-
stability disappears. The differential rotation smoothes the
nonaxisymmetric magnetic disturbances. Without Hall ef-
fect the solid line in Fig. 4 seems to display a relation of

S > 0.1 · Rm (45)

for instability. Transformed into magnetic field amplitudes
with our standard parameters this means B >∼ 1013 G for
instability. For positive β0 a relation like (45) is not (yet)
realized. The relation (45) also demonstrates that poloidal
fields in neutron stars are only Tayler unstable with ampli-
tudes exceeding 1013 G (cf. Braithwaite 2008).

4.2 Growth rates

As the Hall time is much longer than the rotation time the
question arises whether the Hall effect basically enhances
the growth times of the Tayler instability. The answer is that
for the considered parameters the Hall effect hardly influ-
ences the growth rates of the Tayler instability (Fig. 5). The
Hall effect plays an important role for the stability map of

Fig. 4 The same as in Fig. 3 (bottom, Pm = 100) but for much
faster rotation. Stability only exists at left from the curves. They
are marked with the wavenumbers of the marginal instability. The
numbers show that also the cell structure strongly depends on the
sign of the Hall effect. Note the stabilizing action of fast rotation.

the Tayler instability but not for the resulting growth rates
of the unstable disturbances. The growth rates are com-
puted along vertical lines at Ha = 100 and Ha = 140
in Fig. 4. The curves are marked with the Hall parameter
β0 also including β0 = 0. The growth rates are given in
units of the angular velocity of the inner cylinder, at the
stability lines they vanish. A growth rate of 0.01 means an
e-folding time of the instability of about 16 rotation peri-
ods. For Pm = 100 this is the characteristic value for the
Tayler instability without Hall effect. This time is decreased
by positive Hall effect, and it is increased by negative Hall
effect. For positive Hall effect the Tayler instability results
as much faster than the Tayler instability for negative Hall
effect. All the growth rates grow with growing Hartmann
numbers.

Even a weak Hall effect does not generally prolong the
growth time of the Tayler instability which scales with the
rotation time. In this case the Hall effect is only a modi-
fication of another instability. Even if the Hall effect itself
forms the instability (together with the differential rotation)
also then the (‘shear-Hall’) instability scales with the rota-
tion rate and not with the rather long Hall time (Rüdiger &
Kitchatinov 2005).

Another example for this phenomenon is given by the
plane-wave solution of an αΩ -dynamo. Both growth rate
and cycle time of the most unstable mode of a linear oscil-
lating αΩ -dynamo with weak α-effect are mainly fixed by
the basic rotation: γ/Ω ∝ (ωη/Ω)1/3. Here γ is the growth
rate, ωη the dissipation frequency and Ω the basic rotation.

4.3 Steeper magnetic profile

The radial profile of the toroidal magnetic field used for the
calculations is rather smooth. Without detailed simulations
one cannot know the real radial profile. Hence, the compu-
tations represented in Fig. 3 are thus repeated for different
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18 G. Rüdiger et al.: Tayler instability with Hall effect in young neutron stars

Fig. 5 The growth rates of the Tayler instability (normalized
with Ωin) for m = 1 with and without Hall effect. The curves
are marked by their Hall parameter β0. The values belong to a ver-
tical line for Ha = 100 (top) and Ha = 140 (bottom) in Fig. 4.
Pm = 100, μB = 1, μΩ = 0.5.

magnetic field profiles for the most interesting case of high
magnetic Prandtl number (Pm = 100).

Figure 6 has been obtained for magnetic fields that in-
crease outwards (μB = 3). According to the Tayler cri-
terion (8) such profiles are highly unstable. Consequently,
we find the critical Hartmann number for Re = 0 one or-
der of magnitude smaller than in Fig. 3. The opening of
the two curves for β = ±0.01 is with about factor 2 for
Re � 10 very similar to the previous case. Again, the sta-
bility domain for positive β is much smaller than for neg-
ative β. These basic findings do not depend on the actual
Hartmann numbers for various magnetic profiles. Never-
theless, we should underline that with the given parame-
ters (ρ � 1013g/cm3, ν � 109cm2/s, η � 107cm2/s) for
Ha � 10 the maximal stable toroidal (!) field is only 1011 G.

5 Asymmetry of the neutron star
hemispheres

Wardle (1999) has shown that due to the Hall effect the sta-
bility properties of a differentially rotating MHD flow de-

Fig. 6 Tayler-Hall instability (m = 1) for steep magnetic field
(μB = 3), for large magnetic Prandtl number (Pm = 100) and
with Hall effect. μΩ = 0.5. The curves are labeled by their Hall
parameter β0.

pend on the sign of the axial magnetic field. After our results
the same is true for the azimuthal magnetic field. Moreover,
the critical magnetic field value above which the flow be-
comes unstable can basically differ for different magnetic
field orientations (Fig. 4).

If the effect is strong enough this finding can have con-
sequences. If in a young neutron star with differential ro-
tation the toroidal field results from a poloidal field with
dipolar symmetry then also the Bφ is antisymmetric with
respect to the equator. If the Tayler instability indeed deter-
mines the maximal field amplitudes then due to the Hall ef-
fect the amplitudes of the toroidal field in both hemispheres
become different. Obviously, the Tayler-Hall instability pro-
duces an extra quadrupolar component of the originally pro-
duced toroidal fields with dipolar symmetry. It is thus un-
avoidable that the amplitudes of the induced toroidal field
belts are different in both hemispheres.

For Ha ∼100, Pm ∼100 and β0 ∼10−2 taken from
Fig. 4 we find for the Hall parameter β̂ ∼ 10, leading to
∼ 1012 G for the neutron star. This value is typical for pul-
sars so that the conclusion about different toroidal field val-
ues in both the hemispheres of a neutron star due to Tayler-
Hall effects becomes realistic.

On the other hand, strong magnetic fields suppress the
heat transport in neutron stars (Schaaf 1988, 1990; Heyl &
Hernquist 1998). The heat transport is blocked in the direc-
tion perpendicular to the field lines so that the heat conduc-
tivity tensor becomes anisotropic, i.e.

χij = χ1δij + χ2BiBj , (46)

where χ1 represents the heat flux perpendicular to the field
which is quenched by strong magnetic fields, hence (say)
χ1 ∝ 1/(1 + β̂2). With

χij =
χ0

1 + β̂2
(δij + β̂2 BiBj

B2
), (47)

the heat flux remains finite along the field lines even for
B → ∞.
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The consequence of this magnetic-induced anisotropy
of the heat flux tensor is a global inhomogeneity of the sur-
face temperature (Geppert, Küker & Page 2006). If the lat-
itudinal distribution of the magnetic field is strictly sym-
metric or antisymmetric with respect to the equator then the
surface temperature results as equatorsymmetric. This is not
true if for both hemispheres the magnetic amplitudes are
differing (or, in other words, if the total magnetic field is a
combination of a dipole and a quadrupole). Exactly this is
the case if the toroidal magnetic field is produced by differ-
ential rotation under the presence of Tayler-Hall instability.
If the differential rotation of the neutron star disappears af-
ter 10 s then the magnetic fields are frozen in so that the
magnetic constellation is conserved for the time scales of
the magnetic decay (also modified by the Hall effect). We
do thus expect the two half spheres of an isolated neutron
star to be of different X-ray activity.

Schwope et al. (2005) have indeed found an equatorial-
asymmetric X-ray brightness analyzing XMM observations
of the isolated neutron star RBS1223. The authors have as-
sumed the existence of one bright “spot” in each of the
hemispheres and found two temperature maxima of differ-
ent strength (ratio = 0.91). If this asymmetry effect is gen-
eral for neutron stars then the interior magnetic fields must
also be asymmetric with respect to the equator (dipole plus
quadrupole like for Ap stars) which can be explained with
the Tayler-Hall scenario with differential rotation developed
in the present paper.
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