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We study plasma effects on radiative transitions (e.g., decay of excited states of atoms or atomic nuclei)

in a dense plasma at the transition frequencies ! & !p (where !p is the electron plasma frequency). The

decay goes through four channels—the emission of real transverse and longitudinal plasmons as well as

the emission of virtual transverse and longitudinal plasmons with subsequent absorption of such plasmons

by the plasma. The emission of real plasmons dies out at ! � !p, but the processes with virtual plasmons

strongly enhance the radiative decay. Applications of these results to radiative processes in white dwarf

cores and neutron star envelopes are discussed.
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I. INTRODUCTION

Radiative processes in stars are very important. First of
all, they determine heat transport in radiative zones of the
stars [1], as well as the radiative transfer and structure of
stellar atmospheres together with the formation of spectra
of stellar radiation [2,3]. In ordinary stars (at the main
sequence or around) typical radiation frequencies are
much higher than the electron plasma frequency !p of

stellar matter. As a result, plasma effects do not affect
strongly radiative processes.

However, in a dense matter of compact stars (white
dwarfs and neutron stars) the plasma frequency can be
higher or comparable to characteristic radiation transition
frequencies !, and the plasma effects cannot be ignored.
For instance, in a strongly degenerate nonrelativistic elec-
tron gas at a density of 103 g cm�3 (that is typical for
degenerate cores of white dwarfs and outer envelopes of
neutron stars) one has @!p � 0:6 keV. In this example the

plasma effects can easily affect radiative transitions in
atoms and ions. In the inner crust of a neutron star at a
density of 1012 g cm�3, where the degenerate electrons are
ultrarelativistic, the plasma frequency becomes very large,
@!p � 3 MeV (depending on the composition of the crust;

e.g., Ref. [4]; also see Sec. VI). This is large enough to
influence radiative transitions in atomic nuclei.

The importance of plasma effects for radiative processes
in dense stellar matter has been mentioned in the literature
(e.g., Ref. [5]). In particular, the plasma effects on the
radiative thermal conductivity have been studied in
Refs. [6,7] but these studies are not fully complete
(Sec. VI). For another example, consider an emitter (an
ion or atomic nucleus) in an excited state with the transi-
tion frequency ! to the ground state that is lower than !p.

What will happen with this emitter taking into account that
radiative transitions with the emission of any electromag-
netic quanta are now forbidden? Will it live at the excited
level forever?

These questions can be answered using the available
theory of electromagnetic transitions in a plasma. The
plasma impact on electromagnetic transitions in an non-
relativistic laboratory plasma and a rarefied nonrelativistic
cosmic plasma has been studied for a long time (e.g.,
Refs. [8,9]). The plasma effects can modify the emission
of electromagnetic quanta [9]. Moreover, collective plasma
processes open another electromagnetic transition chan-
nel—the emission of virtual plasmons and successive ab-
sorption of these plasmons by the plasma [8,10]. The most
pronounced of these effects seems to be collisional broad-
ening of energy levels of atoms and ions and associated
broadening of spectral lines. It can be important in cosmic
and laboratory plasmas [10].
To the best of our knowledge, the theory of radiative

transitions in a plasma (e.g., Refs. [8,10]) has been cor-
rectly applied only to study nondegenerate laboratory and
cosmic plasmas. In this paper we investigate the radiative
transitions in a dense degenerate relativistic electron gas,
particularly at !<!p. The paper is organized as follows.

In Sec. II we outline the formalism for calculating electro-
magnetic transitions rates in a dense plasma. It is similar to
the formalism of stopping power for a charged particle
moving in a plasma [11]. In Sec. III we outline the main
properties of a degenerate electron plasma. Section IV is
devoted to the radiative decay in the plasma for those
transitions that are allowed in the electric dipole approxi-
mation. In Sec. V we address similar problem for the
electric quadrupole and magnetic dipole transitions. In
Sec. VI we discuss the main results and some applications,
particularly, for calculating radiative thermal conductivity
in white dwarf cores and neutron star envelopes and for
studying radiative decay of excited states of atomic nuclei
and kinetics of neutrons in the neutron star crust. We
conclude in Sec. VII.

II. FOUR RADIATIVE TRANSITION CHANNELS

Let us consider an external emitter (for instance, an atom
or atomic nucleus) immersed in a plasma. The plasma is*pshternin@gmail.com
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assumed to be uniform and isotropic; it is characterized by
the longitudinal and transverse dielectric functions "lð!; kÞ
and "trð!; kÞ, respectively. We are interested in the tran-
sition rate wi!f [s

�1] at zero-temperature (T ¼ 0) from an

upper state i to a lower state f whose energy separation is
@!. The expression for wi!f can be written as [10]

wi!f ¼ � e2

�2
@
=
Z 1

0
dk

Z
ð4�Þ

d�k

�jjfiðkÞ � kj2
!2"lð!; kÞ

þ jjfiðkÞ � kj2
!2"trð!; kÞ � k2c2

�
: (1)

Any elementary transition (characterized by the given
energy loss @!) is accompanied by the transfer of an
elementary excitation with a wave vector k to a plasma
coupled to electromagnetic field. The integration is per-
formed over all allowed values of k (with k ¼ jkj, and d�k

being a solid angle element in the direction of k).
Furthermore,

j fiðkÞ ¼
Z

dVjfiðrÞ expð�ikrÞ (2)

is the Fourier transform of the local transition current jfiðrÞ
[12]. The latter current can be calculated from relativistic
theory with stationary (relativistic) wave functions of the
emitter in the i and f states. The transition rate (1) is
cumulative. It includes contributions of transition channels
with different k and different structures of plasma-
electromagnetic field excitations. Particularly, it intrinsi-
cally contains a sum over polarizations of emitted plas-
mons (see below). It neglects the contribution of two- and
multiple-plasmon processes which is expected to be small
in the cumulative rate.

The dielectric functions (with spatial dispersion) in
Eq. (1) take into account the plasma effects on the tran-
sition rate [8,10]. In particular, Eq. (1) includes the con-
tribution of direct interaction of the emitter with plasma
electrons.

The transition rate (1) can be decomposed as (Table I)

wi!f ¼ wl
i!f þ wtr

i!f ¼ wAl
i!f þ wBl

i!f þ wAtr
i!f þ wBtr

i!f:

(3)

Here, wl
i!f and wtr

i!f correspond to the longitudinal and

transverse channels [the terms in (1) containing "lð!; kÞ
and "trð!; kÞ, respectively]. Each of these terms, in turn,
contains two contributions—(A) the emission of a real

longitudinal (Al) or transverse (Atr) plasmon and (B) the
emission and absorption of a virtual longitudinal (Bl) or
transverse (Btr) plasmon. Not all of the four channels can
be opened at once (see below).
The emission of real plasmons (channels Al and Atr) is

allowed in the presence of the poles in the denominators of
Eq. (1), that is at

"lð!; kÞ ¼ 0; !2"trð!; kÞ ¼ k2c2: (4)

The roots of these equations give the plasmon dispersion
relations klð!Þ and ktrð!Þ for longitudinal and transverse
plasmons, respectively. The emission rates for real longi-
tudinal and transverse plasmons are then given by the
standard expressions [9]

wAl
i!f ¼ e2

�@!2

Z
ð4�Þ

d�kjjfiðkÞ � kj2
��������@"lð!; kÞ

@k

���������1

k¼klð!Þ
;

(5)

wAtr
i!f ¼ e2

�@

Z
ð4�Þ

d�kjjfiðkÞ � kj2

�
��������@½!

2"trð!; kÞ � k2c2�
@k

���������1

k¼ktrð!Þ
: (6)

In principle, there can be several poles for one !; then one
should sum over the poles in these equations.
The processes Bl and Btr in Eq. (1) involve virtual

plasmons. These processes are allowed if the dielectric
functions have imaginary parts for some values of k at a
given !. Nonvanishing imaginary parts of dielectric func-
tions ensure that the plasma can directly absorb electro-
magnetic fluctuations induced by the emitter. From Eq. (1)
one has [10]

wBl
i!f ¼ e2

�2
@!2

Z 1

0
dk

Z
ð4�Þ

d�k

jjfiðkÞ � kj2="lð!; kÞ
j"lð!; kÞj2 ;

(7)

wBtr
i!f ¼

e2!2

�2
@

Z 1

0
dk

Z
ð4�Þ

d�k

jjfiðkÞ � kj2="trð!; kÞ
j!2"trð!; kÞ � k2c2j2 :

(8)

Virtual plasmons do not obey any specific dispersion rela-
tion and can have a wide spectrum of wave numbers k for a
given !. Eqs. (7) and (8) describe the effects which are in
common with collisional broadening of spectral lines (and

TABLE I. Four transition channels in plasma environment.

Channel Plasmon Open at Comment

Atr real transverse !p <! Dominates at ! * !p

Al real longitudinal 0<!�!p & !p

Btr virtual transverse any !
Bl virtual longitudinal any ! Dominates at ! & !p

P. S. SHTERNIN AND D.G. YAKOVLEV PHYSICAL REVIEW D 79, 123004 (2009)

123004-2



associated enhancement of radiative transition rates) in
atomic physics [10].

Equations (5)–(8) can be used to study radiative transi-
tion rates of a relativistic emitter in any uniform and
isotropic dispersive medium (we set T ! 0 and disregard
thus induced transitions).

In vacuum, where "l ¼ "tr � 1, only one channel sur-
vives out of the four. It is Atr—the emission of real
transverse plasmons, and these plasmons become identical
to ordinary photons. Then Eq. (6) reduces to the well-
known expression [12]

wAtr
i!f � wvac

i!f ¼ e2!

2�@c3

Z
ð4�Þ

d�kjjfiðkÞ � k̂j2; (9)

where k̂ ¼ k=k.
Let us stress that the four radiative decay channels and

general expressions for the partial decay rates have been
known long ago (e.g., Refs. [9,10]). However, this formal-
ism has been mostly applied to radiative transitions in a
nondegenerate plasma, where radiation frequencies are
typically much higher than !p. In this case the exchange

of virtual plasmons is usually unimportant, and the authors
focused on the emission of real plasmons that was not
strongly affected by the plasma environment. We will
apply the above formalism to analyze dense stellar matter
with degenerate electrons, where the plasma effects are
pronounced much stronger.

III. PLASMA ENVIRONMENT OF DEGENERATE
ELECTRONS

Let us study plasma effects in a strongly degenerate
(zero temperature) ideal electron gas of any degree of
relativity in the absence of a magnetic field. We will com-
ment on the effects of finite temperature, ion plasma po-
larization and magnetic fields in Sec. VI. We employ the
collisionless dielectric functions "trð!; kÞ and "lð!; kÞ of a
relativistic electron gas at T ¼ 0 derived by Jancovici [13]
in the random phase approximation. We do not present his
cumbersome expressions here (note that they should be
corrected [14] at certain values of! and k) but discuss their
main properties relevant to our study.

The most important quantity is the electron plasma
frequency,

!p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�e2ne=m

	
e

q
; (10)

where ne is the electron number density,m	
e ¼ �e=c

2 is the
effective electron mass on the Fermi surface, �e ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec
4 þ c2p2

F

q
the electron chemical potential (electron

rest-mass energy included), pF ¼ @ð3�2neÞ1=3 being the
electron Fermi momentum. We also introduce the electron
Fermi velocity vF ¼ pF=m

	
e.

The functions "trð!; kÞ and "lð!; kÞ are generally com-
plex. Their real parts describe plasma effects on the propa-

gation of electromagnetic fluctuations, while their
imaginary parts describe dissipation of such fluctuations.
Under typical parameters in dense stellar matter for the
processes of our study (Sec. I), the main source of dissi-
pation is provided by the Cherenkov-type absorption at
! � kvF (e.g., Ref. [11]). At T ¼ 0 the dissipation
switches on abruptly in this domain; it is absent whenever
!> kvF. Thus the integration over k in Eqs. (7) and (8)
can be truncated at k ¼ !=vF. Furthermore, in dense
stellar environment it is reasonable to assume that radiative
transition energies are not too large, @! 
 vFpF, and
@!p 
 vFpF. This smallness of @! and @!p with respect

to typical electron energies greatly simplifies the
consideration.
At !�!p and k 
 !=vF the dissipation effect is

absent, and the dielectric functions take the form

"lð!; kÞ � 1�!2
p

!2

�
1þ 3

5

k2v2
F

!2

�
; (11)

"trð!; kÞ � 1�!2
p=!

2: (12)

From Eqs. (4) and (12) we immediately obtain the
dispersion relation for the transverse waves

!2
tr ¼ !2

p þ c2k2: (13)

This is a good approximation for all k. It corresponds to
two transverse plasma modes with different polarizations,
but the same dispersion relation. The wave frequency
satisfies the inequality!tr > kvF at any k. Therefore, these
waves undergo no collisionless damping. One has !tr !
!p as k ! 0; and!tr � kc as k � !p=c. In the latter case

these waves turn into ordinary photons which are almost
unaffected by the plasma environment.
From Eqs. (4) and (11) one can derive the dispersion

relation for the longitudinal (electron Langmuir) plasma
waves [11],

!2
l ¼ !2

p þ 3

5
v2
Fk

2: (14)

This equation is valid at k 
 !p=vF, when !l is only

slightly higher than !p, and the collisionless damping is

absent. At higher k the dispersion equation must be solved
numerically. The solution shows that at some!l ð�!pÞ the
derivative @"lð!; kÞ=@k becomes very large. This means
that the transition rate wAl

i!f switches off when the transi-

tion frequency ! exceeds some value (a few !p).

It is important that the frequencies of longitudinal and
transverse plasma waves are always higher than !p. This

implies that corresponding transition rates undergo the
plasma frequency cutoff,

wAtr
i!f ¼ wAl

i!f ¼ 0 at ! � !p: (15)

Finally, let us outline absorption properties of degener-
ate electron plasma. For typical conditions in dense stellar
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matter, there are two domains [13] in the ð!; kÞ-plane,
where the imaginary parts of the longitudinal and trans-
verse dielectric functions are nonzero. The first domain is
given by the inequality @!<�� EpF�@k at @k < 2pF; the

second domain is determined by jEpF�@k ��j< @!<

EpFþ@k �� at any k, with Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2 þm2

ec
4

p
. The ana-

lytic expressions for the imaginary parts of the dielectric
functions in these two domains are different. Although we
have used exact expressions in computations, we notice
that in the ultrarelativistic gas it is sufficient to consider the
only one domain !=vF & k & 2pF=@, where, to a good
approximation,

="l ¼
3�!2

p

2!2x3

�
1� x2@2!2

4p2
Fc

2

�
; (16)

="tr ¼
3�!2

p

4!2x3

�
x2 � 1þ x2@2!2

4p2
Fc

2

�
x2c2

v2
F

� 1

��
; (17)

with x ¼ kvF=!.

IV. ELECTRIC DIPOLE TRANSITIONS

Let us calculate the transition rate wi!f in the electric

dipole approximation (E1). The approximation is valid at
ka 
 1, where a is a typical size of the emitter, and k a
typical plasmon wave number. In this case, the transition
current is independent of k, jfiðkÞ � jfið0Þ. The angular

integration gives

Z
ð4�Þ

d�kjjfið0Þ � kj2 ¼ 4�

3
jjfið0Þj2k2; (18)

Z
ð4�Þ

d�kjjfið0Þ � kj2 ¼ 8�

3
jjfið0Þj2k2: (19)

Then the in-vacuum transition rate (associated with the
emission of ordinary photons) is given by the standard
expression [12]

wvac
i!f ¼ 4e2!jjfið0Þj2

3@c3
¼ 4e2!3

3@c3
jrfij2; (20)

where we have used the relation jfið0Þ � �i!rfi, rfi
being the position-vector matrix element.

It is convenient to rewrite Eq. (3) as

wi!f ¼ wvac
i!fR ¼ wvac

i!fðRAl þ RBl þ RAtr þ RBtrÞ; (21)

where RAl, RBl, RAtr, and RBtr are the factors, which
describe the plasma effects on the transition rates in the
four channels (Table I), and R is the cumulative factor. The
partial factors are given by

RAl ¼ c3

!3
JlðkÞk2

��������@"lð!; kÞ
@k

���������1
��������k¼klð!Þ

; (22)

RAtr ¼ 2c3

!
JtrðkÞk2

��������@½!
2"trð!; kÞ � k2c2�

@k

���������1
��������k¼ktrð!Þ

;

(23)

RBl ¼ c3

�!3

Z 1

0
dk

JlðkÞk2="lð!; kÞ
j"lð!; kÞj2 ; (24)

RBtr ¼ 2c3!

�

Z 1

0
dk

JtrðkÞk2="trð!; kÞ
j!2"trð!; kÞ � k2c2j2 : (25)

The functions JlðkÞ and JtrðkÞ describe nondipole correc-
tions to the E1 approximation at large k (at ka � 1),

JlðkÞ ¼ 3

4�
jjfið0Þj�2

Z
d�kjjfiðkÞ � k̂j2; (26)

JtrðkÞ ¼ 3

8�
jjfið0Þj�2

Z
d�kjjfiðkÞ � k̂j2: (27)

For ka & 1, we have JlðkÞ ! 1 and JtrðkÞ ! 1.
Equations (22)–(25) determine the plasma corrections to

the E1 transition rate. Let us calculate them in a degenerate
electron gas.
The emission of real longitudinal and transverse plas-

mons occurs at k & !=vF. For the transitions at frequen-
cies ! not larger than several !p in a dense degenerate

electron gas, one typically has k 
 pF=@. This means, that
one can use the classical dielectric functions "lð!; kÞ and
"trð!; kÞ [13] for calculating RAl and RAtr. We have
checked, that the use of the exact (quantum) dielectric
functions has no noticeable effect on the results.
Similarly, because for the emission of real plasmons we
typically have k 
 1=a, we can always neglect the nondi-
pole corrections in Eqs. (22) and (23) and set JlðkÞ ¼
JtrðkÞ ¼ 1. Because no plasmon emission can occur at!<

!p, the transition rates wAtr
i!f and wAl

i!f are suppressed as

! ! !p. Indeed, at !�!p the longitudinal and trans-

verse dielectric functions are given by Eqs. (11) and (12).
Using then Eqs. (22) and (23), we find

RAl ¼ 1

2

�
5

3

�
3=2

�
c

vF

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p

!2

s
at 0 � !�!p 
 !p;

(28)

RAtr ¼ ffiffiffiffiffiffi
"tr

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p

!2

s
at !>!p: (29)

Equation (29) remains a good approximation at all !>

!p; in the limit of ! � !p the factor RAtr tends to its in-

vacuum value, RAtr ¼ 1. In contrast, Eq. (28) is valid only
for ! close to !p. For higher !, the factor RAl is strongly

suppressed by the k-derivative of the longitudinal dielec-
tric function in Eq. (22) (no longitudinal plasmons can
propagate at high frequencies, Sec. III).
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The transition rate at ! & !p arises from the virtual-

plasmon channels B, Eqs. (24) and (25). First of all, con-
sider the factor RBl, Eq. (24). Substituting Eq. (16) into
(24), we obtain

RBl ¼ 3

2

�
c

vF

�
3
�
!p

!

�
2 Z xmax

1

dx

x

�
1� v2

F

c2
x2

x2max

�

� Jlðx!=vFÞ
j"lð!; x!=vFÞj2

; (30)

where xmax ¼ 2pFvF=ð@!Þ. The integrand has a logarith-
mic singularity which is avoided owing to a natural inte-
gration cutoff at x ¼ xmax. Therefore, the integral has the
meaning of a Coulomb logarithm. According to Eq. (30),
we can neglect the nondipole corrections and set
Jlðx!=vFÞ ¼ 1 provided 2pF & @=a. If so, RBl depends
only on plasma characteristics (and does not depend on the
transition properties of the emitter); in this sense, RBl

becomes universal. In the opposite case of 2pF � @=a,
the function Jlðx!=vFÞ suppresses the integrand in
Eq. (30) at k � 1=a. Then the cutoff of the Coulomb
logarithm occurs at smaller x ¼ vF=ða!Þ< xmax, and the
universal factor, calculated from Eq. (30) with
Jlðx!=vFÞ ¼ 1, gives the upper limit of RBl.

Let us study the universal regime of 2pF & @=a and
consider the behavior of RBl at ! 
 !p. In this case we

can use the static longitudinal dielectric function in the
denominators of Eq. (24) or (30). The asymptotic behavior
of RBl is

RBl / ð!p=!Þ2 at ! 
 !p; (31)

implying a strong enhancement of the transition rate over
the in-vacuum rate [although the emission of real plasmons
is forbidden, Eq. (15)].

The consideration of the factor RBtr is similar. First of
all, substituting Eq. (17) into Eq. (25) we conclude that
there is no logarithmic divergency for the transverse chan-
nel. This is because of the extra k2c2 term in the denomi-
nator of Eq. (25). An analysis shows that the main
contribution to RBtr comes from intermediate values of x
(whereas the main contribution to RBl comes from large x).
As a result, nondipole corrections to RBl are much less
important than to RBtr, and Jtrðx!=vFÞ ¼ 1 is a much
better approximation than Jlðx!=vFÞ ¼ 1. The asymptotic
behavior of RBtr is

RBtr / ð!p=!Þ2=3 at ! 
 !p: (32)

Thus, the transitions through the transverse channel are
less efficient than those through the longitudinal channel.

Finally, we have set Jl ¼ Jtr ¼ 1 and calculated the total
plasma enhancement factor R with the precise dielectric
functions [13]. In the case of ultrarelativistic degenerate
electrons (vF ¼ c) the factor R depends on the only one
argument u ¼ !=!p. In the interval 0:01 � u � 20 the

numerical results can be fitted by the expression

R ¼ 3:0316

u2
ð1þ 0:13uÞ þ�ðu� 1Þ

� 29:3ðu� 1Þ þ ðu� 1Þ3
0:93þ 35:6ðu� 1Þ þ ðu� 1Þ3 ; (33)

where �ðxÞ is the Heaviside step-function. The maximum
fit error � 1:6% takes place at u ¼ 1:34. In the limit of
u 
 1 the plasma factor R is dominated by RBl; in the
opposite limit of u � 1 it is dominated by RAtr.

V. ELECTRIC QUADRUPOLE AND MAGNETIC
DIPOLE TRANSITIONS

Now consider the case in which the electric dipole
transition i ! f of the emitter is forbidden but the electric
quadrupole (E2) or magnetic dipole (M1) transition is
allowed.
Because the E1 transition is forbidden, we have

j fið0Þ ¼
Z

dVjfiðrÞ ¼ 0: (34)

Multipole transitions are given by next terms in the expan-
sion of the transition current over ka. For the E2 and M1
transitions, the transition current can be written as

j fiðkÞ ¼
Z

dVjfiðrÞ expð�ikrÞ � �i
Z

dVjfiðrÞðk � rÞ:
(35)

Using the standard expansion over spherical vectors YL
JM

[15], we obtain

j fiðkÞ ¼ � 4�ik

3

X2
J¼0

XJ
M¼�J

Y1
JMðk̂Þ

Z
dVrjfiðrÞ � Y1	

JMðr̂Þ;

(36)

where r̂ ¼ r=r. The terms with different J correspond to
different transition types.
The term with J ¼ 2 refers to an E2 transition. Indeed, a

rank 2 spherical vector can be presented as [15]

Y 1
2Mðr̂Þ ¼

1ffiffiffiffiffiffi
10

p
r
gradðr2Y2Mðr̂ÞÞ; (37)

where Y2Mðr̂Þ is a spherical function. Then one can rear-
range the integral term in Eq. (36) asZ

dVrjfiðrÞ � Y1	
2Mðr̂Þ ¼

i!ffiffiffiffiffiffi
10

p
Z

dV�fiðrÞr2Y	
2Mðr̂Þ

¼ ð�1ÞM i!ffiffiffiffiffiffiffi
8�

p QðeÞ
2�M; (38)

where QðeÞ
2�M is an electric quadrupole component [12] and

�fiðrÞ is the matrix element of the density operator, that is

related to the transition current through the continuity
equation

i!�fiðrÞ þ divjfiðrÞ ¼ 0: (39)
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The J ¼ 1 term in Eq. (36) corresponds to an M1
transition. Using the relation

Y 1
1Mðr̂Þ ¼ � iffiffiffi

2
p r� gradY1Mðr̂Þ; (40)

one finds [12]

Z
dVrjfiðrÞ �Y1	

1Mðr̂Þ ¼
iffiffiffi
2

p
Z

dVrjfiðrÞ � ½r� gradY	
1Mðr̂Þ�

¼ �ið�1ÞM
ffiffiffiffiffiffiffi
3

2�

s
QðmÞ

1�M; (41)

where QðmÞ
1�M is a component of the magnetic dipole

moment.
Finally, the J ¼ 0 term in Eq. (36) is nonstandard. It is

absent in vacuum, but appears in plasma. Rearranging the
spatial integration in Eq. (36) in the same way, as for E2
and M1 transitions, we obtain

Z
dVrjfiðrÞ � Y1	

00ðr̂Þ ¼ � i!

2
ffiffiffiffiffiffiffi
4�

p
Z

dV�fiðrÞr2

¼ � i!

2
ffiffiffiffiffiffiffi
4�

p Q2; (42)

where

Q2 �
Z

dV�fiðrÞr2: (43)

In order to separate the contributions from the above
terms to the longitudinal and transverse transition channels

let us split the k̂-dependent spherical vectors into compo-

nents longitudinal and transverse to k̂. The J ¼ 2 term
contains both, transverse and longitudinal, components
[15]:

Y 1
2Mðk̂Þ ¼

ffiffiffi
3

5

s
Yð1Þ
2Mðk̂Þ þ

ffiffiffi
2

5

s
Yð�1Þ
2M ðk̂Þ; (44)

where Yð�1Þ
2M ðk̂Þ is the longitudinal spherical vector and

Yð1Þ
2Mðk̂Þ is the transverse electric-type spherical vector.

The J ¼ 1 term in (36) contains only the transverse com-
ponent,

Y 1
1Mðk̂Þ ¼ Yð0Þ

1Mðk̂Þ; (45)

Yð0Þ
1Mðr̂Þ being the transverse magnetic vector. The J ¼ 0

term in (36) contains only the longitudinal vector,

Y 1
00ðk̂Þ ¼ �Yð�1Þ

00 ðk̂Þ: (46)

Now we can calculate the transition rate from Eq. (1).
Performing angular integration, we find for the transverse
channel:

Z
d�kjk� jfiðkÞj2 ¼ 8�

3
k4
�X

M

��������QðmÞ
1�M

��������2

þ!2

20

X
M

��������QðeÞ
2�M

��������2
�
: (47)

The two terms in the square brackets correspond to the M1
and E2 transitions, respectively. No contribution from the
J ¼ 0 term is present, because the J ¼ 0 term is purely
longitudinal. In vacuum, only the transverse channel con-
tributes to the transition rate. Then from Eq. (6) we recover
the well-known expression

wvac
i!f ¼ wAtr

i!f ¼
4!3

3@c5

�X
M

jQðmÞ
1�Mj2 þ

!2

20

X
M

jQðeÞ
2�Mj2

�

� wM1
vac þ wE2

vac: (48)

The angular integration of the longitudinal part of
Eq. (1) gives

Z
d�kjk � jfiðkÞj2 ¼ 4�

45
k4!2

�X
M

jQðeÞ
2�Mj2 þ

5

4
jQ2j2

�
:

(49)

The first term in the square brackets corresponds to the E2
transition, while the second term refers to a different,
purely longitudinal transition [9]. The latter transition is
not forbidden by the standard selection rules and should be
kept in line with the E2 transition (at M ¼ 0). Note, that
this term can be presented as a trace of the quadrupole
moment tensor of the emitter,Q2 ¼ TrfQ��g, if this tensor
is defined in a nonstandard (not irreducible) form as
Q�� ¼ R

dV�fiðrÞx�x�. If so, theQ2 term can be regarded

as an additional contribution to the quadrupole transition
[9]; nevertheless it can be presented even for a spherical
emitter. Let us add, that there is no M1 transition in
Eq. (49)—it is forbidden because the M1 transition current
is purely transverse.
The plasma effects on the transition rate can be de-

scribed by introducing the plasma factors R in accordance
with Eq. (21). We obtain

wE2
i!f ¼ wE2

vacRE2 ¼ wE2
vacðRð2Þ

Al þ Rð2Þ
Atr þ Rð2Þ

Bl þ Rð2Þ
BtrÞ;

(50)

wM1
i!f ¼ wM1

vacRM1 ¼ wM1
vacðRð2Þ

Atr þ Rð2Þ
BtrÞ; (51)

where

Rð2Þ
Al ¼

4c5k4

3!5

��������@"lð!; kÞ
@k

���������1

k¼klð!Þ
; (52)

Rð2Þ
Atr ¼

2c5k4

!3

��������@½!2"trð!; kÞ � k2c2�
@k

���������1

k¼ktrð!Þ
; (53)
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Rð2Þ
Bl ¼

4c5

3�!5

Z 1

0
dk

k4="lð!; kÞ
j"lð!; kÞj2 ; (54)

Rð2Þ
Btr ¼

2c5

�!

Z 1

0
dk

k4="trð!; kÞ
j!2"trð!; kÞ � k2c2j2 ; (55)

the upperscript (2) marks the second-order multipole ex-
pansion. Equations (52)–(55) differ from Eqs. (22)–(25) by
powers of k in the numerators (k4 instead of the k2) and by
prefactors. Moreover, the total transition rate in the second-
order multipole expansion contains an additional term [9]
in the longitudinal channel,

wi!f ¼ wM1
i!f þ wE2

i!f þ wL
i!f; (56)

where

wL
i!f ¼ wE2

vac

5jQ2j2
4
P
M
jQðeÞ

2�Mj2
ðRð2Þ

Al þ Rð2Þ
Bl Þ: (57)

In order to calculate this term one should know transition
matrix elements.

We have calculated and fitted the factors RE2 and RM1

under the same assumptions as the factor R for the E1
transitions. We considered an ultrarelativistic degenerate
electron gas (vF ¼ c) and employed exact dielectric func-
tions [13]. Again, RE2 and RM1 become functions of the
only one parameter u ¼ !=!p which was varied in the

range 0:01 � u � 20. Our fit to RE2 is

RE2 ¼ 1þ 607:8

u4
ð1þ 0:0048u2Þ; (58)

with the maximum fit error of 1.6% at u ¼ 7:65. Note, that

the function Rð2Þ
Bl does not deviate from its small-u asymp-

totic behavior Rð2Þ
Bl ¼ 607:8u�4 in the entire fit interval.

The fit to RM1 is

RM1 ¼ 1þ 1

u2
ð4:82� 0:7 lnu� 0:47uÞ; (59)

with the maximum fit error of 3.8% at u ¼ 0:1.

VI. DISCUSSION

In Fig. 1 we plot various plasma factors for an E1
transition rate as a function of!=!p in the ultrarelativistic

strongly degenerate electron plasma (vF ¼ c) at kmaxa 

1. The solid line marked ‘‘tot’’ shows the total plasma
enhancement factor R. Other solid curves are partial con-
tributions RBtr, RBl, RAl, and RAtr given by Eqs. (22)–(25).
The factors RAl and RAtr vanish at !<!p because no real

plasma waves can be emitted under such conditions. At
! * 3!p the main contribution to the total transition rate

comes from the emission of real transverse plasmons. In
the limit of! � !p the plasma effects disappear and R �
RAtr ! 1. Radiative transitions via virtual longitudinal
plasmons always dominate over transitions via virtual
transverse plasmon, RBl >RBtr. All transitions at !<!p

go via the exchange of virtual plasmons, the transition rate
being greatly enhanced in comparison with its in-vacuum
value. The dashed line in Fig. 1 shows the low-! asymp-
tote RBl ¼ 3:03ð!p=!Þ2; it is accurate at !<!p, where

RBl dominates.
All quantities, plotted in Fig. 1, are calculated neglecting

nondipole corrections to the transition current [by setting
JlðkÞ ¼ JtrðkÞ ¼ 1 that is valid at kmaxa ¼ 2pFa=@ 
 1,
see Eqs. (26) and (27)]. The factors R in Fig. 1 are univer-
sal, and depend only on !=!p (in the limit of vF ! c).

However, the condition kmaxa 
 1 can be violated. Such a
violation does not significantly affect RAl, RAtr, and RBtr

but can change RBl (Sec. IV). The effect of nondipole
corrections on RBl is demonstrated in Fig. 2. Now the
universality is lost and the result depends on the specific
form of the function JlðkÞ (determined by the wave func-
tions of the emitter). For illustration, we consider a dipole
transition from the lowest excited state with orbital mo-
mentum L ¼ 1 to the ground-state (L ¼ 0) in a spherical
potential well of radius a with infinitely high walls (as a
very rough model of E1 deexcitation of atomic nucleus).
The appropriate function JlðkaÞ is shown in the inset. At
! 
 !p we still obtain the asymptote

RBl ¼ CðkmaxaÞð!p=!Þ2; (60)

where CðkmaxaÞ is now determined by JlðkaÞ (and does not
depend of !p=!). The function CðkmaxaÞ takes into ac-

count the nondipole corrections. It is shown in Fig. 2 for
our particular model. The increase of kmaxa reduces
CðkmaxaÞ with respect to its purely dipole limit Cð0Þ �
3:03. A reduction by a factor of 2 is achieved at kmaxa �
10.

FIG. 1 (color online). Different partial contributions to the
total plasma enhancement factor R (curve ‘‘tot’’) as a function
of !=!p for E1 transitions at vF ¼ c. Other solid curves show

RBtr, RBl, RAl, and RAtr. The dashed curve is the low-! asymp-
tote RBl ¼ 3:03!2

p=!
2.
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Thus, nondipole corrections lower the transition rate, but
the rate remains enhanced over its in-vacuum level by a
factor of ð!p=!Þ2. This is because the expression for RBl

(at!<!p) contains the factor ð!p=!Þ2 which arises from
="lð!; kÞ. The integration over k in Eq. (30) can be carried
out using static dielectric function "lð0; kÞ; the function
JlðkÞ specifies only a numerical prefactor, but does not
violate the ð!p=!Þ2 dependence.

Now let us consider the E2 and M1 radiative transitions.
Their principal features remain the same as for the E1
transitions. In Fig. 3 we plot the plasma enhancement
factors RE2 and RM1. One can see that the plasma enhance-

ment of E2 and M1 transitions is stronger than for E1
transitions. However, this is true only if the E1 transition
is forbidden. If not, the effect of higher-order transitions
(particularly, E2 and M1) is included in the functions JlðkÞ
and JtrðkÞ; it has already been discussed above.
Other curves in Fig. 3 show partial contributions to the

plasma enhancement factors from different radiative decay
channels. The main contribution to E2 transitions comes

from Rð2Þ
Bl (as for E1 transitions). Typically higher values of

Rð2Þ
Bl [with respect to RBl for the E1 case, see Eq. (24)],

result from the appearance of an additional k2 in the
numerator of Eq. (54). This leads to a stronger !p=!

dependence in the asymptotic behavior of Rð2Þ
Bl , in compari-

son with RBl, ð!p=!Þ4 instead of ð!p=!Þ2. Note that the

asymptotic expression Rð2Þ
Bl ¼ 607:8ð!p=!Þ4 remains an

excellent approximation in the entire range of ! presented
in Fig. 3. Note also, that we have used the first nonvanish-
ing term in the series expansion of the transition current
over ka. Therefore, our results for E2 and M1 transitions
are valid for 2pF 
 @=a. In the opposite case, just as for
the E1 transitions, the results will depend on the exact form
of the local transition current jfiðrÞ.
We cannot plot the contribution of the additional term,

wL
i!f [see Eq. (57)], to the total transition rate in a similar

universal form. If the corresponding moments were equal,
then the transition rate in the longitudinal channel in a
plasma at! & !p would be about twice larger than the E2

transition rate. For ! � !p the transition rate wL
i!f

vanishes.
While calculating the R-factors, we have used the di-

electric function of the degenerate electron gas and have
neglected the ion contribution. This approximation is ex-
pected to be valid for transition frequencies ! which are
much higher than the ion plasma frequency !pi (see

Fig. 4). Because !pi 
 !p, the transition frequencies

! & !pi, at which the ion contribution can be important,

are much lower than the electron plasma frequency. If
necessary, the ion contribution can be studied using similar
approach.
The same plasma effects occur in a magnetized plasma

but the magnetic field complicates the problem. Because of
the anisotropy, introduced into the plasma polarization
properties by the magnetic field, the plasma waves (plas-
mons) become of mixed type (neither longitudinal, nor
transverse) and have many branches (for instance, electron
cyclotron modes). The properties of the plasmon emission
(channels Al and Atr) of an atom in a rarefied magneto-
active cosmic plasma were studied, for instance, in
Refs. [9,16]. The effect of the magnetic field on the pro-
cesses with virtual plasmons seems to be unexplored.
In our analysis, we have employed zero-temperature

approximation but similar effects should be pronounced
at finite temperatures. Moreover, thermal plasma fluctua-
tions, available in this case [17], can power inverse tran-

FIG. 3 (color online). Plasma enhancement factors RE2 and

RM1 versus !=!p at vF ¼ c, together with the factors Rð2Þ
Bl , R

ð2Þ
Btr,

Rð2Þ
Al , and Rð2Þ

Atr for separate transition channels.

FIG. 2. Factor C versus kmaxa as an illustration of the effect of
nondipole corrections on RBl in Eq. (60) for a simplified model
of radiative deexcitation of atomic nucleus of radius a (see text).
The inset shows JlðkaÞ for this model.
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sitions and excite the emitter. The efficiency of inverse
transitions depends on temperature and plasma parameters.

The plasma effects are important for studying a number
of phenomena in neutron stars and white dwarfs. These
effects are outlined below using the energy-density dia-
gram for dense stellar matter (Fig. 4, left vertical scale).
The solid lines marked as TF,!p, and!pi show the density

dependence of the electron degeneracy energy kBTF (TF

being the electron degeneracy temperature), as well as the
electron and ion plasma energies, @!p and @!pi. For

simplicity, we employ the model of accreted neutron star
crust (Table A3 from Ref. [18]). The curves TF and !p are

rather insensitive to possible variations of nuclear compo-
sition in an accreting neutron star (and quite close to the
curves for a neutron star whose crust is composed of the
ground-state matter [4]). The curve!pi is more sensitive to

the composition but is relatively unimportant for our analy-
sis. Note that the neutron drip occurs at � � 6�
1011 g cm�3 in the accreted crust (and at � � 4�
1011 g cm�3 in the ground-state matter). Typical tempera-
tures in neutron stars and white dwarfs are below 109 K
(kBT & 0:1 MeV). Degenerate electrons become relativis-
tic at � * 106 g cm�3.

Plasma effects can affect beta captures in dense stellar
matter, for instance, in the crust of an accreting neutron star
in a binary system with a low-mass companion. Such
systems manifest themselves as X-ray transients which
demonstrate periods of active accretion and quiescence
[19]. Observations show that neutron stars in X-ray tran-
sients remain warm during quiescent periods that is often

explained [20] by deep crustal heating associated with
nuclear transformations [18,21,22], particularly, beta cap-
tures, in the accreted matter. When the accreted matter is
gradually compressed by newly accreted material, the
density in local matter elements goes up increasing the
Fermi energy of degenerate electrons. This triggers beta
captures with the appearance of daughter nuclei in ground
or excited states. If the daughter nuclei are born in the
excited states, they can deexcite through radiative transi-
tions [22]; the associated energy release can contribute to
the deep crustal heating. The nuclear composition of the
accreted matter can be very different and contain a wide
spectrum of nuclides [22]. This means numerous beta
captures involving various nuclei at the densities up to
1011–1012 g cm�3 (Fig. 4). In this case the electron gas is
strongly degenerate and ultrarelativistic, the electron
plasma energy @!p can reach a few MeV and become

larger than transition energies @! in some nuclei. What
will happen with these nuclei? A naive answer would be
that they would not decay to lower states because they
cannot emit any electromagnetic quanta at !<!p. Our

results show quite the opposite. The plasma environment
enhances the decays through the processes B involving
virtual (mostly longitudinal) plasmons. The dotted line in
Fig. 4 plots (right vertical scale) the values of kmax. As
follows from the above discussion (see Fig. 2), at kmaxa *
10 our plasma enhancement factor for E1 transitions starts
to deviate from the universal enhancement (33). The dotted
line indicates that, for typical radii a of atomic nuclei, we
have kmaxa & 10 at any � in Fig. 4, so that the enhance-
ment remains universal. Let us stress, however, that we use
a very crude model of E1 transition in Fig. 2. We would
advise to check the condition for the breaking of universal-
ity (33) in specific situations.
Another example is provided by the reactions involving

neutrons (n) in accreting neutron stars [23]. Specifically,
we mean the reactions ðn; �Þ and ð�; nÞ (neutron absorption
by a nucleus with the emission of electromagnetic quan-
tum, and an inverse process). These reactions can occur at
densities 1011–1012 g cm�3 near the neutron drip density in
the neutron star crust (Fig. 4). They can accompany deep
nuclear burning of accreted matter and affect energy re-
lease and nuclear transformations in deep crustal heating
process as well as X-ray superbursts (highly energetic X-
ray bursts demonstrated by some accreting neutron stars).
Again, many nuclei can be involved, and typical energies
@! of electromagnetic transitions can be lower than @!p.

Our results cannot be used directly to study the neutron
reactions, but they can be modified for that purpose. They
demonstrate that the plasma effects cannot suppress [23]
the neutron capture reactions ðn; �Þ at !p > !. Moreover,

we can expect that even at ! 
 !p, but at not very low

temperatures, there will be a substantial level of fluctuating
plasma microfields (associated with virtual plasmons) to
power the inverse reaction ð�; nÞ.

FIG. 4 (color online). Energy-density diagram (left vertical
scale, solid curves) for dense stellar matter. The curves TF, !p

and !pi show, respectively, the Fermi energy of degenerate

electrons, electron plasma energy @!p, and ion plasma energy

@!pi for an accreting neutron star. The short-dashed vertical line

positions the neutron drip point. The dotted line (right vertical
scale) shows kmax versus � to characterize the importance of
nondipole corrections for E1 transitions. See text for details.
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Finally, the present results can be useful for calculating
the radiative thermal conductivity in a degenerate electron
gas. This is an important problem for outer cores of white
dwarfs and outer envelopes of neutron stars, where the
radiative conduction becomes comparable to the electron
one (the latter dominates in the deeper, strongly degenerate
layers of these objects; see, e.g., Ref. [24]). With increas-
ing density into the degenerate matter, the electron plasma
frequency becomes comparable to typical radiative transi-
tion frequencies (!� kBT=@) and then exceeds them.
Radiative conduction is provided by real electromagnetic
waves (not virtual excitations), which leads to the plasma
cutoff of the radiative thermal conductivity at low tem-
peratures (kBT 
 @!p, Fig. 4). This cutoff has been men-

tioned in the astrophysical literature (e.g., [5]). A general
physical theory of radiative transfer in dispersive media
was constructed long ago [25]. Several attempts have been
made (e.g., [6,7]) to calculate the radiative thermal con-
ductivity in dense stellar matter with account for the
plasma effects. However, these calculations have neglected
the contribution of longitudinal plasmons which is ex-
pected to be important at kBT & @!p, especially in the

nonrelativistic mildly degenerate electron gas (T � TF)
where the radiative thermal conductivity can be compa-
rable with the electron one.

VII. CONCLUSIONS

We have analyzed the radiative transition rate of an
emitter (an atom or atomic nucleus) immersed in a dense
degenerate plasma. Such a transition goes, generally,
through four channels which involve real and virtual lon-
gitudinal and transverse plasmons (Refs. [9,10]; Table I).
The emission of real plasmons is allowed only at radiative
transition frequencies ! higher than the electron plasma
frequency!p. The processes with virtual plasmons operate

at any !.

Our main conclusions are:
(1) The cumulative effect of the plasma is to enhance

the radiative decay rate over the standard radiative
decay rate through the emission of photons in vac-
uum. In the limit of ! � !p the plasma enhance-

ment effect disappears.
(2) The enhancement becomes especially strong at

! 
 !p (where real plasmons cannot exist at all),

being mainly provided by processes with virtual
longitudinal plasmons.

(3) The plasma enhancement takes place for electric
dipole transitions, and for higher-order transitions
(such as electric quadrupole and magnetic dipole
one); it is more pronounced for higher-order
transitions.

(4) In a strongly degenerate ultrarelativistic electron
plasma the plasma enhancement depends mainly
on the parameter !=!p. This dependence is calcu-

lated and approximated by analytic expressions for
E1, E2, and M2 transitions.

The plasma enhancement effects can strongly modify
radiative thermal conduction in dense stellar matter, ki-
netics of atomic nuclei in excited states, emission and
absorption of neutrons. Such effects can be important in
degenerate cores of white dwarfs and envelopes of neutron
stars but are almost unexplored.
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