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ABSTRACT

Recent observations show that the thermal X-ray spectra of many isolated neutron stars are featureless and in
some cases (e.g., RX J1856.5�3754) well fit by a blackbody. Such a perfect blackbody spectrum is puzzling since
radiative transport through typical neutron star atmospheres causes noticeable deviation from blackbody. Previous
studies have shown that in a strong magnetic field, the outermost layer of the neutron star may be in a condensed
solid or liquid form because of the greatly enhanced cohesive energy of the condensed matter. The critical
temperature of condensation increases with the magnetic field strength and can be as high as 106 K (for Fe surface at
B � 1013 G or H surface at B � a few ;1014 G). Thus the thermal radiation can directly emerge from the degenerate
metallic condensed surface without going through a gaseous atmosphere. Here we calculate the emission properties
(spectrum and polarization) of the condensed Fe and H surfaces of magnetic neutron stars in the regimes in which
such condensation may be possible. For a smooth condensed surface, the overall emission is reduced from the
blackbody by less than a factor of 2. The spectrum exhibits modest deviation from blackbody across a wide energy
range and shows mild absorption features associated with the ion cyclotron frequency and the electron plasma
frequency in the condensed matter. The roughness of the solid condensate (in the Fe case) tends to decrease the
reflectivity of the surface and make the emission spectrum even closer to blackbody. We discuss the implications of
our results for observations of dim, isolated neutron stars and magnetars.

Subject headinggs: radiation mechanisms: thermal — stars: magnetic fields — stars: neutron — X-rays: stars

1. INTRODUCTION

In the last few years, much progress has been made in
studying surface radiation from isolated neutron stars (NSs)
(see, e.g., Pavlov & Zavlin 2003 for a review). So far about
20 NSs have been detected in thermal emission. With the ex-
ception of three or four sources,5 the thermal spectra of most
observed isolated NSs are featureless and sometimes well fit
by a blackbody. For example, deep observations with Chandra
and XMM-Newton show that the soft X-ray (0.15–1 keV) spec-
trum of RX J1856.5�3754 (Walter et al. 1996) can be fit with
an almost perfect blackbody at kT ¼ 64 eV (e.g., Drake et al.
2002; Burwitz et al. 2003). The optical data of RX J1856.5�
3754 are well represented by a Rayleigh-Jeans spectrum, but
the observed flux is a factor of 7 higher than extrapolation from
the X-ray blackbody (see Pons et al. 2002). Thus the spectrum
of RX J1856.5�3754 is best fit by a two-temperature black-
body model. Using this model as well as the observational up-
per limit (1.3% at 2 �) of X-ray pulsation (Burwitz et al. 2003),
Braje & Romani (2002) obtained several constraints on the
viewing geometry, mass-to-radius ratio, and temperature dis-
tribution.Anothermuch-studied, dim, isolatedNS,RX J0720.4�
3125, also shows an X-ray spectrum well fit by a blackbody at

T ’ 1 MK (Paerels et al. 2001; but see Haberl et al. 2004b for
possible spectral features).
The featureless and in some cases ‘‘perfect’’ blackbody

spectra observed in isolated NSs are puzzling. This is because
an NS atmosphere, like any stellar atmosphere, is not a per-
fect blackbody emitter due to nongray opacities: on one hand,
a heavy-element (e.g., Fe) atmosphere would produce many
spectral lines in the X-ray band (e.g., Rajagopal & Romani
1996; Pons et al. 2002); on the other hand, a light-element (e.g.,
H or He) atmosphere would result in an appreciable hard tail
relative to the blackbody (e.g., Shibanov et al. 1992).
One physical effect that may help explain the observations is

vacuum polarization. Recent work has shown that for surface
magnetic fields Bk 1014 G, strong-field vacuum polarization
can significantly affect radiative transfer in NS atmospheres,
leading to depression of the hard spectral tail and suppression
of the (cyclotron or atomic) absorption lines (Lai & Ho 2002,
2003a; Ho & Lai 2003, 2004; Ho et al. 2003; Lloyd 2003).
Indeed, Ho & Lai (2003) suggested that the absence of lines in
the observed thermal spectra of several anomalous X-ray pul-
sars (e.g., Juett et al. 2002; Tiengo et al. 2002; Morii et al. 2003;
Patel et al. 2003) can be naturally explained by the vacuum
polarization effect. For the dim isolated NSs RX J1308.6+2127
(Haberl et al. 2003) and RX J1605.3+3249 (van Kerkwijk et al.
2004), the observed line features are consistent with surface fields
P1014 G, at which vacuum polarization does not affect the emer-
gent spectrum (Ho & Lai 2004). In the case of RX J1856.5�
3754, if the NS has a magnetar-like surface magnetic field (see
Mori & Ruderman 2003), it may be possible to explain the al-
most perfect X-ray blackbody with an atmosphere. However,
theoretical models of low-temperature (kT ’ 60 eV) magnetar
atmospheres are currently not available because of uncertainties
in treating atomic and molecular opacities and dense plasma
effects in such cool atmospheres (see Ho et al. 2003; Potekhin &
Chabrier 2003, 2004).
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Recently, several groups have suggested that the spectrum of
RX J1856.5�3754 might be explained if the NS has a con-
densed surface with no atmosphere above it (Burwitz et al.
2001, 2003; Mori & Ruderman 2003; Turolla et al. 2004). The
notion that an isolated magnetic NS has a condensed surface
was first put forward in the 1970s (see Ruderman 1971; Flowers
et al. 1977), although these early studies overestimated the co-
hesive energy of Fe solid at B � 1012 G. Revised calculations
yielded a much smaller cohesive energy (Müller 1984; Jones
1986; Neuhauser et al. 1987), making condensation unlikely for
most observed NSs. Lai & Salpeter (1997) studied the phase
diagram of the H surface layer of an NS and showed that for
strong magnetic fields, if the star surface temperature is below
a critical value (which is a function of themagnetic field strength),
the atmosphere can undergo a phase transition into a condensed
state (see also Lai 2001). For Bk1014 G, this may occur even
for temperatures as high as 106 K. This raises the possibility that
the thermal radiation is emitted directly from the metal surface
of the NS.

The thermal emission from condensed Fe surface of mag-
netic NSs was previously studied by Brinkmann (1980) (see
also Itoh 1975; Lenzen & Trümper 1978) and shown to produce
a rough blackbody with reduced emissivity and a spectral fea-
ture at the electron plasma energy. For the temperatures and
magnetic fields (T k107 K and B ¼ 1012 1013 G, appropriate
for accreting X-ray pulsars) considered by Brinkmann, the Fe
surface is not expected to be in the condensed state. However, at
lower temperatures appropriate for dim, isolated NSs, or for
higher B values appropriate for magnetars, condensation re-
mains a possibility (see Lai 2001).

In this paper, motivated by recent observations of dim iso-
lated NSs, we calculate the emissivity of condensed Fe or H
surface of magnetic NSs in the regime in which we expect con-
densation might be possible. Our study goes beyond previous
work (Brinkmann 1980; Turolla et al. 2004) in that we calculate
both the spectrum and polarization of the emission and provide
a more accurate treatment of the dissipative effect and transmit-
ted radiation. In previous works, the ions have been treated as
fixed; while the exact dielectric tensor of the condensed matter
is currently unknown, we also consider the alternate limit of free
ions (see x 2.2).

Regardless of how the effect of ions in the dielectric tensor
is treated, we find an appreciable difference between our result
and that of Turolla et al. We traced the difference to their neglect
of the ion effect and their ‘‘one-mode’’ treatment of the trans-
mitted radiation in the low-energy regime (see x 4.1). Some of
our preliminary results were reported in Arras & Lai (1999).

This paper is organized as follows. Section 2 summarizes the
basic properties of the condensed matter in strong magnetic
fields. The method for calculating the emission from the surface
is outlined in x 3, and numerical results are presented in x 4. We
discuss the implications of our results for observations of dim
isolated NSs and magnetars in x 5.

2. CONDENSED SURFACE OF MAGNETIC
NEUTRON STARS

2.1. Condition for Condensation

It is well known that strong magnetic fields can qualitatively
change the properties of atoms, molecules, and condensed
matter. For B3B0 ¼ Z 2e3m2

ec/ f
3 ¼ 2:35Z 2 ;109 G (where Z

is the nuclear charge number), the electrons in an atom are
confined to the ground Landau level and the atom is elongated,
with greatly enhanced binding energy. Covalent bonding be-

tween atoms leads to linear molecular chains, and interactions
between molecular chains can lead to the formation of three-
dimensional condensedmatter (see Lai 2001 for a recent review).

For H, the phase diagram under different conditions has been
studied. Lai & Salpeter (1997) showed that in strong magnetic
fields, there exists a critical temperature Tcrit below which a
phase transition from gaseous to condensed state occurs, with
kTcrit about 10% of the cohesive energy of the condensed hy-
drogen. Thus, Tcrit � 8 ;104, 5 ;105, and 106 K for B ¼ 1013,
1014, and 5 ;1014 G (Lai 2001). An analogous ‘‘plasma phase
transition’’ was also obtained in an alternative thermodynamic
model for magnetized hydrogen plasma (Potekhin et al. 1999b).
While this model is more restricted than Lai & Salpeter (1997)
in that it does not include long Hn chains, it treats more rigor-
ously atomic motion across the strong B field and Coulomb
plasma nonideality. In the Potekhin et al. model, the density of
phase separation is roughly the same as in Lai & Salpeter (1997)
(see eq. [1] below), but the critical temperature is several times
higher. Thus there is probably a factor of a few uncertainty in Tcrit.
However, there is no question that for T PTcrit /2, the H surface
of the NS is in the form of the condensed metallic state, with
negligible vapor above it.

For heavy elements such as Fe, no such systematic character-
ization of the phase diagram has been performed. Calculations
so far have shown that at 1012–1013 G, a linear chain is unbound
relative to individual atoms for Zk 6 (Jones 1986; Neuhauser
et al. 1987), contrary to earlier expectations (Flowers et al. 1977).6

Therefore chain-chain interactions play a crucial role in deter-
mining whether three-dimensional zero-pressure condensed mat-
ter is bound or not. Numerical results of Jones (1986), together
with approximate scaling relations, suggest an upper limit of
the cohesive energy (for Zk 10)QsPZ 9/5B2/5

12 eV, where B12 ¼
B/(1012 G). Thus, for Fe the critical temperature for phase tran-
sition TcritP0:1Qs /kP105:5B2/5

12 K (Lai 2001).
The zero-pressure density of the condensed matter can be

estimated as

�s ’ 560�AZ�3=5B
6=5
12 g cm�3; ð1Þ

where A is the mass number of the ion (A � 1:007 for H, A �
55:9 for Fe), and � ¼ 1 corresponds to the uniform electron gas
model in the Wigner-Seitz approximation (Kadomtsev 1970).
Other effects (e.g., Coulomb exchange interaction, nonunifor-
mity of the electron gas) can reduce the density by up to a factor
of �2, and thus � may be as small as 0.5 (Lai 2001; see also
Potekhin &Chabrier 2004). The condensate will be in the liquid
state when the Coulomb coupling parameter � ¼ (Ze)2/(aikT) ¼
0:227Z 2(�1/A)

1=3/T6 < �m. Here, ai is the ion sphere radius
[(4�a3i /3)

�1 ¼ ni, where ni is the number density of ions], �1 ¼
�s/(1 g cm�3), T6 ¼ T /(106 K), and �m is the characteristic value
of � at which the Coulomb crystal melts. In the one-component
plasma model (i.e., classical ions on the background of the uni-
form degenerate electron gas),�m ¼ 175, but the electron gas non-
uniformity (i.e., electron screening) introduces a dependence
of �m on � and Z, typically within the range �m � 160 190
(Potekhin & Chabrier 2000). From equation (1) we obtain � ’
1:876 �1/3Z 9/5B2/5

12 /T6 at the condensed surface. Therefore, the
surface will be solid when T < 7 ;104�1/3(175/�m)B

2/5
14 K for H

(where B14 ¼ B/1014 G) and T < 4 ;106�1/3(175/�m)B
2/5
12 K for

Fe. Therefore, if condensation occurs (T < Tcrit), we expect the

6 For sufficiently large B, when B31014(Z/26)3 G, we expect the linear
chain to be bound in a manner similar to the H chain (Lai 2001).
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Fe condensate to be solid. Note that we use the simple melting
criterion above for the condensed phase only. It cannot be used
for noncondensed iron at T P 107 K (e.g., when T is only slightly
above Tcrit), because in this case the state of matter is affected by
partial ionization.

2.2. Dielectric Tensor of Condensed Matter

The emissivity of the condensed NS surface will depend on
its (complex) dielectric tensor (see x 3). As a first approxima-
tion, we consider the free electron gas model for the condensed
matter (e.g., Ashcroft & Mermin 1976). In the coordinate sys-
tem with magnetic field B along the z-axis, the dielectric tensor
takes the form (see Ginzburg 1970)7

e½ �ẑ¼B̂ ¼
� ig 0

�ig � 0

0 0 �

0
B@

1
CA; ð2Þ

where

� � g ’ 1� ve

(1 � u
1=2
e )(1� u

1=2
i )þ i�(tr)ei

; ð3aÞ

� ’ 1� ve

1þ i�(l)ei
: ð3bÞ

In equations (3a) and (3b), the dimensionless quantities ue ¼
(EBe /E )

2, ui ¼ (EBi /E )
2, and ve ¼ (Epe /E )

2 are used, where E ¼
f! is the photon energy, EBe and EBi are the electron and ion
cyclotron energies, and Epe is the electron plasma energy. These
energies take the values

EBe ¼
feB

mec
¼ 1158B14 keV; ð4aÞ

EBi ¼
fZeB

mic
¼ 0:635B14

Z

A

� �
keV; ð4bÞ

Epe ¼
4�f2e2ne

me

� �1=2

¼ 0:0288
Z

A

� �1=2

�
1=2
1 keV

¼ 10:8�1=2Z1=5B
3=5
14 keV; ð4cÞ

where ne is the electron number density and mi is the ion mass.
The collisional damping is calculated for motions transverse and
longitudinal with respect to the magnetic field. The dimension-
less damping rates �(tr)

ei
and �(l )ei are obtained from the collisional

damping rates �(tr)ei and �(l )ei (see x 2.3) through �
(tr)
ei ¼ f�(tr)ei /E and

�(l )ei ¼ f�(l )ei /E.
Equations (3a) and (3b) give the elements of the dielectric

tensor for a cold, magnetized plasma. While the expressions
were derived classically, the quantum calculation, incorporat-
ing the quantized nature of electron motion transverse to the
magnetic field, yields identical results (e.g., Canuto & Ventura
1972; Pavlov et al. 1980). More significantly, expressions (3a)
and (3b) assume that the electrons and ions are subject to the
pairwise Coulomb attraction, the interaction with the station-
ary magnetic field, and the periodic force from the propagating
electromagnetic wave. At high densities, however, other inter-
actions can also be important. For instance, the ions are strongly

coupled to each other when the Coulomb parameter� is large. It
is this coupling that leads to the liquid-solid phase transition
mentioned in x 2.1. Onemight suggest that in the solid phase the
ion motion should be frozen (by setting the ion mass mi ¼ 1),
as implicitly adopted by Turolla et al. (2004). This is not exactly
true. It is known that optical modes of a crystal lattice (at B ¼ 0)
can be described by polarizability of the form given by equa-
tions (3a) and (3b) with an additional term in the denominator
that specifies the binding of the ions (see, e.g., Ziman 1979).
According to the harmonic model of the Coulomb crystal
(Chabrier 1993), the characteristic ion oscillation frequency
(the Debye frequency of acoustic phonons) is !D � 0:4Epi/ f,
where Epi ¼ 6:75 ;10�4(Z/A)�1=21 keV is the ion plasma en-
ergy. The magnetic field appreciably affects the motion of the
ions in the Coulomb crystal if f!D/EBiP1 (or EpiPEBi; see
Usov et al. 1980). From equations (4a)–(4c) we find f!D/EBi �
1:6�1=2A1=2Z�0:3B�0:4

14 , which shows that the magnetic forces on
the ions are not completely negligible compared to the Coulomb
lattice forces.
Needless to say, our current understanding of the condensed

matter in strong magnetic fields is crude, and equations (3a) and
(3b) are only a first approximation to the true dielectric tensor of
the magnetized medium. In our calculations below, in addition
to the case of quasi-free ions described by equations (3a) and
(3b), we also consider the case where the motion of the ions is
neglected (formally obtained by setting mi ¼ 1). It is reason-
able to expect that in reality the surface radiation spectra lie
between the results obtained for these two limiting cases. Never-
theless, future work is needed to evaluate the reliability of our
results at low frequencies.

2.3. Collisional Damping Rate in the Condensed Matter

For the collisional damping rates �(l;tr)ei , different approxima-
tions can be used in different ranges of frequency ! and den-
sity �. For E3Epe � f!pe (where !pe is the electron plasma
frequency), the electron-ion collisions can be considered as in-
dependent and �(l;tr)ei are determined by the effective rates of free-
free transitions of a single electron-ion pair. However, this
approximation fails at EP Epe, where collective effects become
important. Moreover, the electron degeneracy should be taken
into account in the condensed surface. In general, the complex

7 See also Lai & Ho (2003a). Note that eq. (13) of Lai & Ho (2003a) is
incorrect: ��

ei should simply be �ei(1þ Zme/Amp). We neglect the factor 1þ
Zme/Amp in eq. (3a) since it provides a negligible correction relative to the
uncertainty in the collisional damping (see x 2.3).

Fig. 1.—Transverse and longitudinal damping rates f�(tr)ei and f�(l)ei as a
function of magnetic field strength B ¼ 1012B12 for condensed Fe surface at
T ¼ 106 K. The density is calculated using eq. (1), with � ¼ 1.
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dielectric tensor e for arbitrary ! can be obtained from ki-
netic theory, at least in principle (e.g., see Ginzburg 1970). Since
such a general expression of e is unknown at present, we ap-
proximate �(l;tr)

ei
in the EP Epe regime using the result of Potekhin

(1999), who obtained the zero-frequency conductivity tensor
for degenerate Coulomb plasmas (liquid and solid) in arbitrary
magnetic fields. Specifically, we set �(l )ei ¼ 1/�j; �(tr)ei ¼ 1/�?,
where �j and �? are the effective collision times given by equa-
tions (28) and (39) of Potekhin (1999), respectively. Figure 1
shows f�(tr)ei and f�(l)ei as a function of magnetic field strength
for condensed Fe surface at T ¼ 106 K, over the range B ¼
1012 1014 G.

The calculations of �(l)ei and �
(tr)
ei adopted in our paper neglect

the influence of the magnetic field on the motion of the ions.
Therefore, these calculations apply only in the ui ! 0 limit (this
corresponds to the ‘‘fixed’’ ion limit of x 2.2), or in the regime
E3EBi. We note, however, that the emissivity at EP EBi does
not depend sensitively on the damping rates (see x 4; in par-
ticular, Fig. 2 shows that the emissivity at such low energies is
almost the same with/without damping). Thus, unless the true
values of �(l )ei ; �(tr)ei at such low energies are many orders of mag-
nitude larger than our adopted values, our emissivity results will
not be affected by this uncertainty (indeed, as discussed in
x 2.2, the main uncertainty at such low energies lies in whether
to treat the ions as ‘‘free’’ or ‘‘fixed’’).

3. EMISSION FROM CONDENSED MATTER: METHOD

In this paper we consider the regime where a clear phase
separation occurs at the NS surface (i.e., for T at least a few
times lower than Tcrit), so that the vapor (gas) above the con-
densed surface has negligible density and optical depth. In this
case the radiation emerges directly from the condensed matter.

3.1. Kirchhoff’s Law for a Macroscopic Object

A macroscopic body at temperature T produces an intrinsic
thermal emission, with specific intensity I (e)� . To calculate the in-
tensity, consider the body placed inside a blackbody cavity also
at temperature T; i.e., the body is in thermodynamical equi-
librium with the surrounding radiation field, whose intensity is
given by the Planck function B�(T ). Imagine a ray of the cavity
radiation impinging on a surface element dA of the body. The
radiation field is unpolarized, and the electric field of the incom-
ing ray can be written in terms of two independent polarization
states: E(i)

1 ¼ Ae(i)1 and E(i)
2 ¼ Ae(i)2 , where A ¼ B�/2ð Þ1/2, and

e(i)1 and e(i)2 are the polarization eigenvectors of the incident
wave. The ray is, in general, partially reflected, each incoming
polarization giving rise to a reflected field:

E(r)
1 ¼ A r11e

(r)
1 þ r12e

(r)
2

� �
; ð5aÞ

E(r)
2 ¼ A r21e

(r)
1 þ r22e

(r)
2

� �
; ð5bÞ

where E
(r)
1 and E

(r)
2 are the reflected electric fields due to in-

coming fields E(i)
1 and E(i)

2 , respectively. Thus, the intensity of
radiation in the reflected field with polarizations E(r)

1 and E(r)
2

is

I
(r)
�1 ¼ 1

2
r11j j2þ r21j j2

� �
B� �

1

2
R1B�; ð6aÞ

I
(r)
�2 ¼ 1

2
r12j j2þ r22j j2

� �
B� �

1

2
R2B�: ð6bÞ

The energy in the incoming wave for frequency band � !
� þ d� during time dt is B� dA d�(i) d� dt, where d�(i) is the
solid angle element around the direction of the incoming ray.
Similarly, the energy contained in the reflected wave (along
each polarization) is 1

2
R1;2 B� dA d�(r) d� dt, with d�(r) ¼ d�(i).

To insure that the cavity radiation field remains an unpolarized
blackbody, the intensities of radiation emitted by the body (in
the same direction as the reflected wave) with polarizations E(r)

1
and E(r)

2 must be

I
(e)
�1 ¼ 1

2
B� � I

(r)
�1 ¼ 1

2
(1� R1)B�; ð7aÞ

I
(e)
�2 ¼ 1

2
B� � I

(r)
�2 ¼ 1

2
(1� R2)B�: ð7bÞ

Since I
(e)
�1 and I

(e)
�2 are intrinsic properties of the body, these equa-

tions should also apply even when the body is not in thermo-
dynamical equilibrium with a blackbody radiation field. Thus,
a body at temperature T has emission intensity

I (e)� ¼ (1� R)B�(T ) � JB�(T ); ð8Þ

where R � 1
2
(R1 þ R2) is the reflectivity and J ¼ 1� R is the

dimensionless emissivity. The degree of linear polarization of
the emitted radiation is

P � I
(e)
�1 � I

(e)
�2

I
(e)
�1 þ I

(e)
�2

¼ 1

2

R2 � R1

1� R
: ð9Þ

3.2. Calculation of Reflectivity

To calculate the reflectivity R, we set up a coordinate system
as follows: the surface lies in the x-y plane with the z-axis along
the surface normal. The external magnetic field B lies in the

Fig. 2.—Dimensionless emissivity J ¼ 1� R as a function of photon en-
ergy E (keV) for the case of condensed Fe surface at B ¼ 1012 G. The B field
is normal to the surface. The different curves correspond to different angles 	(i)

between incident photon direction and surface normal. The short-dash–dotted
line (labeled ‘‘no damping’’) shows the result when the collisional damping is
set to zero in the plasma dielectric tensor. The other light lines (labeled ‘‘no
ion’’) show results when ion motion is neglected for two values of 	(i) (i.e., by
setting the ion mass to 1; see x 2.2). The three vertical lines denote the ion
cyclotron energy EBi, the electron plasma energy Epe (see eqs. [4a]–[4c]), and
EC (eq. [19]).
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x-z plane, with B̂< ẑ ¼ sin 	Bŷ, where 	B is the angle between B̂
and ẑ. Consider a ray (of certain polarization, e(i)

1
or e(i)2 ) im-

pinging on the surface, with incident angle 	(i) and azimuthal
angle ’, so that the unit wavevector k̂(i) ¼ (�sin 	(i) cos ’;
�sin 	(i) sin ’; �cos 	(i)). The transmitted (refracted) and re-
flected rays lie in the same plane as the incident ray. Our goal is
to calculate the field associated with the reflected ray.

Outside the condensed medium (z > 0), the dielectric tensor
and permeability tensor are determined by the vacuum polari-
zation effect with e ¼ aI þ qB̂B̂ and m�1 ¼ aI þ mB̂B̂, where
a; q;m are dimensionless functions of B (see Ho& Lai 2003 and
references therein). Since a � 1 and jqj; jmjT1 for BT5 ;
1016 G, the vacuum polarization effect is negligible. In our
calculation (Appendix A), we choose e(i)1 (and e(r)1 ) to be along the
incident plane and e

(i)
2 (and e

(r)
2 ) perpendicular to it.

Consider an incident ray with E(i) ¼ E(i)
1 ¼ Ae(i)1 . The E-field

of the reflected ray takes the form given by equation (5a), while
the transmitted wave has the form

E(t) ¼ E
(t)
1 ¼ A t11e

(t)
1 þ t12e

(t)
2

� �
: ð10Þ

The eigenvectors of the transmitted wave, e(t)1 and e(t)2 , depend on
the refraction angles 	(t)1 and 	(t)2 , respectively; note that in gen-
eral, these angles are complex and different from each other. The
refraction angle 	 (t)

j , themode eigenvector e
(t)
j , and the correspond-

ing index of refraction n
(t)
j ( j ¼ 1; 2) satisfy Snell’s law

sin 	(i) ¼ n
(t)
j sin 	(t)j ð11Þ

and the mode equation8

eþ n
(t)
j

� �2
k̂(t)j k̂

(t)
j � I

� �� �
= E(t)

j ¼ 0; ð12Þ

where I is the unit tensor and k̂(t)j ¼ (�sin	(t)j cos ’;�sin	(t)j sin ’;
�cos 	

(t)
j ) is the unit wavevector of the transmitted waves.

In the xyz coordinate system, the rotated dielectric tensor
takes the form

�
e
�
¼

� cos2	B þ � sin2	B ig cos 	B (�� �) sin 	B cos 	B

�ig cos 	B � �ig sin 	B

(�� �) sin 	B cos 	B ig sin 	B � sin2	B þ � cos2	B

2
64

3
75:

ð13Þ

For equation (12) to have a nontrivial solution, the determinant
of the matrix eþ (n

(t)
j )2ðk̂(t)j k̂(t)j � IÞ must be equal to zero. This

gives an equation involving powers of n
(t)
j , sin 	

(t)
j , and cos 	(t)j .

Substituting equation (11) into this equation and squaring both
sides yields a fourth-order polynomial in (n

(t)
j )2, which allows

for the determination of the indices of refraction (see Appen-
dix A for more details). Having determined n

(t)
j , equation (12)

can be used to calculate e(t)j , while equation (11) gives 	
(t)
j . Once

	 (t)
j , e

(t)
j , and n

(t)
j are known, r11, r12, t11, and t12 can be obtained

using the standard electromagnetic boundary conditions:

�D = ẑ ¼ 0; �B = ẑ ¼ 0; �E< ẑ ¼ 0; �H< ẑ ¼ 0; ð14Þ

where, e.g., �E � E(i) þ E(r) � E(t), D(t) ¼ e =E(t), and

H(t) ¼ B(t) ¼ A n
(t)
1 t11k̂

(t)
1 < e(t)1 þ n

(t)
2 t12k̂

(t)
2 < e(t)2

� �
; ð15Þ

neglecting the vacuum polarization effect (m’ I ). Note that
equations (14) are not all independent. Only �E< ẑ ¼ 0 and
�B< ẑ ¼ 0 are used in our calculation.
A similar procedure applies in the casewhen the incidentwave

is E(i)¼ E(i)
2
¼ Ae(i)2 , yielding the reflection coefficients r21 and

r22 (together with t21; t22).

4. EMISSION FROM CONDENSED SURFACE: RESULTS

In this section, we present results of surface emission for
three illustrative cases: Fe surface at B ¼ 1012 and 1013 G, and
H surface at 1014 G. As discussed in x 2.1, the condensation
temperature for these cases is around 106 K. Note that the dimen-
sionless emissivity J ¼ 1� R (see eq. [8]) depends only weakly
on T through the collisional damping rate (x 2.2). For concrete-
ness, we set T ¼ 106 K in all our calculations. Figures 2–4 show
the emissivity J as a function of photon energy E in the three
cases; the B field is assumed to be normal to the surface (	B ¼ 0).
In all three cases, the emissivity is reduced from blackbody at
low energies, while approaching unity for E > a few ; Epe. In
the case of Fe, there are features associated with the ion cyclo-
tron energy EBi and the electron plasma energy Epe. For H, the
electron plasma energy is too high to be of interest for obser-
vation, but the feature around the ion cyclotron energy is evident.
The spectral feature in the emissivity J near EBi can be un-

derstood by considering the special case of 	(i) ¼ 0 (normal
incidence). In this case the reflectivity takes the analytic form

R ¼ 1

2

n1 � 1

n1 þ 1

				
				
2

þ 1

2

n2 � 1

n2 þ 1

				
				
2

; ð16Þ

where n1 and n2 are the indices of refraction of the two modes in
the medium and are given by n21 ¼ �þ g, n22 ¼ �� g. Consider
energies around EBi, such that ve; ue 31. We find

n21;2 � 1�
ve

�
1�u

1=2
i

�
u
1=2
e

�
1�u

1=2
i

�
2
þ
�
�(tr)ei

�
2
þ i

ve�
(tr)
ei

ue

�
1� u

1=2
i

�
2
þ
�
�(tr)ei

�
2
:

ð17Þ

Although �(tr)ei can be greater than unity (see Fig. 1), the imag-
inary part of n21;2 can be neglected for a qualitative understand-
ing of the spectral features, since ve/ueT1 (see eqs. [4a]–[4c]).
Then equation (17) becomes

n21;2 � 1� ve

u
1=2
e

�
1� u

1=2
i

�: ð18Þ

For E < EBi (ui > 1), both n1 and n2 are real and differ from
unity, leading to J < 1. For E > EBi, n1 is imaginary until
(ve/u

1=2
e )(1� u1

=2
i )�1 < 1, which occurs at

EC � EBi þ E2
pe=EBe: ð19Þ

Thus, for EBi < E < EC, n
2
1 increases from �1 to 0 (implying

no mode propagation in the medium), giving rise to the broad
depression in J (with J ! 0:5 as the energy nears EC).
We can similarly understand the feature near the electron

plasma energy. This feature appears only for 	(i) 6¼ 0. For energies

8 The vacuum polarization effect is neglected in eq. (12), which is justified
because the density of the condensed medium is much larger than the vacuum
resonance density, �V ’ 0:96(A/Z )B2

14(E/keV)2 g cm�3 (see Lai & Ho 2002).
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around Epe, ue 31 and uiT1, and we have � � 1þ ve/ue and
g � �ve/u

1=2
e . Substituting these values into equation (12) and

neglecting terms to order ve/ue and higher, we find

n21 � 1þ ve
(1� ve)

sin2	(i); n22 � 1: ð20Þ

For E > Epe, both n1 and n2 are real, while for E < Epe, n
2
1 < 0.

The reflectivity no longer takes the simple analytic form of
equation (16). However, the basic behavior of the reflectivity is
largely the same: for one mode with imaginary n and the other
with n � 1, the emissivity J attains a local minimum (’0.5 in
the absence of collisional damping; see Fig. 2).

When calculating the emissivity, it is clear that the inclusion
of the ion terms in equations (3a) and (3b) for the elements of
the dielectric tensor can qualitatively change the emission spec-
trum at low energies (see Figs. 2–7). As discussed in x 2.2,
complete neglect of ion effects is not justified; while the exact
dielectric tensor is currently unknown, the true spectra should
lie between the two limiting cases we present here. Without the
ion terms, the broad feature around EBi is replaced by a stronger

Fig. 5.—Dimensionless emissivity J ¼ 1� R as a function of photon en-
ergy E for the case of condensed Fe surface at B ¼ 1013 G. The incident angles
are fixed at 	(i) ¼ �/4 and ’ ¼ �/4. The different curves correspond to dif-
ferent magnetic field inclination angles (	B is the angle between B and the
surface normal). As in Fig. 2, the light lines (labeled ‘‘no ion’’) show results
when ion motion is neglected in the plasma dielectric tensor.

Fig. 6.—Same as Fig. 5, except that the geometry is fixed at 	(i) ¼ �/4 and
	B ¼ �/4, and the different curves correspond to different ’ (the angle of the
plane of incidence with respect to the x-z plane; see x 3.2).Fig. 4.—Same as Fig. 2, except for H surface at 1014 G.

Fig. 3.—Same as Fig. 2, except for B ¼ 1013 G.
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depression of J at low energies, up to E � EC . At high energies,
the ion effect is unimportant.

Figures 5 and 6 give some examples of our numerical results
for the cases when the magnetic field is not perpendicular to the
surface (i.e., 	B 6¼ 0). In these cases the emissivity J is no longer

symmetric with respect to the surface normal, but depends on
	(i) and the azimuthal angle ’. Although the geometry is more
complicated, the basic features of the emissivity are similar to
those depicted in Figures 2–4.
Figure 7 depicts specific flux at the NS surface, F� ¼R 2�

0
d’
R �=2
0

d	(i) cos 	(i) sin 	(i)J (	(i); ’)B�(T ), as a function of
photon energy for the three cases illustrated in Figures 2–4. For
the Fe surface, there is a reduced emission (by a factor of 2 or
so) around EBiPEPEC compared to the blackbody at the same
temperature. For the H surface at B ¼ 1014 G, the flux is close to
blackbody at all energies except for a broad feature around EBi.
The radiation from the condensed surface is polarized. Fig-

ures 8 and 9 show the degree of linear polarization as a function
of energy for the cases illustrated in Figures 3 and 4 (i.e., Fe at
1013 G and H at 1014 G). The degree of linear polarization P
increases with angle of incidence and is clearly peaked around
EBi and Epe. For the Fe surface, at energies below EC the po-
larization vector is parallel to the k-B plane. Above EC, the sign
of P changes and the radiation is polarized perpendicular to
the k-B plane. For H, there is a slight net linear polarization
perpendicular to the k-B plane, except near EBi, where the po-
larization peaks with P > 0. These polarization properties of
condensed surface emission are qualitatively different from those
of atmosphere emission (see Lai & Ho 2003b and references
therein).

4.1. Comparison with Previous Work

Recently, Turolla et al. (2004) performed a detailed calcula-
tion of the emissivity of a solid Fe surface. Our results differ
significantly from theirs in several respects. In particular, Turolla
et al. found that collisional damping in the condensed matter
leads to a sharp cutoff in the emission at low photon energies,
especially when the magnetic field is inclined with respect to
the surface normal. For comparison, in Figure 10 we show the
angle-averaged emissivity, h1� Ri ¼ F�/½�B�(T )�, for a spe-
cific case with B ¼ 5 ;1013 G, T6 ¼ 1:0, and 	B ¼ 0:7 ; �/2;
this should be directly compared with Figure 5 of Turolla et al.

Fig. 7.—Spectral flux as a function of photon energy E for the cases of
condensed Fe (B ¼ 1012; 1013 G) and H (B ¼ 1014 G) surfaces, all at temper-
ature T ¼ 106 K. The light lines (labeled ‘‘no ion’’) show the flux for Fe
and H surfaces when ion motion is neglected. The solid line shows the black-
body spectrum at 106 K. For all of the curves, the magnetic inclination angle
	B ¼ 0.

Fig. 8.—Degree of linear polarization P (see eq. [9]) as a function of photon
energy E for the case of condensed Fe surface, with B ¼ 1013 G. The B field is
normal to the surface, and the different curves correspond to different angles 	(i )

between incident photon direction and surface normal. The net linear polari-
zation is peaked around EBi and Epe. Positive P corresponds to polarization
parallel to the k-B plane, while negative P corresponds to polarization per-
pendicular the k-B plane. Note that P changes sign around EC.

Fig. 9.—Same as Fig. 8, except for the H surface at B ¼ 1014 G. There is a
slight net linear polarization perpendicular to the k-B plane (P � �5%), ex-
cept around EBi where the polarization peaks parallel to the k-B plane.
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Their results show no emission below �0.1 keV, and they find
that this ‘‘cutoff’’ feature becomes more pronounced as the
magnetic field inclination angle increases and the field strength
decreases. Our calculations clearly do not show this behavior
(see Fig. 10, solid line).

These discrepancies stem from at least two differences in the
reflectivity calculation: (1) Turolla et al. neglected the effect of
ion motion in their expression for the plasma dielectric ten-
sor (see the end of x 2.2). This strongly affects the emissivity at
EPEBi (see also Figs. 2–7). (2) Even when the ion motion is
neglected (by setting mi ¼1), our result (see Fig. 10, dashed
line) does not reveal any low-energy cutoff. It is most likely that
this difference arises from the ‘‘one-mode’’ description for the
transmitted radiation adopted by Turolla et al. (2004): when the
real part of the index of refraction of a mode is less than zero or
the imaginary part of the index of refraction exceeds a threshold
value, this mode is neglected by Turolla et al. in the transmitted
wave. Such treatment is incorrect and can lead to significant
errors in the reflectivity calculation. The inclusion of collisional
damping gives rise to complex values for the index of refraction,
which lead to transmitted waves with a propagating (oscilla-
tory) part multiplied by a decaying amplitude (see Appendix B).
While the damping factor for such waves can be large if the
index of refraction has a large imaginary part, the propagating
piece allows energy to be carried across the vacuum-surface
boundary, and therefore these waves cannot be ignored in the
reflectivity calculation.9

5. DISCUSSION

As discussed in x 1, many isolated NSs detected in thermal
emission display no spectral features and are well fit by a black-

body spectrum. The most thoroughly studied object of this type
is RX J1856.5�3754, which is well fit in the X-ray by a black-
body spectrum at kT1 ¼ 63:5 eV, with emission radius R1 ¼
4:4(d/120 pc) km (where d is the distance). This X-ray black-
body underpredicts the optical flux by a factor of 7. Pavlov &
Zavlin (2003) review several models involving a nonuniform
temperature on the surface of the NS, in which the X-ray
photons are emitted by a hot spot. By varying the temperature
distribution and assuming blackbody emission from each sur-
face element, a reasonable fit to the X-ray and optical data can
be achieved (see also Braje & Romani 2002; Trümper et al.
2004). Nevertheless, the nearly perfect X-ray blackbody spec-
trum of RX J1856.5�3754 is surprising.

If the NS surface is indeed in the condensed form (see x 2), the
emissivity will be determined by the properties of the condensed
matter. Our calculations (xx 3 and 4) show that the emission spec-
trum resembles that of a diluted blackbody, with the reduction
factor in the range of J ¼ 0:4 1 depending on the photon energy
(see Figs. 2–6). This would increase the inferred emission radius
by a factor of J�1/2. The weak ‘‘absorption’’ features in the emis-
sion spectrum are associated ion cyclotron resonance and electron
plasma frequency in the condensedmedium.We note that the emis-
sivity and spectrum presented in this paper correspond to a local
patch of the NS. When the emission from different surface el-
ements are combined to form a synthetic spectrum, these absorp-
tion features are expected to be smoothed out further because
of the magnetic field variation across the NS surface.

In our calculations, we have assumed a perfectly smooth sur-
face. This is valid if the condensed matter is in a liquid state, as
is likely to be the case for H condensate (see x 2.1). For Fe, the
condensed surface is most likely a solid and we may expect a
rough surface. Although it is not possible to predict the scale and
shape of the surface irregularities, their maximum possible height
hmax can be estimated from the requirement that the stress non-
uniformity��gh be small compared to the shear stress 
	s. With
the shear modulus
 ’ 0:1ni(Ze)

2/ai (e.g., Ogata & Ichimaru 1990)
and the maximum strain angle 	s ¼ 10�3	�3, we find hmax �
2 ;10�5	�3Z

2A�4=3�1=31 g�1
14 cm (where g ¼ 1014g14 cm s�2 is the

surface gravity). For the condensed Fe surface at the density
given by equation (1), we have hmax � 4 ;10�4	�3B

2=5
12 cm (for

an NS with R ¼ 10 km and M ¼ 1:4 M�). Clearly, the scale of
the surface roughness can easily be much larger than the photon
wavelength (�10 8). As illustrated in Figure 11, the surface
may be much less reflective than the results shown in x 4, and
the emission will be closer to the blackbody spectrum.

The emission from a condensed NS surface is distinct from
atmospheric emission in several aspects: (1) Atmospheric

Fig. 10.—Angle-averaged intensity h1� Ri as defined in x 4.1 for B ¼
5 ; 1013 G, T6 ¼ 1:0, 	B ¼ 0:7 ; �/2. The solid line shows our result including
the ion effect, while the dashed line shows the results when the ion motion is
neglected. For comparison, the dotted line shows data from Fig. 5 of Turolla
et al. (2004).

9 After we submitted our paper, a preprint of Perez-Azorin et al. (2005)
appeared reproducing the calculations described here. These authors arrive at
similar conclusions.

Fig. 11.—Effect of surface roughness on the reflectivity. The surface
roughness is characterized by the vertical scale h and horizontal scale l, both
much greater than the photon wavelength. For the idealized ‘‘triangular’’ sur-
face, a normal incident ray goes through at least two reflections if 	 ¼
tan�1(l/h) < 60	, at least three reflections if 	 < 36	, at least four reflections
if 	 < 180	/7, etc. Thus net reflectivity of the rough surface isT1 if h >
a few ; l, and the emission spectrum will be close to blackbody.
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emission generally possesses a hard spectral tail (although this
tail is somewhat suppressed by the QED effect for Bk 1014 G;
see x 1), whereas the condensed surface emission does not.
(2) The spectrum of a cool NS atmosphere can have both cyclo-
tron and atomic absorption features (again, they are reduced for
Bk1014 G); the broad (cyclotron and plasma) features of con-
densed surface emission persist even in the magnetar field re-
gime (if they are not smoothed out by variations of surface
B fields or by the rough surface effect). (3) The polarization sig-
nature of condensed matter emission is qualitatively different
from that of atmospheric emission. All these aspects can serve
as diagnostics for the physical condition of the emission region.

At the surface temperature of anomalous X-ray pulsars and
soft gamma repeaters, T ’ 5 ;106 K, H is unlikely to be con-
densed, but Fe condensation is possible. The dim, isolated
NSs have lower temperatures (T P 106 K), and if they possess
magnetar-like fields, condensation is likely. In particular, the

blackbody X-ray spectra of RX J1856.5�3754 (kT ’ 64 eV)
and RX J0420�5022 (kT ’ 45 eV; see Haberl et al. 2004a)
could arise from condensed surface emission (e.g., nonsmooth
Fe surface at Bk1012 G), although to account for the optical
data, nonuniform surface temperatures are still needed.
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APPENDIX A

REFLECTIVITY CALCULATION

Here we fill in some of the details for the reflectivity calculation described in x 3.2.
In the coordinate system xyz defined in x 3.2, the explicit expression for equation (12) is

�cos2	B þ � sin2	B þ n2j sin2	(t)j cos2’� 1
� �

ig cos 	B þ n2j sin
2	(t)j sin ’ cos ’ (�� �) sin 	B cos 	B þ n2j sin 	

(t)
j cos 	(t)j cos ’

�ig cos 	B þ n2j sin
2	(t)j sin ’ cos ’ �þ n2j sin2	(t)j sin

2’� 1
� �

�ig sin 	B þ n2j sin 	
(t)
j cos 	(t)j sin ’

(�� �) sin 	B cos 	B þ n2j sin 	
(t)
j cos 	(t)j cos ’ ig sin 	B þ n2j sin 	

(t)
j cos 	(t)j sin ’ �sin2	B þ �cos2	B � n2j sin

2	(t)j

2
66664

3
77775

;

Ex

Ey

Ez

2
64

3
75¼ 0; ðA1Þ

where nj (with j ¼ 1; 2) is the index of refraction in the medium, and 	(t)j is the formal complex angle of propagation calculated
using Snell’s law (see Appendix B for a discussion of the interpretation of complex 	(t)j ). Taking the determinant of equation (A1)
yields

a4n
4
j þ a2n

2
j þ cos 	(t)j sin 	(i) a1nj þ a3n

3
j

� �
þ a0 ¼ 0; ðA2Þ

where we have used Snell’s law and the following definitions:

a0 ¼ � 2 � g2

 �

� þ 1

8
g2 þ � (� � �)
� �

2þ 6 cos 2	B � 4sin2	B cos 2’

 �

sin2	(i) � 2 �cos2	B þ � sin2	B

 �

sin2’sin4	(i); ðA3aÞ

a1 ¼ � (� � �)þ g2
� �

sin 2	B cos ’; ðA3bÞ

a2 ¼
1

2
g2 � � (�þ 3�)� g2 þ � (� � �)

� �
cos 2	B

� 

þ �(�� �) cos 2	B þ �cos2	B þ � sin2	B


 �
sin2’� �cos2’

� �
sin2	(i); ðA3cÞ

a3 ¼ (�� �) sin 2	B cos ’; ðA3dÞ
a4 ¼ � 2 � g2


 �
�: ðA3eÞ

The cos 	(t)j term is moved to the right-hand side, and the entire equation is then squared. Using the identity cos2	(t)j ¼ 1� sin2	(t)j
and Snell’s law gives a polynomial equation in nj:

a2
4n

8
j þ 2a2a4 � a23 sin

2	(i)

 �

n6j þ a22 þ 2a0a4 � 2a1a3 sin
2	(i) þ a2

3 sin
4	(i)


 �
n4j

þ 2a0a2 � a2
1 sin

2	(i) þ 2a1a3 sin
4	(i)


 �
n2j þ a2

0 þ a2
1 sin

4	(i) ¼ 0: ðA4Þ

The polynomial equation (A4) has eight roots for nj , which we found numerically using Laguerre’s method (Press et al. 1992).
Only two of the roots are physical and satisfy the original equation (A2). In practice, it was found that for certain combinations of
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the parameters E, 	(i), 	B, and ’, a spurious root satisfies equation (A2) to the specified degree of accuracy, resulting in an un-
physical result for the reflectivity. It is often the case that such roots can be discounted physically using conditions (B3) and (B4)
(see Appendix B). Once the indices of refraction n1 and n2 are known, the normal mode polarization vectors can be determined.
Solving equation (12) for the ratios E(t)

x /E(t)
y and E(t)

z /E(t)
y gives the expressions

fj ¼
E(t)
x

E
(t)
y

 !
j

¼ i
�� iBjg sin 	B þ n2j sin 	

(t)
j sin ’ Bj cos 	

(t)
j þ sin 	(t)j sin ’

� �
� n2j

g cos 	B þ Ajg sin 	B þ in2j sin 	
(t)
j Aj cos 	

(t)
j þ sin 	(t)j cos ’

� �
sin ’

; ðA5aÞ

gj ¼
E(t)
z

E
(t)
y

 !
j

¼ Aj

E(t)
x

E
(t)
y

 !
j

þ Bj; ðA5bÞ

Aj ¼ �
�cos2	B þ � sin2	B þ n2j sin

2	(t)j cos2’

(�� �) sin 	B cos 	B þ n2j sin 	
(t)
j cos 	(t)j cos ’

; ðA5cÞ

Bj ¼ �
ig cos 	B þ n2j sin 	

(t)
j sin ’ cos ’

(�� �) sin 	B cos 	B þ n2j sin 	
(t)
j cos 	(t)j cos ’

: ðA5dÞ

With the propagation modes in the plasma determined, the latter two equations of equation (14) give

cos 	(i) sin ’ cos ’ C1 C2

cos 	(i) cos ’ sin ’ �C1 �C2

�cos ’ �cos 	(i) sin ’ C5 C6

�sin ’ cos 	(i) cos ’ C7 C8

0
BBB@

1
CCCA

r11

r12

t11

t12

r21

r22

t21

t22

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

�cos 	(i) sin ’

cos 	(i) cos ’

cos ’

sin ’

�cos ’

�sin ’

�cos 	(i) sin ’

cos 	(i) cos ’

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ðA6Þ

for the incoming polarization modes e(i)1 ¼ (�cos 	(i) cos ’; �cos 	(i) sin ’; sin 	(i)) and e(i)2 ¼ (sin ’; �cos ’; 0). Inverting the coeffi-
cient matrix of equation (A6) and performing extensive algebra yields the following expressions for the reflected field amplitudes:

r11 ¼
4A cos 	(i) � 2B�sin

2	(i) þ


3þ cos 2	(i)

�
(Bþ cos 2’þ Cþ sin 2’)

4A cos 	(i) þ B�


3þ cos 2	(i)

�
� 2sin2	(i)(Bþ cos 2’þ Cþ sin 2’)

; ðA7aÞ

r12 ¼
4 cos 	(i)(C� þ Bþ sin 2’� Cþ cos 2’)

4A cos 	(i) þ B�


3þ cos 2	(i)

�
� 2sin2	(i)(Bþ cos 2’þ Cþ sin 2’)

; ðA7bÞ

r21 ¼
4 cos 	(i)(Cþ cos 2’� Bþ sin 2’þ C�)

4A cos 	(i) þ B�


3þ cos 2	(i)

�
� 2sin2	(i)(Bþ cos 2’þ Cþ sin 2’)

; ðA7cÞ

r22 ¼


3þ cos 2	(i)

�
(Bþ cos 2’þ Cþ sin 2’)� 4A cos 	(i) � 2B�sin

2	(i)

4A cos 	(i) þ B�


3þ cos 2	(i)

�
� 2sin2	(i)(Bþ cos 2’þ Cþ sin 2’)

; ðA7dÞ

using the definitions

C1;2 ¼ 1þ f1;2
		 		2þ g1;2

		 		2� ��1=2
; ðA8aÞ

C5;6 ¼ C1;2 n1;2 sin 	
(t)
1;2 cos ’ g1;2 � n1;2 cos 	

(t)
1;2 f1;2

� �
; ðA8bÞ

C7;8 ¼ C1;2 n1;2 sin 	
(t)
1;2 sin ’ g1;2 � n1;2 cos 	

(t)
1;2

� �
; ðA8cÞ

A ¼ (C6C7 � C5C8); ðA8dÞ
B� ¼ (C2C5 þ C2C6) � (C2C7 � C1C8); ðA8eÞ
C� ¼ (C1C6 þ C2C5) � (C2C7 � C1C8): ðA8f Þ

The reflectivity and the emission spectrum and polarization are then determined by equations (7a), (7b), (8), and (9).
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APPENDIX B

COMPLEX ANGLE OF PROPAGATION

In this appendix we outline some of the physical properties of the wave propagating in the plasma with complex index of refraction
(see Born & Wolf 1970, x 13.2).

For a medium with complex index of refraction n ¼ nR þ inI (where nR and nI are real), the formal refraction angle 	(t), as
determined by Snell’s law, is complex. Let cos 	(t) ¼ (1� sin2	(t))1=2 ¼ cos 	(t)R þ i cos 	(t)I . Defining the vector parallel to the plane
of incidence ŝ ¼ (�cos ’; �sin ’; 0), the wavevector for the transmitted waves can be written

k(t) ¼ n!

c
sin 	(t)ŝ� cos 	(t)ẑ
� �

¼ !

c
sin 	(i)ŝþ nI cos 	

(t)
I � nR cos 	

(t)
R

� �
ẑ� i nI cos 	

(t)
R þ nR cos 	

(t)
I

� �
ẑ

h i
: ðB1Þ

The transmitted electric field has the form E(t) / e ik
(t) = r�i!t. Substituting equation (B1) into this expression, the field takes the form

E(t) / exp nR cos 	
(t)
I þ nI cos 	

(t)
R

� �
z

h i
exp i

!

c
sin 	(i)s� nR cos 	

(t)
R � nI cos 	

(t)
I

� �
z

h i
� i!t

n o
: ðB2Þ

Thus, the transmitted wave has a propagating component multiplied by a damping factor. Since the amplitude of the wave must
decrease as it travels through the medium, equation (B2) gives the following condition on the index of refraction (recall that in the
geometry of x 3.2, z < 0):

nR cos 	
(t)
I þ nI cos 	

(t)
R > 0: ðB3Þ

The traveling component can be used to define a new wavevector k0 ¼ sin 	(i)ŝ� (nR cos 	
(t)
R � nI cos 	

(t)
I ) ẑ. The real angle of

propagation is then given by cos 	(t)
0 ¼ k̂0 =k0/jk0j. By assumption, the angle of propagation for the refracted wave measured with

respect to the z-axis must be greater than �/2, yielding a second condition on the index of refraction:

�1 
 cos 	(t)
0
¼ nI cos 	

(t)
I � nR cos 	

(t)
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2	(i) þ nI cos 	
(t)
I � nr cos 	

(t)
R

� �2r 
 0: ðB4Þ

The real and imaginary parts of the indices of refraction for the birefringent transmitted waves must satisfy equations (B3) and
(B4).
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