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The linear stability of the dissipative Taylor-Couette flow with an azimuthal magnetic field is considered.
Unlike ideal flows, the magnetic field is a fixed function of a radius with two parameters only: a ratio of inner
to outer cylinder radii, �̂, and a ratio of the magnetic field values on outer and inner cylinders, �̂B. The
magnetic field with 0��̂B�1/ �̂ stabilizes the flow and is called a stable magnetic field. The current free
magnetic field ��̂B= �̂� is the stable magnetic field. The unstable magnetic field, which value �or Hartmann
number� exceeds some critical value, destabilizes every flow including flows which are stable without the
magnetic field. This instability survives even without rotation. The unstable modes are located into some
interval of the axial wave numbers for the flow stable without magnetic field. The interval length is zero for a
critical Hartmann number and increases with an increasing Hartmann number. The critical Hartmann numbers
and length of the unstable axial wave number intervals are the same for every rotation law. There are the
critical Hartmann numbers for m=0 sausage and m=1 kink modes only. The sausage mode is the most unstable
mode close to Ha=0 point and the kink mode is the most unstable mode close to the critical Hartmann number.
The transition from the sausage instability to the kink instability depends on the Prandtl number Pm and this
happens close to one-half of the critical Hartmann number for Pm=1 and close to the critical Hartmann
number for Pm=10−5. The critical Hartmann numbers are smaller for kink modes. The flow stability does not
depend on magnetic Prandtl numbers for m=0 mode. The same is true for critical Hartmann numbers for both
m=0 and m=1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette
flow is �102 G.
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I. INTRODUCTION

The Taylor-Couette flow between concentric rotating cyl-
inders is a classical problem of hydrodynamic and hydro-
magnetic stability, �1,2�. According to the Rayleigh criterion
the ideal flow is stable whenever the specific angular mo-
mentum increases outwards

d

dR
�R2��2 � 0, �1�

where the cylindrical system of coordinate �R ,� ,z� is used,
and � is the angular velocity.

The axial magnetic field destabilizes the ideal flow stable
according to �1� but with angular velocity decreasing out-
wards and changes the stability condition to

d�2

dR
� 0. �2�

This magnetorotational instability �MRI� has been discov-
ered decades ago �3�, but its importance as the source of
turbulence in accretion disks with differential �Keplerian� ro-
tation was only recognized much latter by Balbus and Haw-
ley �4�. Their local stability analysis suggests instability re-
gardless of the magnitude of the azimuthal magnetic field. It
was not a surprise that this result has been reconsidered later
�5–7� in light of the long-time known Michael’s necessary
and sufficient condition �8�. The condition says that the ideal

Taylor-Couette flow is stable to axisymmetric disturbances in
the presence of an azimuthal magnetic field B��R� if

1

R3

d

dR
�R2��2 −

R

�0�

d

dR
�B�

R
�2

� 0, �3�

where � is the density and �0=4� is the magnetic constant.
According to �3�, a Taylor-Couette flow with an arbitrary
angular velocity profile is unstable to axisymmetric distur-
bances for appropriate azimuthal magnetic field values and
profiles. The destabilizing role of the azimuthal magnetic
field is also well known in the plasma theory of pinch stabil-
ity �see, e.g., �9��.

The viscosity has a stabilizing effect and a nonmagnetized
Taylor-Couette flow which is unstable due to �1� becomes
really unstable only if the angular velocity of inner cylinder
�or its Reynolds number� exceeds some critical value. The
same is true for the nonideal Taylor-Couette flow with an
imposed axial magnetic field. Moreover, MRI exists in hy-
drodynamically unstable situations ��̂���̂2� �24� only if the
magnetic Prandtl number Pm is not very small as shown in
�10� already and later in �11–14�; the critical Reynolds num-
bers vary as 1/Pm for hydrodynamically stable flows ��̂2

���̂�1� �11,14� so that it is the magnetic Reynolds number
which directs the instability. Pm is really very small for liq-
uid metals �10−5 and smaller�. That is why the MRI has not
been clearly demonstrated experimentally. MRI-like behav-
ior was reported at recent experiments �15�. Nevertheless, the
initial nonmagnetized flow was already unstable �turbulent�
and a relation of these results with the MRI of the laminar
flow is not clear.*Electronic address: dasha@astro.ioffe.ru
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The importance of the MRI for accretion disk physics and
for planned new experiments �13,16,17� highly stimulated
the theoretical investigation of the stability of the magnetized
Taylor-Couette flow �11–14,16–20�.

Theoretical results for the viscous magnetized Taylor-
Couette flow with an imposed azimuthal magnetic field is not
so numerous. The only work �21�, has demonstrated flow
stabilization only. This work was restricted by a current-free
azimuthal magnetic field and conducting boundary condi-
tions. Here we perform a more comprehensive study of the
nonideal Taylor-Couette flow stability in the presence of the
azimuthal magnetic field. We consider the most general con-
figuration of the azimuthal magnetic field and as conducting
so insulating boundary conditions.

II. BASIC EQUATIONS

Consider a viscous electrically conducting incompressible
fluid between two rotating infinite cylinders in the presence
of an azimuthal magnetic field. The equations governing the
problem are

�U

�t
+ �U � �U = −

1

�
� P + 	
U +

1

�0
curlB � B ,

�B

�t
= curl�U � B� + �
B ,

div U = div B = 0, �4�

where U is the velocity, B is the magnetic field, P is the
pressure, 	 is the kinematic viscosity, and � is the magnetic
diffusivity. Equations �4� admit the basic solution in the cy-
lindrical system of coordinates �R ,� ,z�

UR = Uz = BR = Bz = 0,

B� = aBR +
bB

R
, U� = R� = a�R +

b�

R
, �5�

a�, b�, aB, and bB are constants defined by boundary condi-
tions:

a� = �in
�̂� − �̂2

1 − �̂2 , b� = �inRin
2 1 − �̂�

1 − �̂2 ,

aB =
Bin

Rin

�̂��̂B − �̂�
1 − �̂2 , bB = BinRin

1 − �̂B�̂

1 − �̂2 , �6�

where

�̂ =
Rin

Rout
, �̂� =

�out

�in
, �̂B =

Bout

Bin
, �7�

Rin and Rout are the radii, �in and �out are the angular ve-
locities, and Bin and Bout are the azimuthal magnetic fields of
the inner and the outer cylinders, respectively.

Note, that for the viscous flow the magnetic field profile
like the angular velocity profile is a fixed function of the
radius. The first magnetic field term at �5� corresponds to a

constant axial electric current density into the fluid. The sec-
ond term is current free.

We are interested in the stability of the basic solution �5�.
The linear stability problem is considered. The perturbed
state of the flow is described by

uR, R� + u�, uz, bR, B� + b�, bz. �8�

By developing the disturbances into normal modes, the solu-
tions of the linearized magnetohydrodynamics �MHD� equa-
tions are considered in the form

F = F�R�exp�i�kz + m� + �t�� , �9�

where F is every velocity or magnetic field disturbances.
The dimensionless numbers of the problem are the mag-

netic Prandtl number, Pm, Hartmann number, Ha, and Rey-
nolds number, Re,

Pm =
	

�
, Ha =

BinR0

��0�	�
, Re =

�inR0
2

	
, �10�

where R0= �Rin�Rout−Rin��1/2 is the length unit.
Using normal mode expansion �9�, linearizing system �4�

and representing it as a system of first order equations, we
have

duR

dR
+

uR

R
+ i

m

R
u� + ikuz = 0,

du�

dR
+

u�

R
− X2 = 0,

duz

dR
− X3 = 0,

dP

dR
+ i

m

R
X2 + ikX3 + �k2 +

m2

R2 �uR + i Re�� + m��uR

− 2� Re u� − i Ha2m

R
B�bR + 2 Ha2B�

R
b� = 0,

dX2

dR
− �k2 +

m2

R2 �u� − i Re�� + m��u� + 2i
m

R2uR

−
Re

R

d

dR
�R2��uR + i Ha2m

R
B�b� − i

m

R
P

+
Ha2

R

d

dR
�RB��bR = 0,

dX3

dR
+

X3

R
− �k2 +

m2

R2 �uz − i Re�� + m��uz − ikP

+ i Ha2m

R
B�bz = 0,

dbR

dR
+

bR

R
+ i

m

R
b� + ikbz = 0,
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db�

dR
+

b�

R
− X4 = 0,

dbz

dR
−

i

k
�k2 +

m2

R2 �bR + Pm Re
1

k
�� + m��bR +

1

k

m

R
X4

−
1

k

m

R
B�uR = 0,

dX4

dR
− �k2 +

m2

R2 �b� − i Pm Re�� + m��b� + i
2m

R2 bR

− R
d

dR
�B�

R
�uR + Pm Re R

d�

dR
br + i

m

R
B�u� = 0,

�11�

where 2nd, 3rd, and 8th equations are the definitions of the
X2, X3, and X4, respectively. We use R0 as unit of a length
and R0

−1 as unit of the wave number, � /R0 as unit of the
perturbed velocity, �in as unit of angular velocity, and � and
Bin as units of magnetic fields �basic and disturbed�.

An appropriate set of ten boundary conditions is needed
to solve the system �11�. Always no-slip conditions for the
velocity on the walls are used, i.e.,

uR = u� = uz = 0. �12�

The boundary conditions for the magnetic field depend on
the electrical properties of the walls. The tangential currents
and the radial components of the magnetic field vanish on
conducting walls hence

db�/dR + b�/R = bR = 0. �13�

These boundary conditions hold both for R=Rin and for R
=Rout.

The situation changes for insulating walls. The magnetic
field must match the external magnetic field for vacuum. The
condition curlRB=0 in vacuum immediately provides

b� =
m

kR
bz �14�

at R=Rin and R=Rout. From the solution of the potential
equation 

=0 �where B=�
� one finds

bR +
ibz

Im�kR�
� m

kR
Im�kR� + Im+1�kR�� = 0 �15�

for R=Rin and

bR +
ibz

Km�kR�
� m

kR
Km�kR� − Km+1�kR�� = 0 �16�

for R=Rout. Im and Km are the modified Bessel functions with
finite limits at R→0 and R→�, respectively.

The homogeneous set of equations �11� together with the
boundary conditions determine the eigenvalue problem of
the form L(k ,m ,R��� ,Pm,Re,Ha)=0 �25�, where R��� is
the real part of �. Generally, L is a complex quantity. It takes
the value zero if and only if all parameters are eigenvalues.

The system �11� is approximated by finite differences with
typically 200 radial grid points. We can also stress that the
results are numerically robust as an increase of the number of
grid points does not change the results remarkably. Both real
and imaginary parts of L equalize to value zero by varying
R��� and Reynolds number values for fixed other param-
eters. There is always minimum of Re eigenvalues for a cer-
tain wave number and R���. This minimum eigenvalue is
the desired Reynolds number and called a critical Reynolds
number.

It is well known that for the nonmagnetized Taylor-
Couette flow, �23�, and the Taylor-Couette flow with an im-
posed axial magnetic field �22�, the axisymmetric instability
is monotonic �overstability� with R���=0. Our calculations
�not comprehensive though� have demonstrated that the same
is true for the Taylor-Couette flow with azimuthal magnetic
field. Thus, for the sake of simplicity, we take that R���
=0 for axisymmetric disturbances below.

III. RESULTS

Using �5�–�7� for angular velocity and magnetic field, the
normalized Michael’s condition �3� takes the form

4a�
2 + 4

a�b�

R2 + ��4
aBbB

R2 + 4
bB

2

R4� � 0, �17�

where

� =
VA

2

�R0�in�2 , �18�

and VA is the Alfvén velocity �VA
2 =Bin

2 /�0��.
According to �1�, the angular velocity part �i.e., the sum

of the first two terms of �17�� is positive if �̂���̂2 �see, e.g.,
�22��. The magnetic field stabilizes the flow �the sum of the
last two terms are positive� if

0 � �̂B �
1

�̂
�19�

and destabilize the flow otherwise. The magnetic field is
called either stable magnetic field if �̂B lays into interval �19�
or the unstable magnetic field otherwise. For the unstable
magnetic field there is some critical value of the constant �
depending on �̂� for which the ideal flow becomes unstable.
Let us note that large values of the constant � �i.e., large
magnetic field and slow rotation� are more preferable for
instability.

For the nonideal Taylor-Couette flow we are interested in
critical Reynolds numbers. Figures 1 and 2 present the criti-
cal Reynolds numbers for axisymmetric disturbances as a
function of the Hartmann number for insulating and conduct-
ing cylinders. The critical Reynolds numbers do not depend
on magnetic Prandtl numbers. This result can easy be ob-
tained analytically. For axisymmetric disturbances with �
=0 equations for dbR /dR and dbz /dR can be combined into
equation
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d2bR

dR2 +
1

R

dbR

dR
−

bR

R2 − k2bR = 0. �20�

Using �20� together with m=0 and �=0, we can exclude the
only term proportional to Pm from the last equation of �11�.

After Figs. 1 and 2 it seems that the interval �19� where
the magnetic field suppresses the instability for an ideal flow
is changed for a nonideal one. The calculations with larger
Ha number show that this interval is the same �see also Fig.
3�. The flow with �̂B=0.57 is the most stable flow �has the
highest critical Reynolds numbers�.

The critical Reynolds numbers are systematically higher
for conducting cylinders with the stabilizing magnetic field
��̂B from interval �19�� and isolating cylinders with a desta-
bilizing magnetic field. The critical Reynolds numbers in-
crease with increasing Hartmann numbers for the stabilizing
magnetic field and decrease for the large Ha for the destabi-
lizing magnetic field �26�. The critical Reynolds numbers
even vanish if the Hartmann number is larger than some
critical Hartmann number, Hacr.

Figure 3 presents the critical Hartmann numbers as a
function of the axial wave numbers. Note, that for conduct-
ing boundary condition the disturbances with smallest Hacr
are one dimensional �the axial wave number k=0� for all �̂B
but −1��̂B�0. The critical Hartmann numbers do not de-
pend on the rotation parameter �̂�. Moreover, the axial wave
numbers for which critical Reynolds numbers equal zero also
do not depend on �̂� �see Fig. 4�.

Figure 4 demonstrates that for the unstable rotation ��̂�

��̂2� and the unstable magnetic field with Ha�Hacr the
flow is unstable �there is critical Reynolds number� for any
wave number which does not equal 0. For stable rotation the
flow is unstable only for wave numbers between some mini-
mum wave number kmin and maximum wave number kmax
��kmin�kmax��. The kmin decreases and the kmax increases
with increasing Ha. So, the interval between critical wave
numbers is larger for larger Ha. For conducting boundaries
kmin=0 except for −1��̂B�0 �see Figs. 3 and 4�. This be-
havior is the same as found by Pessah and Psaltis �7�.

Figure 5 presents the dependence of the marginal stability
lines on the gap width. We use the negative �̂B value because
it is out of the stability interval �19� for any gap width. The
critical Hartmann numbers are larger for smaller gap �larger

FIG. 1. The marginal stability lines for axisymmetric distur-
bances �m=0� at insulating cylinders for �̂=0.5, �̂�=0, �̂B�0.57
�upper� and �̂B�0.57 �lower�. The lines are labeled by the �̂B

values.

FIG. 2. The same as in Fig. 1 but for conducting cylinders.
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�̂�. For positive �̂B there is some critical gap width. For
smaller �̂B than critical gap width, critical Hartmann num-
bers grow with growing �̂ the same as for the negative �̂B.
For larger than critical gap widths, the critical Hartmann
numbers grow with decreasing �̂ due to the approaching of
the right boundary of the stability interval �19�.

Figure 6 presents the critical Reynolds numbers for non-
axisymmetric disturbances. The results, unlike the axisym-
metric case, depend on Pm. Depending on Hartmann num-
bers the instability is either axisymmetric or asymmetric
�m=1�. Nevertheless, the critical Hartmann number is
smaller for m=1 mode. The critical Hartmann number does
not depend on Pm.

Figure 7 shows the eigenfunctions for the critical Hart-
mann number �Ha=32.6� for insulating cylinders with �̂B

=3. The disturbed state has only an azimuthal magnetic field
component and has both radial and axial velocities constitut-
ing the classical Taylor vortices.

IV. DISCUSSION

The presence of the azimuthal magnetic field can strongly
destabilize the Taylor-Couette flow. For the nonideal flow the
magnetic field is a fixed function of radius �5� and has only
two parameters defined by the flow geometry ��̂� and the
magnetic field boundary values ��̂B�. The flow can be only
destabilized by the magnetic field with �̂B out of range �19�.
The current free magnetic field �aB=0� has �̂B= �̂ and stabi-
lizes the flow only in accordance with �21�.

The stable magnetic field stabilizes the unstable rotation
��̂���̂2� and critical Reynolds numbers increase as a func-
tion of Hartmann numbers �see Figs. 1 and 2�.

The unstable magnetic field possessing the Hartmann
number greater than some critical Hartmann number Hacr can
destabilize every rotation law. There is instability even with-
out rotation. This instability is the well-known pinch insta-
bility �9�. The critical Hartmann number like the critical Rey-
nolds number reflects the nonideality of the flow. The

FIG. 3. The marginal stability lines for axisymmetric distur-
bances �m=0� at insulating cylinders �upper� and conducting ones
�lower� with �̂=0.5 and Re=0. The lines are labeled by the �̂B

values.

FIG. 4. The marginal stability lines for axisymmetric distur-
bances �m=0� and insulating cylinders �upper� and conducting ones
�lower� with �̂=0.5, �̂B=3, and Ha=40. The lines are labeled by
�̂� values on the left panel and �̂�=0 �dashed line�, 1.5 �solid� on
the right panel.
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infinitely small unstable magnetic field destabilizes the cylin-
drical shell of an ideal fluid without a rotation. The fluid
nonideality stabilizes the situation and there is instability
only if the magnetic field is large enough �Ha�Hacr�.

The stability properties of the flow under the influence of
the unstable magnetic field with Ha�Hacr depend on stabil-
ity properties of the flow without the magnetic field. The
flow, which is stable without the magnetic field ��̂���̂2�,
keeps the stability. The critical Reynolds numbers decrease
with increasing Hartmann numbers and leads to zero for
Ha=Hacr for the flow, which is unstable without the mag-
netic field ��̂���̂2�.

The critical Hartmann numbers depend on a geometry
�e.g., gap width�, the boundary conditions, and the magnetic
field profile ��̂B� but do not depend on the rotation ��̂��.

Thus, every flow is destabilized by the unstable magnetic
field with Ha�Hacr, where Hacr is the same for every �̂� at
fixed other parameters. This means that a rotation cannot
stabilize the large enough unstable magnetic field. The situ-
ation is unlike the ideal flow stability. According to �17�, the
faster the rotation which is stable without magnetic field the
larger value of the unstable magnetic field is needed to de-
stabilize the flow.

There are the critical Hartmann numbers for m=0 �sau-
sage� and m=1 �kink� modes only �see Fig. 6�. The sausage
mode is the most unstable nearly Ha=0 and the kink mode is
the most unstable nearly Ha=Hacr. The transition from the
sausage instability to the kink instability depends on Pm. It
happens close to 0.5Hacr for Pm=1 and almost at Hacr for
Pm=10−5. Let us recall that the kink mode is the most un-
stable mode for the pinch �9�. The critical Hartmann numbers
for kink modes are a little bit smaller than for m=0 modes
�see Fig. 6�.

The marginal stability lines for the axisymmetric mode do
not depend on the magnetic Prandtl number. The same is true
for critical Hartmann numbers for both m=0 and m=1
modes.

FIG. 5. The marginal stability lines for axisymmetric distur-
bances �m=0� with conducting cylinders, Re=0, �̂�=0, �̂B=−2.
The lines are labeled by the �̂ values.

FIG. 6. The marginal stability lines for axisymmetric �solid� and
nonaxisymmetric disturbances for conducting cylinders with �̂
=0.5, �̂�=0, �̂B=3, and m=1 and Pm=1 �lower dotted�; m=1 and
Pm=10−5 �lower dashed�; m=2 and Pm=1 �upper dotted�; m=2
and Pm=10−5 �upper dashed�.

FIG. 7. The eigenfunctions for velocities �upper� and the mag-
netic field �lower� for insulating cylinders and �̂=0.5, �̂B=3, Ha
=32.6, and Re=0, k=1.13.
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Finally let us estimate the magnetic field needed to
achieve zero Reynolds number instability. Taking the param-
eter values for liquid sodium: 	=7.1�10−3 cm2/s, �
=810 cm2/s, �=0.92 g/cm3, and typical dimension Rin
=10 cm, Rout=20 cm ��̂=0.5�, and Ha2=103 �see Figs. 1 and
2� we get the magnetic field value on the inner cylinder only
nearly 30 G and with �̂B=3 this corresponds to the 90 G
magnetic field on the outer cylinder. The small value of the
magnetic field destabilizing the flow and independence of the

main results on the magnetic Prandtl number makes the
Taylor-Couette flow with imposed azimuthal magnetic field
very promising to observe the instability of the magnetize
Taylor-Couette flow.
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