
Compensation of instabilities in magnetic Taylor-Couette flow

Dima Shalybkov*
A.F. Ioffe Institute for Physics and Technology, 194021, St. Petersburg, Russia

�Received 16 April 2007; published 20 August 2007�

The axisymmetric linear stability of the Taylor-Couette flow with an azimuthal magnetic field is considered.
It is shown that a flow with the combination of a linearly unstable rotation and a linearly unstable azimuthal
magnetic field can be linearly stable. The flow stabilization takes place for both ideal and dissipative flows. For
dissipative flow the stabilization exists only for a combination of counter-rotating cylinders and a counterdi-
recting azimuthal magnetic field on cylinders. The effect can be important for the problem of a plasma
confinement by the magnetic field.
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I. INTRODUCTION

The Taylor-Couette flow between concentric rotating cyl-
inders is a classical problem of hydrodynamic and hydro-
magnetic stability �1,2�. According to the Rayleigh criterion,
the ideal flow is stable to axisymmetric perturbations when-
ever the specific angular momentum increases outwards at
every point of the flow,
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where the cylindrical system of coordinates �R ,� ,z� is used,
and � is the angular velocity.

In the presence of an azimuthal magnetic field, the neces-
sary and sufficient condition for the axisymmetric stability of
ideal Taylor-Couette flow is �3� �see also �4��
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where B� is the azimuthal magnetic field, � is the density,
and �0 is the magnetic constant.

The rotation is called stable �unstable� if it fulfills �vio-
lates� the condition �1� �or equivalently if the first term of
condition �2� is positive �negative��. The azimuthal magnetic
field is called stable �unstable� if the second term of condi-
tion �2� is positive �negative�. Dissipative effects stabilize the
flow. Ideally unstable rotation becomes really unstable only
if an angular velocity exceeds some critical value. The same
is true for an ideally unstable magnetic field which becomes
really unstable also only if a magnetic field exceeds some
critical value �5�. It has been shown �6� that the axisymmet-
ric stability properties of the dissipative Taylor-Couette flow
with an imposed azimuthal magnetic field can be classified
just in accordance with the ideal condition �2�. A combina-
tion of stable rotation and stable magnetic field is stable. The
stable magnetic field stabilizes the unstable rotation �i.e., a
critical angular velocity, at which flow becomes really un-
stable, increases with increasing magnetic field� and the un-
stable magnetic field destabilizes the stable rotation �and vice
versa�. The flow which has a combination of unstable rota-

tion and unstable magnetic field is the more unstable �have
smaller critical values� than both the unmagnetized flow with
unstable rotation or a static unstable magnetic field �6�.

Nevertheless, we will demonstrate below that the condi-
tion �2� guarantees the ideal flow stability for some combi-
nations of unstable rotation and unstable magnetic field. For
dissipative flow, our numerical results demonstrate the flow
stability in some vicinity of ideal stability line.

II. BASIC EQUATIONS

Consider a viscous electrically conducting incompressible
fluid between two rotating infinite cylinders in the presence
of an azimuthal magnetic field. The equations governing the
problem are

�U

�t
+ �U��U = −

1

�
� P + ��U +

1

�0
curl B 	 B ,

�B

�t
= curl�U 	 B� + 
�B ,

div U = div B = 0, �3�

where U is the velocity, B is the magnetic field, P is the
pressure, � is the kinematic viscosity, and 
 is the magnetic
diffusivity.

For ideal flow ��=
=0�, Eqs. �3� admit the solution in the
cylindrical system of coordinates �R ,� ,z�:

UR = Uz = BR = Bz = 0,

B� = B��R�, U� = R��R� , �4�

where ��R� and B��R� are arbitrary functions of radius ful-
filling boundary conditions. For dissipative flow, the angular
velocity and azimuthal magnetic field have fixed profiles

B� = aBR +
bB

R
, U� = R� = a�R +

b�

R
, �5�

where a�, b�, aB, and bB are constants defined by the bound-
ary conditions:

a� = �in
�̂� − 
̂2
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Rin and Rout are the radii, �in and �out are the angular ve-
locities, and Bin and Bout are the azimuthal magnetic fields of
the inner and outer cylinders, respectively.

Note that for viscous flow the magnetic field and angular
velocity profiles are completely defined by the three param-
eters: 
̂, �̂�, and �̂B. The first magnetic field term in Eqs. �5�
corresponds to a constant axial electric current density into
the fluid. The second term is current free.

We are interested in the stability of the basic solution �5�.
The axisymmetric linear stability problem is considered. By
developing the disturbances into normal modes, solutions of
the linearized magnetohydrodynamics equations are consid-
ered in the form

F = F�R�exp�i�kz + �t�� , �8�

where F is all of the disturbances.
The dimensionless numbers of the problem are the mag-

netic Prandtl number Pm, Hartmann number Ha, and Rey-
nolds number Re,
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�
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2

�
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where R0= �Rin�Rout−Rin��1/2 is the length unit.
The detailed description of the equations and the numeri-

cal method used has been given in our earlier paper �5� and
will not be reproduced here. Always no-slip boundary con-
ditions for the velocity on the walls are used. The tangential
electrical currents and the radial component of the magnetic
field vanish on the conducting walls. The magnetic field must
match the external magnetic field for the insulating walls �5�.

There are some indications that the instability originates
as a monotonic instability for the problem in hand. To the
author’s knowledge, the above statement has not been for-
mally proved. Nevertheless, for the sake of simplicity, we
take that �=0 for the marginal stability lines below.

III. RESULTS

Let us demonstrate that the condition �2� permits the sta-
bility for some combination of an unstable rotation and an
unstable magnetic field. Rewriting Eq. �2� in the form
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we immediately see that the ideal flow is in particular stable
if

� = ±
1

��0�

B�

R
. �11�

Let us recall that the angular velocity is the every function of
radius, which fulfills the boundary conditions, for the ideal

flow. So we can always choose � in such a way that �2

increases with radius in some points �and the flow is obvi-
ously stable in these points� and �2 decreases with radius so
strong in another points that the flow is unstable. The flow is
stable only if it is stable at every point. So the flow, which is
stable in some points and unstable in others, is unstable by
the definition. Obviously, the magnetic field, which is de-
fined by Eq. �11�, is stable �unstable� for points where �2

decreases �increases� with radius. Like to rotation, the mag-
netic field, which is stable in some points and unstable in
others, is unstable. Thus we have constructed the stable flow
consisting of the ideally unstable rotation and ideally un-
stable magnetic field. Note, that the main feature of such
combined stability is the stability of one component in the
points where another component is unstable.

For dissipative profiles �5�, we can write a more general
relation
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where
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and Bin is connected with �in by the equality
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Using Eq. �12�, the condition �2� takes the form

4�2 − 2RC
d�

dR
� 0. �15�

According to the conditions �1� and �2�, the rotation and the
magnetic field, which are defined by Eq. �5�, are unstable if
�4–6�

�̂� � 
̂2, and �̂B � 0 or �̂B �
1


̂
. �16�

For unstable rotation d� /dR�0 and the condition �15� takes
the form


̂�̂B − �̂�

1 − �̂B
̂
� 2�2��inR

d�

dR
�−1

. �17�

The right-hand part maximum equals −�̂� for �̂��0 and
equals 0 for �̂��0. Using these maximum values, it is easy
to show that the condition �17� is fulfilled for the unstable
rotation and the unstable magnetic field �see Eq. �16�� if

�̂� � 0, �̂B � 0, and 
̂��̂B�  ��̂�� . �18�

The flow is neutrally stable for 
̂��̂B�= ��̂��.
To check the presence of stabilization for dissipative flow,

we have made the numerical calculations for �̂�=−0.5 and

̂=0.5. The insulating boundary conditions were used. Note
that the axisymmetric mode is the most unstable one for
chosen �̂� and 
̂ without the magnetic field �7�. The mar-
ginal stability lines are presented in Fig. 1. These lines do not
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depend on Pm �5�. The stability region extends to infinitely
large Reynolds and Hartmann numbers for combinations of
unstable rotation and unstable magnetic field which fulfill the
condition �18� �see left panel in Fig. 1� and restricts only
finite Reynolds and Hartmann numbers for combinations of
unstable rotation and unstable magnetic field which violates
the last condition �18� �see right panel in Fig. 1 and �5,6��.

Figure 2 demonstrates that the stability region locates
nearby to the line

Re =
�1 − 
̂2�1/2


̂1/2

1 − �̂B
̂

1 − �̂�

Ha. �19�

The relation �19� is exactly the relation �14� for ideal fluid
which is expressed through dimensionless numbers �9� with
Pm=1. The magnetic Prandtl number should be really taken
as unity in a transition from dissipative to ideal flow when
the viscosity and the magnetic diffusivity go to zero but their
ratio is equal to unity. The dissipative effects lead to the flow
stability not only exactly on the ideal stability line �19� but in
some line’s vicinity also.

IV. CONCLUSION

We have demonstrated that a combination of an unstable
rotation and an unstable azimuthal magnetic field can gener-

ate a stable Taylor-Couette flow. The stabilization can take
place only if both the rotation profile and the magnetic field
profile are partly unstable. The profile is called partly un-
stable if the stability condition fulfills in some profile’s
points and violates in another profile’s points. Then, the un-
stable parts of one component can be stabilized by the stable
parts of another component and vice versa.

For ideal flow the combination of the unstable rotation
and the unstable magnetic field can become stable only for
some particular value of the magnetic field for a given angu-
lar velocity value. For dissipative flow the stability takes
place in some vicinity of the ideal flow stability �see Fig. 2�
due to the dissipative effects. Moreover, for dissipative flow
the combination of an unstable rotation and an unstable azi-
muthal magnetic field can become stable only if both the
angular velocity and the azimuthal magnetic field change the
sign and �̂B is smaller by absolute value than �̂� �see Eq.
�18��.
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FIG. 1. The marginal stability lines for insulating cylinders with

̂=0.5 and �̂�=−0.5. On the left panel �̂B=−1 �solid lines� and
−0.5 �dashed lines�. The lines are labeled by the �̂B values on the
right panel. The flow is stable between the lines �left� and below the
lines �right�.

FIG. 2. The marginal stability lines for dissipative fluid �solid�
and the ideal stability line according to Eq. �19� for insulating cyl-
inders with 
̂=0.5, �̂�=−0.5, and �̂B=−0.5 �left� and �̂B=−1
�right�.
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