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We previously studied the inner crust and the pasta mantle of a neutron star within the fourth-order extended
Thomas-Fermi (ETF) approach with consistent proton shell corrections added perturbatively via the Strutinsky
integral (SI) theorem together with the contribution due to pairing. To speed up the computations and avoid
numerical problems, we adopted parametrized nucleon density distributions. However, the errors incurred by the
choice of the parametrization are expected to become more significant as the mean baryon number density is
increased, especially in the pasta mantle where the differences in the energy per nucleon of the different phases
are very small, typically a few keV. To improve the description of these exotic structures, we discuss the important
features that a nuclear profile should fulfill and introduce two new parametrizations. Performing calculations
using the BSk24 functional, we find that these parametrizations lead to lower ETF energy solutions for all
pasta phases than the parametrization we adopted before and more accurately reproduce the exact equilibrium
nucleon density distributions obtained from unconstrained variational calculations. Within the ETFSI method,
all parametrizations predict the same composition in the region with quasispherical clusters. However, the two
new parametrizations lead to a different mantle structure at mean baryon densities above about 0.07 fm−3, at
which point lasagna is energetically favored. Interestingly, spherical clusters reappear in the pasta region. The
inverted pasta phases such as bucatini and Swiss cheese are still found in the densest region above the core in all
cases.
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I. INTRODUCTION

After its birth in a gravitational core-collapse supernova ex-
plosion, a neutron star (NS) rapidly cools down. After several
weeks [1], the region with mean baryon number densities n̄
below about half-saturation density n0 crystallizes. This solid
crust consists of a crystal lattice of spherical or quasispherical
neutron-rich nuclei embedded in a relativistic electron gas
coexisting with free neutrons in its inner part. The core of
the star remains a homogeneous liquid made of nucleons and
leptons, and possibly other particles in the densest part (see,
e.g., Ref. [2] for a recent review). At the interface between the
crust and the core, peculiar structures collectively referred to
as nuclear pasta could emerge [3,4]. The existence of such a
mantle would affect neutrino emission (see, e.g., Refs. [5,6]),
electron transport important for thermal and electrical conduc-
tivities (see, e.g., Refs. [7,8]), bulk viscosity [9], and elastic
properties [10–13] of dense matter. This nuclear-pasta mantle
could therefore be relevant to various NS phenomena.

This paper is a continuation of our recent work on the
structure of the nuclear-pasta mantle [14–16], in which we
extended a semimicroscopic treatment originally developed
for ordinary nuclei [17] and later adapted to the inner crust
of a NS [18–22]. Our framework is based on the ETFSI
approach, a computationally very fast approximation to the
Hartree-Fock-Bogoliubov (HFB) calculations using semilocal

functionals, such as those constructed from effective interac-
tions of the Skyrme type. It is a two-stage method in which
one first performs extended Thomas-Fermi (ETF) calcula-
tions, followed by the addition of shell effects through the
application of the Strutinsky integral (SI) theorem, and the
inclusion of pairing either via the Bardeen-Cooper-Schrieffer
(BCS) method or the local-density approximation. Both these
corrections are made in a manner consistent with the ETF first
stage.

The ETF method [23–26] gives an approximation to the
kinetic-energy density τq(r) and the spin current Jq(r) in the
functional. It consists in expanding the Bloch density matrix
in powers of h̄ [27,28], thereby enabling τq(r) and Jq(r) to be
expressed as functions entirely of the nucleon densities nq(r)
and their gradients [26] (the highest degree of the derivatives
corresponds to the order of expansion); the fourth-order terms
are necessary for an accurate reproduction of the nuclear
binding energies [29,30]. In this way, the energy becomes a
functional of only the nucleon density distributions, and it
is these, rather than wave functions, that are treated as the
basic variables in a full Euler-Lagrange (EL) minimization
for a given mean baryon number density n̄. It was shown that
the nucleon densities nq(r) that satisfy the EL equations are
smooth functions [31]. Assuming that pasta forms periodic
structures, it is enough to calculate the energy of a single
Wigner-Seitz (WS) cell of the corresponding crystal lattice
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with a given number Z of protons and N of neutrons (Z and N
represent the numbers per unit length in the case of spaghetti
and bucatini, and the numbers per unit area for lasagna). Such
a cell is a truncated octahedron for a body-centered cubic
crystal of quasispherical clusters or bubbles (Swiss cheese), an
infinitely long regular hexagonal prism for a hexagonal lattice
of spaghetti or bucatini, and an infinitely long right prism for
lasagna. The EL equations have to be solved with periodic
boundary conditions, a consequence of which is that the gra-
dient of the nucleon densities along directions perpendicular
to the WS cell faces must vanish [32].

A full EL minimization is challenging, particularly for the
three-dimensional case of quasispherical clusters and bubbles,
and also for the two-dimensional case of spaghetti or bucatini,
since in both cases the EL equations are partial differential
equations. For this reason, the WS cell is generally approx-
imated by more symmetrical cells of equal mean nucleon
densities: a spherically symmetric sphere in the former case
(this approximation was originally introduced by Wigner and
Seitz in the context of electrons in solids [32]), and an axially
symmetric cylinder in the latter case. For lasagna, no approx-
imation is needed, except that we assume it to be invariant
under space inversion, thus ensuring a consistent treatment
of all geometries. Then, the smoothness requirement of the
nucleon distributions together with the periodicity lead to the
boundary conditions

dnq

dξ
(ξ = 0) = dnq

dξ
(ξ = R) = 0, (1)

where ξ is the radial coordinate for the spherical and
cylindrical cells of radius R and the Cartesian coordinate
perpendicular to the plates of half-size R in case of lasagna.

Even though the EL method has been reduced to a
one-dimensional problem, solving the ordinary differential
equations that have replaced the partial differential equa-
tions can still cause significant numerical problems, especially
with the full implementation of the ETF method up to the
fourth order [26]. In all our previous applications of the ETFSI
method, the calculations were greatly simplified and compu-
tationally speeded up by parametrizing the nucleon density
distributions. Without any loss of generality, the nucleon pro-
files can be conveniently expressed as

nq(ξ ; x) = nBq + n�q fq(ξ ; χ). (2)

The parameter set x thus includes the background density nBq

and the parameter n�q that modulates the density excess or
deficit due to the presence of clusters or holes, respectively.
The remaining parameters χ are contained in the smooth
dimensionless function fq(ξ ; χ) describing the spatial inho-
mogeneities. Once the form of this function has been chosen
the parameter set x for the given values of N and Z is deter-
mined by minimizing the total ETF energy per nucleon, which
includes not only the nuclear energy but also the energy of the
neutralizing electron gas and of the Coulomb lattice [14,22].

With the ETF part of the ETFSI calculation completed, mi-
croscopic corrections due to proton shell effects are added, as
described in Ref. [15]. The analogous corrections for neutrons
are expected to be negligible because of the occupation of
(quasi)continuum states [33–35]. For consistency, we drop the

shell correction when the Fermi energy exceeds the value of
the potential at the border of the cell. Here we ignore proton
pairing since its impact was shown to be quite marginal in
the pasta mantle [15,16]. Neutron pairing effects will be the
subject of a future study.

The main concern of this paper is with the choice of a
smooth profile function fq(ξ ; χ). In the original application
of the ETFSI method to finite nuclei (for which nBq = 0), the
simple Fermi-Dirac distribution was adopted [17],

f FD
q (ξ ;Cq, aq ) = 1

1 + exp
( ξ−Cq

aq

) , (3)

where Cq is the half-width nuclear radius and aq accounts for
the diffuseness of the nuclear surface. This form has also been
recently employed for ETFSI calculations of the inner crust of
a NS [36]. However, the parametrization (3) (like the majority
of those employed for ordinary nuclei, e.g., Refs. [37–41])
does not appear to be very well suited in this context since it
does not satisfy the boundary conditions (1). The associated
errors can be significant, especially in the pasta region where
the size of the clusters or holes is comparable to the distance
between them.

For this reason, the following modification was proposed in
Ref. [19] and adopted in all our subsequent studies including
Refs. [14–16]:

f StrD
q (ξ ;Cq, aq ) = 1

1 + exp
[(Cq−R

ξ−R

)2 − 1
]

exp
( ξ−Cq

aq

) . (4)

The additional exponential factor ensures that not only the first
derivative of nq(ξ ; x) vanishes at the border of the cell but in
fact that all derivatives do so. The vanishing of the first three
derivatives makes possible a substantial simplification of the
fourth-order ETF expressions for the energy by integrating by
parts [26,42]. However, the vanishing of all derivatives on the
cell surface leads inevitably to a strong damping with a very
flat tail. Moreover, this profile, like the Fermi profile (3), has
the further defect of a kink at the origin, i.e., a nonzero first
derivative. Evaluating the impact of these limitations in the
parametrization (4) and investigating the necessary improve-
ments constitute the objective of this paper.

In Sec. II A, we introduce two new parametrizations for
the nucleon density distributions and we show in Sec. II B
that they lead to a more accurate description of nuclear pasta
by performing ETF calculations with functional BSk24 [54].
Complete ETFSI calculations with these new profile functions
are presented and discussed in Sec. III. Our conclusions are
given in Sec. IV.

II. OPTIMIZATION OF NUCLEAR PROFILES

A. Choice of profiles

Besides being a smooth function satisfying the boundary
conditions (1), the parametrization should be flexible enough
to describe not only phases with clusters immersed in a more
dilute medium but also inverted phases such as bucatini and
Swiss cheese. The case of lasagna is peculiar in that the
distinction between these two different topologies vanishes:
although a configuration with a hole at the center of the cell
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FIG. 1. Illustration of the identity between the seemingly different lasagna (green solid line) and anti-lasagna (green dash-dotted line)
configurations in the calculation domain (dotted red box). These configurations are actually not physically distinct since the anti-lasagna
profile can be obtained from a space inversion followed by a translation of the lasagna profile. This symmetry leads to the condition (5).

appears as an anti-lasagna, it can be transformed into a lasagna
by a simple translation, as illustrated by the green dash-dotted
line in Fig. 1. In other words, these two seemingly different
configurations are physically identical. To avoid introducing
a spurious distinction between lasagna and anti-lasagna, both
should be describable equally well by the chosen parametriza-
tion. This means that for any given profile nq(ξ ; x), there
should exist a set of parameters x′ such that the inverted profile
nq(R − ξ ; x′) obtained from a space inversion followed by a
translation is also allowed, as shown in Fig. 1:

nq(ξ ; x) = nq(R − ξ ; x′). (5)

This condition guarantees that these lasagna and anti-lasagna
configurations have the same energy. Even though this argu-
ment is not applicable in the case of spheres and cylinders
because of the WS approximation, there are still reasons why
Eq. (5) would be desirable in those cases. Indeed, the con-
dition (5) ensures equal treatment of spheres (spaghetti) and
Swiss cheese (bucatini) since for any profile obtained for the
former, the inverted one will be also allowed for the latter. The
strong damping parametrization does not satisfy this require-
ment, thus leading to an artificial anti-lasagna configuration.
Moreover, it can only describe flat-bottom spheres and flat-top
bubbles, as illustrated in Fig. 2 by the solid green and dashed
blue lines, respectively. But flat-bottom Swiss cheese (cor-
responding to the red dash-dotted line) are not allowed. The
same limitation applies to the spaghetti and bucatini shapes.

To improve the description of pasta and assess the sen-
sitivity of our results with respect to the choice of the
parametrization, we first consider the 3FD parametrization
consisting of a combination of three Fermi-Dirac functions
(3) as follows:

f 3FD
q (ξ ;Cq, aq ) = f FD

q (−ξ ;Cq, aq ) + f FD
q (ξ ;Cq, aq )

+ f FD
q (2R − ξ ;Cq, aq )

− f FD
q (−R;Cq, aq ) − 2 f FD

q (R;Cq, aq ), (6)

where the constant terms are subtracted so that
f 3FD
q (R;Cq, aq ) = 0. Raising the Fermi-Dirac distributions to

the power γ (see, e.g., Refs. [26,41]) does not lead to a sub-

stantial energy reduction in the pasta region (as was also found
in Ref. [43]), therefore we set γ = 1 here. Apart from all the
advantages of the simple Fermi-Dirac form,1 e.g.,
fulfilling the condition (5) with n′

�q = −n�q, a′
q = aq,

C′
q = R − Cq, and n′

Bq = nBq + n�q(3 − f FD
q (−R;Cq, aq ) −

1Actually, the results obtained within the fourth-order ETF method
for FD and 3FD parametrizations are almost indistinguishable at
mean baryon densities below n̄ ≈ 0.05 fm−3. However, the FD
parametrization becomes numerically unstable at higher densities
due to increasingly large values of the derivatives of nq at the surface
of the integration volume. Incidentally, we check that our results
within the second-order ETF method with the 3FD parametrization
using the SLy4 functional [44] are in reasonable agreement with
those of Ref. [43].

FIG. 2. Schematic picture illustrating possible nucleon distribu-
tions inside the WS cell using the StrD parametrization (2) and (4):
flat-bottom spheres (green solid line) and flat-top Swiss cheese (blue
dashed line). The flat-bottom Swiss cheese profile (red dash-dotted
line) obtained from the inversion of spheres cannot be described by
this parametrization (see text for discussion).
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FIG. 3. (Top panels and bottom left panel) Energy per nucleon of different pasta phases minus the energy per nucleon of spheres within the
ETF approach versus the mean baryon density for the three adopted parametrizations of the nucleon profiles. Orange dashed lines correspond
to spaghetti, solid yellow to lasagna, navy dash-dotted to bucatini, brown dotted to Swiss cheese, and solid pink to uniform npe matter. The
equilibrium shape is illustrated by the bars at the bottom of the panels with the same color coding. (Bottom right panel) The energy difference
between the two new profiles and StrD [19] for various pasta shapes. Solid green lines are added for spheres. The thin lines represent the 3FD
profile and the thick ones are for the SoftD, while colors and line styles are the same as in the two top panels and bottom left one.

2 f FD
q (R;Cq, aq ) − f FD

q (−R;C′
q, a′

q ) − 2 f FD
q (R;C′

q, a′
q )), the

additional merit is that this parametrization is smoother
although the first derivatives at ξ = 0 and ξ = R are still not
strictly zero.2

On the other hand the satisfaction of the boundary con-
dition (1) can be exactly achieved by generalizing the
strong-damping expression (4) to

fq(ξ ;Cq, aq ) = 1

1 + h(ξ ;Cq, aq ) exp
( ξ−Cq

aq

) , (7)

in which the function h(ξ ;Cq, aq ) ensures the fulfillment of
the conditions (1). Moreover, if the function is such that

h(ξ ;Cq, aq ) = 1

h(R − ξ ; R − Cq, aq )
, (8)

it follows that the constraint (5) can be easily satisfied with
n′

�q = −n�q, n′
Bq = nBq + n�q, a′

q = aq, and C′
q = R − Cq.

The simplest function h(ξ ;Cq, aq ) that we have found obeying

2Complementing the 3FD parametrization with two additional
Fermi-Dirac functions (suppressing the derivatives even more) does
not change the results.

these requirements is

h(ξ ;Cq, aq ) =
(

Cq − R

Cq

)2(
ξ

ξ − R

)2

. (9)

Only the first derivative of this new profile, which we will
refer to as SoftD below, vanishes on the cell surface. This
SoftD profile therefore allows for a softer damping than the
StrD profile (4).

B. Results of ETF minimization

To optimize the minimization of the ETF energy, we start
the calculations in the shallowest layers of the inner crust con-
taining quasispherical nuclei for which fairly accurate initial
guesses for the parameters of the profiles can be set: Cq ≈ 6
fm, aq ≈ 0.5 fm, n�n ≈ N/( 4

3πC3
n ), and n�p ≈ Z/( 4

3πC3
p ).

The final values are then taken as initial guesses for the deeper
neighboring layer. The process is repeated until the crust-core
boundary is reached. We have checked the robustness of our
results by varying the initial guesses at different densities. It
is important to scan regions of parameter space large enough
to ensure that our minima are true minima minimora, and not
just local minima.

We now compare the results obtained with the three profile
parametrizations. The StrD profile (4), which we implemented
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FIG. 4. Equilibrium nucleon density profiles for three parametrizations at n̄ = 0.074 fm−3. Green shading corresponds to SoftD, pink for
3FD, and orange for StrD. Proton distributions are plotted with darker colors than neutrons.

in our previous works and, as was mentioned earlier, involves
an integrated version of the fourth-order ETF method [26,42],
is used as a reference. In addition, we consider the two new
profiles 3FD (6) and SoftD (7), (9) for which we use full
ETF expressions for τq(r) and Jq(r) given in Refs. [24,25,45],
since only the first derivatives at ξ = 0 and ξ = R vanish.
In this case, the only price to pay is a slight increase in the
computational time.

Since the ETF approach is completely variational, it is this
method that should serve as a basis for choosing the optimal
parametrization. To this end, we minimize the energy per
nucleon for each of the three parametrizations considering the
five different phases: spheres, spaghetti, bucatini, lasagna, and
Swiss cheese. Figure 3 shows the corresponding energy per
nucleon with the energy for spheres subtracted. The corre-
sponding equilibrium pasta configurations are indicated by the
color bar at the bottom of each panel. The results for the StrD
are identical to the ones presented in Ref. [16]. The most re-
markable difference obtained with the two new profiles is the
reappearance of lasagna between the spaghetti and bucatini
phases. The onset of the pasta phases is slightly shifted from
n̄sp ≈ 0.05 fm−3 for StrD to n̄sp ≈ 0.052 fm−3– 0.053 fm−3

for the two new profiles. The crust-core transition density is
barely affected, being n̄cc ≈ 0.082 fm−3. It corresponds to the
point for which the energy of the densest pasta phase, namely
the Swiss cheese for all profiles, is equal to the energy of
uniform npe matter (characterized by n�q = 0). Within the
same nuclear functional, the compressible liquid drop model
can yield a similar pasta sequence, but only if the curvature
correction is included [46,47].

To better understand these results, we demonstrate in the
bottom right panel of Fig. 3 the energy per nucleon of each
phase obtained with the two new parametrizations after sub-
tracting out the energy per nucleon for StrD. It is clear that

in all cases the new parametrizations yield lower energies.
In general, SoftD performs slightly better than 3FD for the
clusterized phases, while 3FD is preferred for the inverted
phases. The energy differences amount to a maximum of
about ≈ 2 – 3 keV per nucleon for spheres and spaghetti and
is reached near n̄ ≈ 0.074 fm−3. For the inverted phases at
the relevant densities, the energy reduction with the new
parametrizations does not exceed ≈1 keV per nucleon. The
largest deviations of order � 4–5 keV per nucleon are found
in the lasagna phase and are enough to change the sequence
of pasta.

As an illustrative example, we plot in Fig. 4 the equilibrium
nucleon distributions in the WS cell at n̄ = 0.074 fm−3 for the
three different parametrizations. The two new SoftD and 3FD
profiles vary more smoothly than StrD and lead to smaller
cells. The difference is again more prominent for the lasagna
phase, complementing the conclusions of Fig. 3. In addition,
we show in Appendix A that the two new profiles (unlike
StrD) are flexible enough to reproduce the EL solutions in
the TF approximation obtained in Ref. [48]. This suggests that
3FD and SoftD distributions lie very close to the exact profiles
and are preferred to the StrD.

III. RESULTS OF FULL ETFSI CALCULATIONS

At the next step following the approach of Refs. [15,16],
we add the SI corrections on top of the ETF energy per
nucleon for each of the three profile parametrizations StrD,
3FD, and SoftD. In the low-density layers of the inner crust,
clusters are quasispherical and sufficiently far apart so that
the differences in the profiles at the ETF level turn out to
be insignificant (see also Fig. 3). Moreover, the proton shell
effects are more pronounced leading to deeper local minima
in the ETFSI energy per nucleon. Consequently, all the profile
parametrizations predict the same composition.
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FIG. 5. ETFSI and ETF energy per nucleon for different pasta phases minus the ETF energy per nucleon for spheres versus mean baryon
density for the three considered profile parametrizations. The ETFSI results for spheres (solid green circles) and lasagna (solid yellow squares)
are supplemented with ETF results (the same as in Fig. 3) beyond proton drip for the corresponding phase. For spaghetti, all configurations
shown (solid pluses, ETFSI; dashed lines, ETF) are beyond proton drip (see text for details). For completeness, the ETF energies per nucleon
for bucatini and Swiss cheese and the results for the homogeneous nuclear matter are plotted (see also Fig. 3). Color bars at the bottom indicate
the equilibrium phases.

However, in the deeper region of the pasta mantle at den-
sities above ≈ 0.06 fm−3, the choice of the parametrization
matters. In Fig. 5, we display the ETFSI results over the
whole density range of pasta phases for the three adopted
parametrizations. As found earlier in Refs. [15,16], the
spaghetti phase predicted at the ETF level totally disappears
when the SI correction is added for all three parametriza-
tions (only the configurations with dripped protons appear
in the scale of Fig. 5 beyond n̄ ≈ 0.067 fm−3). As a con-
sequence, the spherical clusters remain present at higher
densities thus shrinking the pasta mantle substantially. In
contrast to the StrD, the SoftD and the 3FD parametriza-
tions lead to the presence of lasagna in the density range
n̄sp ≈ 0.07 fm−3 – 0.08 fm−3. Interestingly, this layer occurs

to be interspersed by spheres around n̄ ≈ 0.075 fm−3. The
existence of the same pasta phases in different regions of a
NS was previously discussed in Ref. [49]. Beyond n̄drip ≈
0.078 fm−3, some protons become unbound for all considered
shapes, and since we then drop the SI corrections, the pres-
ence of bucatini and Swiss cheese as well as the crust-core
transition are unaffected. As shown in Fig. 5, the total ETFSI
results for the two new parametrizations are quite the same.

To analyze in more detail the role of the initial ETF
parametrizations, we fix the density to n̄ = 0.065 fm−3 and
plot the energies per particle as a function of Z in Fig. 6. For
spheres, a typical shell structure is found for all parametriza-
tions with a sharp minimum at Z = 40. In the case of spaghetti

FIG. 6. ETF (dashed lines) and ETFSI (solid lines) energies per nucleon versus proton number for spheres, proton number per unit length
for spaghetti, and proton number per unit area for lasagna at baryon density n̄ = 0.065 fm−3. Three different parametrizations of the nucleon
density distributions were considered: 3FD (blue lines), SoftD (red lines), StrD (black lines).
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FIG. 7. Proton density distributions profiles, as obtained within the ETFSI (solid lines) or ETF (dashed lines) method, for spheres, spaghetti,
and lasagna at n̄ = 0.065 fm−3. Red lines correspond to SoftD, blue for 3FD, and black for StrD. Each profile is plotted for its own optimum
Z value (see Fig. 6).

and lasagna, the energy per nucleon also exhibits some smooth
fluctuations with Z associated with the filling of levels (see
also Ref. [33]). In Ref. [15], the interval of the Z considered
was too small to reveal these fluctuations. The SI correction
for spaghetti leads to a substantial reduction of Z by more
than a factor of 2, from Zeq ≈ 1.4 fm−1 to Zeq ≈ 0.6 fm−1.
For such small values of Zeq, the SI correction is reduced but
at the cost of increasing the ETF energy. The end result is
that the ETFSI energy per nucleon is larger than for spheres
and lasagna (note the different scales in Fig. 6) leading to the
vanishing of spaghetti. As discussed in Appendix B, this can
be understood from the different filling of energy levels.

Comparing the results obtained for the three different
parametrizations, the StrD is found to yield the highest ETFSI
energy per nucleon for all phases. As discussed before, the en-
ergy reduction with the new parametrizations has the biggest
impact on the lasagna phase. The SoftD and 3FD lead to
remarkably close predictions. Notably, it can also be seen
that differences in the energy per nucleon among the three
parametrizations tend to be reduced when the SI correction is
added. Nevertheless, differences still exist, especially between
the StrD and the two new parametrizations. This is due to
the perturbative nature of the corrections. These results are
also reflected in the proton density distributions plotted in
Fig. 7. There the parametrized ETF profiles are compared to
those calculated in the ETFSI approach (for the corresponding
optimal Z value that is different from that in the ETF calcula-
tion) by summing the occupied single-particle wave functions
obtained from the solutions of the HF equations with the
ETF mean fields. The effect of the SI corrections is the most
significant for spaghetti and can be traced back to the drop of
Z . For spheres, the ETFSI treatment induces quantum fluctu-
ations inside the cluster. For lasagna, the initial parametrized
profiles can already be considered as a fairly good approxi-
mation to the ETFSI profiles (see also Appendix A for further
comparisons).

IV. CONCLUSIONS

We have determined the structure of the deepest layers of
the inner crust and of the pasta mantle of a NS within the
ETFSI approach, investigating the role of the parametrization

of the nucleon distributions. To this end, we have formulated
the requirements that the profiles should satisfy. (i) The first
derivatives should vanish at the center and at the border of the
WS cell, as expressed in Eq. (1). (ii) The profile should satisfy
Eq. (5) to avoid introducing an artificial distinction between
lasagna and anti-lasagna. (iii) The parametrization should be
flexible enough to reproduce as closely as possible the exact
profiles obtained from the solutions of the EL equations. We
have shown that the various parametrizations employed for
isolated nuclei (in vacuum) [26,37–41] and even the ones
specifically developed for the inner crust (including ours)
[19,22,43,50–53] have several drawbacks limiting their reli-
ability, especially in the pasta layers. For this reason, we have
introduced the parametrizations SoftD and 3FD [see Eqs. (2),
(7), (9), and (6)], fulfilling the aforementioned requirements.

First, we have compared at the ETF level these two new
parametrizations with the StrD parametrization we proposed
in Ref. [19]. For numerical calculations, we have applied
the generalized Skyrme functional BSk24 [54] as in our re-
cent series of works [14–16,22]. We have found that the
Soft and 3FD parametrizations yield lower energies for all
pasta phases, notably for lasagna. This shows that the new
parametrizations are more realistic, leading to configurations
that are more stable and therefore closer to the exact EL
solutions. The obtained energy reductions are substantial to
alter the equilibrium structure of the pasta mantle. Namely,
in contrast to the StrD parametrization, the SoftD and 3FD
parametrizations lead to the same traditional sequence of pasta
with increasing density, as predicted by most compressible
liquid drop models: spheres, spaghetti, lasagna, bucatini, and
Swiss cheese.

When including the SI corrections, all three parametriza-
tions agree in their predictions up to the point where pasta
appears, at densities n̄sp ≈ 0.07 fm−3. This transition density
is significantly increased compared to the ETF results. This
is caused by the vanishing of spaghetti as we previously
found in Refs. [15,16] using the StrD parametrization. This
stems from the fact that the SI correction is large and posi-
tive, which in turn arises because of a comparatively larger
number of protons occupying the most loosely bound levels
(see Fig. 9). Despite the tendency of the SI correction to
compensate the differences in the ETF energy from initially
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parametrized profiles, the StrD results differ from the two new
parametrizations at densities above n̄sp ≈ 0.07 fm−3. In this
region, both the SoftD and 3FD parametrizations predict
lasagna to be present, which is, surprisingly, interspersed
among spherical clusters. In all cases, the densest layers of
the pasta mantle consist of inverted phases, namely bucatini
and Swiss cheese, and the transition to the homogeneous
core occurs at n̄cc ≈ 0.082 fm−3. The end result is that the
pasta mantle calculated with the two new parametrizations
has a more complicated structure and extends over a slightly
wider range of densities than obtained with the StrD, though
considerably reduced compared to ETF results. All in all, the
new proposed nuclear profile parametrizations yield similar
results, predicting a pasta mantle structure closer to the true
equilibrium. These parametrizations are therefore more real-
istic and better suited for investigating the role of different
nuclear functionals in the formation of nuclear pasta.
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APPENDIX A: FLEXIBILITY OF THE PROFILE
PARAMETRIZATIONS

Here we provide a simple test of the flexibility of the differ-
ent parametrizations by trying to fit directly the parameters to
realistic nuclear profiles in the NS mantle [without performing
the ETF(SI) minimization]. For this purpose, we have taken
the nucleon density distributions obtained in Ref. [48] from
the solution of the EL equations within the TF approximation

at different mean baryon densities. We also include in the
analysis the profiles from self-consistent HF calculations of
the lasagna phase for the fixed proton fraction Yp = 0.1 and
n̄ = 0.04 fm−3 [55]. For the sake of completeness, in addition
to the parametrizations StrD, 3FD, and SoftD, we have con-
sidered the parametrization widely applied for TF calculations
[50–52,57]

f PW
q (ξ ;Cq, aq ) =

{[
1 − (

ξ

Cq

)aq
]3

, r < Cq,

0, r � Cq.
(A1)

Although the form (A1) satisfies the boundary conditions (1),
it leads to divergences for the fourth-order ETF energy. It is
also clear that the condition (5) cannot be fulfilled for Cq < R.

In practice, we have fixed for each parametrization the
background density and the radius of the clusters from the
data and freely adjusted the remaining parameters Cq, aq,
and n�q. The resulting fits are presented in Fig. 8. The two
new parametrizations 3FD and SoftD are able to accurately
reproduce the equilibrium nucleon density distributions of
Refs. [48] (although we show only the results for spherical
clusters, the fits are equally good for other nuclear shapes) and
[55]. The agreement is less satisfactory for the parametrization
(A1), for which the variations of the neutron densities appear
too sharp, especially at low densities n̄ (see also Ref. [56]). Al-
though the StrD parametrization reproduces equally well the
profiles for spherical clusters at low densities, the quality of
the fit deteriorates with increasing density. This parametriza-
tion fails to properly describe the diffuse nuclear surface and
the nuclear distributions near the border of the WS cell: im-
posing the vanishing of all the derivatives at ξ = R appears
too restrictive.

These comparisons show that the two new parametrizations
SoftD and 3FD are very well suited for describing nuclear
pasta. The good fits to the self-consistent HF calculations of
Ref. [55] suggest that a fairly accurate description of lasagna
could be already achieved at the ETF level.

FIG. 8. (Left panel) Nucleon density distributions for spherical clusters at mean baryon density n̄ = 0.0475 fm−3. The results of Ref. [48]
are represented by crosses, while the curves correspond to fits obtained with different parametrizations: PW (blue), StrD (orange), 3FD (pink),
and SoftD (green). (Middle panel) The same but for n̄ = 0.076 fm−3. (Right panel) The nucleon density distributions for the lasagna phase at
n̄ = 0.04 fm−3 with Yp = 0.1. Crosses are results from Ref. [55].
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APPENDIX B: VANISHING OF SPAGHETTI

The striking conclusion of Ref. [15] was the complete
vanishing of spaghetti within the ETFSI approach, a result
confirmed here using new parametrizations of the nuclear
profiles. To better understand this rather unexpected feature,
we analyze more closely the role of the SI correction, focusing
on the density n̄ = 0.065 fm−3, for which spaghetti dominates
over spheres and lasagna at the ETF level. We consider here
only the SoftD parametrization. For each pasta shape, we
now fix Z to the optimum value obtained within the ETF
approach. The proton density distributions obtained at the
ETF and ETFSI levels are plotted in Fig. 9. For spheres and
lasagna, results are essentially the same as in Fig. 7 since the
optimum Z values are hardly altered by the SI corrections. For
spaghetti, however, the proton density distribution obtained at
the ETFSI level is significantly different than the one shown in
Fig. 7 due to the drop in Z there. In particular, the distribution
exhibits a bump resembling the one found in the HF + BCS
calculations of Ref. [51]. Such kind of profiles reflect the
peculiarities of the single-particle wave functions of occupied
proton states, which in turn are determined by the shape of
the mean-field potentials. As shown in the bottom panels of
Fig. 9, the potential for spaghetti is as deep as for spheres but
significantly narrower although wider than for lasagna. This
can be easily understood if we imagine the transformation of
a spherical cluster into spaghetti or lasagna by stretching it and
keeping the cell volume fixed and without changing the num-
ber of neutrons and protons (for a given mean baryon number
density n̄, the proton fraction is essentially determined by bulk

properties, namely the symmetry energy, independently of the
nuclear shape).

The occupied proton states are illustrated in Fig. 9. For
spherical clusters, the energy of each level is discrete and can
accommodate 2(2� + 1) particles, where � is the orbital quan-
tum number (the factor of two accounts for the two possible
spin projections recalling that we neglect the spin-orbit cou-
pling). The situation is different for spaghetti and lasagna. The
energy levels characterized by the set of quantum numbers ν

can be written as [15]

εν = eμ + h̄2k2
z

2mp
for spaghetti, (B1)

εν = eμ + h̄2k2
⊥

2mp
for lasagna, (B2)

where kz = πn/L and k⊥ = π
√

n2 + m2/L are the wave num-
bers associated with motion along the spaghetti and in the
plane of lasagna, respectively (n and m are integers and L is
the size of the pasta). In both cases, eμ can only take discrete
values (μ represents the principal quantum number). But the
energies in between are now also allowed so that the Fermi
energy εF lies above the last occupied state μ. More particles
can fill in the interlevel spacing for lasagna than for spaghetti
due to the degeneracy with the direction of motion [see also
(B1)–(B2)]. This situation is illustrated in Fig. 9. Although
the total number of protons in each phase is the same and
is approximately 42 (the length of spaghetti and the area

FIG. 9. (Top panels) Proton density distributions, as obtained within the ETFSI (filled area) or ETF (dashed lines) method, for spheres,
spaghetti, and lasagna at n̄ = 0.065 fm−3. (Bottom panels) The central (dashed navy lines) and total (solid green) proton mean-field potential
are constructed from the ETF profiles. The energy levels are shown by red lines and the Fermi energy by black dotted lines. For spheres, the
appropriate number of particles on each level is placed. For spaghetti and lasagna, as energy between the levels is filled by continuum states,
the nominal number of particles between levels is shown. See text for details.
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of lasagna was set so as to obtain the same volume as for
spheres), they populate only two discrete levels for lasagna,
six for spaghetti and seven for spheres. On the other hand, the
narrower potential for spaghetti and lasagna tends to shift the
energy levels to higher values than for spheres. The relative
importance of the SI correction arises from the competition
between these two effects. Spaghetti is found to have the
largest number of protons on the most loosely bound levels
resulting in a substantially larger SI correction of 38.2 keV
per nucleon compared to 1.4 keV per nucleon for spheres and
lasagna (note that in all cases these corrections still remain

very small compared to the total ETF energy per nucleon, less
than 0.5%).

In other words, the large SI correction for spaghetti stems
from the quantum mechanical necessity of fitting the bound
protons inside the potential, whose shape is constrained by
the minimization of the ETF energy at given mean baryon
density n̄. This analysis also suggests that the ETF approach
could lead to spurious inhomogeneous configurations, which
would vanish in a fully quantum mechanical treatment if the
associated potential is too narrow or too shallow to contain
bound energy levels [58].
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