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The axisymmetric linear stability of dissipative Taylor-Couette flow with an azimuthal magnetic field is
considered. The magnetic field can be unstable without a rotation. This is the well-known pinch type instability.
The stable rotation stabilizes the unstable azimuthal magnetic field. The dissipative flow stability can be
classified according to Michael’s stability condition for an ideal flow. The dissipative effects stabilize the flow
and an ideally unstable flow becomes really unstable only when both the angular velocity and the magnetic
field exceed some critical values.
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INTRODUCTION

The Taylor-Couette flow between concentric rotating cyl-
inders is a classical problem of hydrodynamic and hydro-
magnetic stability �1,2�. According to the Rayleigh criterion,
the ideal flow is stable to axisymmetric perturbations when-
ever the specific angular momentum increases outwards:
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where the cylindrical system of coordinates �R ,� ,z� is used
and � is the angular velocity. The viscosity has a stabilizing
effect and a dissipative Taylor-Couette flow, which is un-
stable due to �1�, becomes really unstable only if the angular
velocity of an inner cylinder �or its Reynolds number� ex-
ceeds some critical value.

In the presence of an azimuthal magnetic field, the neces-
sary and sufficient condition for the axisymmetric stability of
ideal Taylor-Couette flow is �3�

1

R3

d

dR
�R2��2 −

R

�0�

d

dR
�B�

R
�2

� 0, �2�

where B� is the azimuthal magnetic field, � is the density,
and �0 is the magnetic constant.

According to �2�, the current-free azimuthal magnetic
fields �B��1/R� stabilize the flow �4�. This stabilization has
been confirmed for dissipative Taylor-Couette flow �5�. Nev-
ertheless, the azimuthal magnetic fields, which stabilize the
flow, are restricted by a narrow interval nearby to the
current-free field �6�.

For static configurations, the stability is defined by the
Hartmann number only �7�. Like the stabilization of unstable
rotation by the viscosity, the magnetic diffusivity stabilizes
the unstable magnetic field and the ideally unstable magnetic
field becomes really unstable only if the azimuthal magnetic
field of inner cylinder �or Hartmann number� exceeds some
critical value �6�. This critical Hartmann number does not
depend on the rotation. This fact leads us to the conclusion
that the unstable magnetic field, which has a value larger
than the critical one, cannot be stabilized by the rotation �6�.

In this paper, we will show that this conclusion is true only
for a slow rotation. Fast stable rotation stabilizes the unstable
magnetic field in accordance with the condition �2�.

BASIC EQUATIONS

Consider a viscous electrically conducting incompressible
fluid between two rotating infinite cylinders in the presence
of an azimuthal magnetic field. The equations governing the
problem are
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div U = div B = 0, �3�

where U is the velocity, B is the magnetic field, P is the
pressure, � is the kinematic viscosity, and � is the magnetic
diffusivity.

Equations �3� admit the basic solution in the cylindrical
system of coordinates �R ,� ,z�:

UR = Uz = BR = Bz = 0,

B� = aBR +
bB

R
, U� = R� = a�R +

b�

R
, �4�

where a�, b�, aB, and bB are constants defined by the bound-
ary conditions
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Rin and Rout are the radii, �in and �out are the angular ve-
locities, and Bin and Bout are the azimuthal magnetic fields of
the inner and outer cylinders, respectively.*Electronic address: dasha@astro.ioffe.ru
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Note that for viscous flow the magnetic field profile and
the angular velocity profile are completely defined by the
three parameters only: �̂, �̂�, and �̂B. The first magnetic
field term in Eqs. �4� corresponds to a constant axial electric
current density into the fluid. The second term is current free.

We are interested in the stability of the basic solution �4�.
The linear stability problem is considered. By developing the
disturbances into normal modes, solutions of the linearized
equations �3� are considered in the form

F = F�R�exp�i�kz + �t�� , �7�

where F is all of the disturbances.
The dimensionless numbers of the problem are the mag-

netic Prandtl number Pm, Hartmann number Ha, and Rey-
nolds number Re,
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�

�
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�
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where R0= �Rin�Rout−Rin��1/2 is the length unit.
A detailed description of the equations and the numerical

method used have been given in our earlier paper �6� and
will not be reproduced here. Always no-slip boundary con-
ditions for the velocity on the walls are used. The tangential
electrical currents and the radial component of the magnetic
field vanish on the conducting walls. The magnetic field must
match the external magnetic field for the insulating walls �6�.

There are some indications that the instability originates
as a monotonic instability for the problem in hand �6�.1 To
the author’s knowledge, the above statement has not been
formally proved. Nevertheless, for the sake of simplicity, we
take that R���=0 �where R��� is the real part of �� for the
marginal stability lines below.

RESULTS

According to the condition �1� or the first term in �2�, the
rotation is stable if

�̂� � �̂2. �9�

Due to the condition �2�, the magnetic field is stable for static
configurations if

0  �̂B 
1

�̂
. �10�

The rotation is called stable �unstable� if �̂���̂2 ��̂���̂2�.
The azimuthal magnetic field is called stable �unstable� if �̂B
lies inside �outside� of the interval Eq. �10�.

It has been demonstrated �6� that the dissipative Taylor-
Couette flow can be destabilized by the magnetic field with
�̂B out of the range �10� only. For the unstable magnetic field
and the unstable rotation, the critical Reynolds numbers de-
crease with increasing Hartmann numbers and become zero
for some critical Hartmann number Ha0. Thus, the magnetic
field is unstable without the rotation for Ha�Ha0. The criti-

cal Hartmann number does not depend on the magnetic
Prandtl number and the angular velocity profile ��̂��. So the
unstable magnetic field cannot be stabilized by the slow ro-
tation.

Can this instability be suppressed by the fast stable rota-
tion? The answer can be found in Fig. 1, which presents the
marginal stability lines for the insulating cylinders. Figure 1
represents the typical behavior of marginal stability lines for
the unstable magnetic field. The lines do not depend on the
magnetic Prandtl number. The flow is stable to the left of the
lines and unstable to the right. So the flow is stable for small
Reynolds numbers to the left of the Rayleigh line ��̂= �̂2�.
The situation is opposite to the right of the Rayleigh line,
where flow is stable for large Reynolds numbers. The rota-
tion is unstable even without the magnetic field to the left of
the Rayleigh line. The rotational instability is increased by
the unstable magnetic field �the flow becomes unstable for a
smaller Reynolds number for the larger Hartmann number�.
The rotation is neutrally stable on the Rayleigh line and does
not influence the instability of the magnetic field �the stabil-
ity depends on the Hartmann number only�. To the right of
the Rayleigh line, the rotation is stable and stabilizes the
unstable magnetic field �we need a larger Hartmann number
for the larger Reynolds number to destabilize the flow�. The
flow with the larger �̂� becomes stable for smaller Reynolds
numbers at fixed Hartmann number.

For conducting cylinders, the results are similar. The fast
stable rotation stabilizes the unstable magnetic field. Never-
theless, the conducting cylinders should be considered more
carefully. There is a spurious solution b��R−1 for the mar-
ginal stability line ��=0� with k=0 �where k is the axial
wave number�. For this spurious solution, an unstable mag-
netic field is not stabilized by the stable rotation. Neverthe-
less, the mode with k=0 is always stable �does not cross the
marginal stability line� �8�. To overcome this difficulty, cal-
culations have been performed for the slightly unstable lines
with �=−10−3i. These slightly unstable lines depend on the
magnetic Prandtl number. The results are demonstrated in
Fig. 2.

1Note that a monotonic instability was wrongly called “overstabil-
ity” instead of “exchange of stabilities” in this paper.

FIG. 1. The marginal stability lines for insulating cylinders with
�̂=0.5 and �̂B=4. The lines are labeled by the �̂� values. The flow
is stable �unstable� to the left �right� of the lines. The line with
�̂�= �̂2 ��̂�=0.25� is the Rayleigh line.
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CONCLUSION

We have demonstrated that the axisymmetric stability
properties of dissipative Taylor-Couette flow can be classi-
fied exactly in accordance with the ideal stability condition
�2�. The rotation is called stable �unstable� when it is stable
�unstable� without the magnetic field. The magnetic field is
called stable �unstable� when it is stable �unstable� without
the rotation. For the unstable rotation, the instability is rota-
tional �or centrifugal� by its physical nature and called rota-
tional instability. The instability can be called magnetic �or
pinch� for the unstable magnetic field and magnetorotational
when both the rotation and the magnetic field are unstable.
To distinguish it from the well-known magnetorotational in-
stability in the presence of an axial magnetic field �9�, the

instability discussed can be called azimuthal magnetorota-
tional instability �AMRI�.

According to �2�, every stable rotation can be destabilized
by an unstable magnetic field with the large enough magnetic
field value. Obviously, we can reverse the point of view and
say that every unstable magnetic field can be stabilized by a
stable rotation. Similarly, every stable magnetic field can be
destabilized by an unstable rotation �or unstable rotation can
be stabilized by a stable magnetic field�. The stability prop-
erties of ideal flow do not change when both the rotation and
the magnetic field are either stable or unstable.

The dissipation leads to the appearance of two critical
numbers Reynolds, Re0, and Hartmann, Ha0 �Re0 is calcu-
lated for Ha=0 and Ha0 is calculated for Re=0�. The rota-
tion, which is ideally unstable without the magnetic field,
becomes really unstable only if Re�Re0. Similarly, the azi-
muthal magnetic field, which is ideally unstable without the
rotation, becomes really unstable only if Ha�Ha0.

The stable magnetic field stabilizes the unstable rotation
and the critical Reynolds numbers, above which the flow
becomes unstable, increase with increasing Hartmann num-
bers �6�. Similarly, the stable rotation stabilizes the unstable
magnetic field and the critical Hartmann numbers, above
which there is the instability, increases with the increasing
Reynolds number �see the lines to the right of the Rayleigh
line on Fig. 1�.

The instability is subcritical when both the rotation and
the magnetic field are unstable �i.e., there is the instability for
Re�Re0 and Ha�Ha0�.
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FIG. 2. The slightly unstable lines ��=−10−3i� for conducting
cylinders with �̂=0.5, �̂�=1.5, and �̂B=4. The lines are labeled by
the Pm values.
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