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Chemical spots and oscillatory diffusion modes in magnetic stars
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The stars of the middle main sequence often have spot-like chemical structures at their surfaces. We consider diffusion
caused by electric currents and argue that such current-driven diffusion can form chemical inhomogeneities in a plasma.
The considered mechanism can contribute to a formation of element spots in Hg-Mn and Ap-stars. Due to the Hall effect,
diffusion in the presence of electric currents can be accompanied by the propagation of a particular type of magnetohydro-
dynamic modes in which only the impurity number density oscillates. Such modes exist if the magnetic pressure is much
greater than the gas pressure and can be the reason for variations of the abundance peculiarities in stars.
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1 Introduction

The stars of the middle main sequence often have rela-
tively quiescent surface layers, but abundance peculiarities
can develop in their atmospheres since, in general, there
are physical processes that lead to an evolution of the at-
mospheric chemistry during the main sequence lifetime.
These processes, however, are sensitive to the stellar con-
ditions. For example, in cool stars (with the effective sur-
face temperature, Teff ≤ 7000 K), the gravitational separa-
tion is overwhelmed by deep convective mixing of the outer
envelope and, likely, does not lead to abundance peculiar-
ities. In hot stars with Teff ≥ 20 000 K, the radiation flux
drives a strong stellar wind, stripping plasma off the stel-
lar surface so quickly that the processes of separation are
not able to compete. It appears that the A- and late B-type
main-sequence stars lie between these two values of Teff.
Chemical composition can evolve in the atmospheres of
such stars, for example, because of loss of heavy ions caused
by gravitational settling. Also, the atmosphere can acquire
ions driven upwards by radiative acceleration due to the ra-
diative energy flux (Michaud et. al. 1976).

Many stars with peculiar chemical abundances show
line-profile variations. The generally accepted point of view
is that these variation are caused by the rotation of chemical
spots at the stellar surface (see, e.g., Pyper 1969; Khokhlova
1985; Silvester et al. 2012). The exact reasons of inhomo-
geneous surface distributions on stars are unknown. It is
often believed that chemical spots can occur in the pres-
ence of a strong magnetic field. For example, Ap stars show
variations of both spectral lines and magnetic field strength
that can be caused by rotation of the chemical and mag-
netic spots. The reconstruction of the stellar magnetic ge-
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ometry from observations has been a complex problem for
decade. The magnetic Doppler imaging code developed by
Piskunov & Kochukhov (2002) makes it possible to derive
the magnetic map of a star self-consistently with the distri-
bution of chemical elements. The reconstructions show that
the magnetic and chemical maps can be extremely complex
(Kochukhov et al. 2004a).

Surprisingly, it turns out that usually chemical elements
do not exhibit a clear correlation with the magnetic geom-
etry. For instance, Kochukhov et al. (2004b) have found
that almost all elements (except maybe lithium and oxy-
gen) of the Ap-star HR 3831 do not follow the symmetry
of the dipolar magnetic field but are distributed in a rather
complex manner. The calculated distributions demonstrate
the complexity of diffusion in Ap-stars and discard a point
of view that diffusion leads to a formation of the chemical
spots symmetric with respect to the longitudinal magnetic
field (Kochukhov 2004). Likely, chemical distributions are
affected by a number of poorly understood phenomena in
the surface layers of stars and are not directly related to the
strength of the longitudinal field.

Often, the formation of the chemical spots is related
to anisotropic diffusion in a strong magnetic field (see,
e.g., Michaud 1970). Indeed, the magnetic field of Ap-
stars (∼103–104 G) can magnetize electrons in a plasma
that, generally, leads to anisotropic transport and can
produce an inhomogeneous distribution of chemical ele-
ments. Anisotropy of diffusion in a magnetized plasma
is characterized by the Hall parameter, xe = ωBeτe, where
ωBe = eB/mec is the gyrofrequency of electrons and τe is
their relaxation time; B is the magnetic field. In a hydrogen
plasma, τe = 3

√
me(kBT )3/2/4

√
2πe4nΛ (see, e.g., Spitzer

1978), where n and T are the number density of elec-
trons and their temperature,Λ is the Coulomb logarithm. At
xe ≥ 1, the rates of diffusion along and across the magnetic
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field become different and, in general, diffusion can result
in some inhomogeneous distribution of elements at the sur-
face. The condition xe ≥ 1 yields the following estimate of
the magnetic field:

B ≥ Be = 2.1×103Λ10 n15 T−3/2
4 G, (1)

where Λ10 = Λ/10, n15 = n/1015, and T4 = T/104 K.
Some Ap-stars that exhibit spot-like chemical structures

have a sufficiently strong magnetic field that satisfies this
condition. Note, however, that the magnetic field (1) mag-
netizes only electrons and, as a result, its effect on diffu-
sion of heavy ions is relatively weak. For example, the dif-
ference of diffusion coefficients along and across the field
basically does not exceed ∼ 10–15 % in this case. A much
stronger field is required to magnetizes protons and to pro-
duce strong chemical inhomogeneities in stars. In this case,
one requires the Hall parameter for protons, y = eBτp/mpc,
to obey y > 1. Here τp = 3

√
mp (kBT )3/2/4

√
2πe4nΛ is the

relaxation time for protons (see, e.g., Spitzer 1978). The
condition y > 1 yields

B > Bp = 105 n15T−3/2
4 Λ10 G. (2)

Such a field leads to a higher anisotropy of diffusion, but it
is substantially stronger than the field detected at the sur-
face of Ap-stars. Note that the two important factors lead-
ing to anisotropic diffusion – magnetization of electrons and
protons – are usually neglected in calculations of diffusion
in stellar atmospheres (see, e.g., Michaud 1970; Vauclair et
al. 1979; Alecian & Stift 2006) and only magnetization of
heavy ions is taken into account. The latter requires, how-
ever, even a stronger field than that given by Eqs. (1) and
(2).

In recent years, the discovery of chemical inhomo-
geneities in Hg-Mn stars has risen additional doubts regard-
ing the magnetic origin of these inhomogeneities. The in-
homogeneous distribution of some chemical elements over
the surface of Hg-Mn stars was discussed first by Hubrig &
Mathys (1995). In contrast to Ap-stars, no strong large-scale
magnetic field has ever been detected in Hg-Mn stars (see,
e.g., Wade et al. 2004 who find no longitudinal field above
50 G in the Hg-Mn star αAnd with a spotted chemical struc-
ture). This field is obviously not sufficient to magnetize the
plasma.

Weak magnetic fields in the atmospheres of Hg-Mn stars
have been detected also by a number of authors (see, e.g.,
Hubrig & Castelli 2001; Hubrig et al. 2006; Makaganiuk et
al. 2011, 2012; Hubrig et al. 2012). On the other hand, mag-
netic fields up to a few hundred Gauss have been detected
in several Hg-Mn stars as well (see, e.g., Mathys & Hubrig
1995). Measurements by Hubrig at al. (2010) reveal a longi-
tudinal magnetic field of the order of a few hundred Gauss
in the spotted star AR Aur. The complex interrelations be-
tween the magnetic field and element spots clearly indicate
how incomplete our understanding of diffusion processes in
stars is. The detected field strength often is not sufficient to
influence diffusion processes but, nevertheless, chemical in-
homogeneities occur in many objects. Most likely, this point

indicates that there should exist some additional diffusion
mechanisms in stars that can create chemical spots even if
the magnetic field is relatively weak.

In this paper, we consider the diffusion process that can
contribute to a formation of chemical inhomogeneities in
stars and is typical only for plasmas. This process is relevant
to electric currents and is well studied in a laboratory plasma
(see, e.g., Vekshtein et al. 1975; Vekstein 1987). For exam-
ple, it plays an important role in some thermonuclear fusion
experiments with magnetic confinement because the num-
ber density of heavy ions determines the rate of radiative
cooling and is crucial for such experiments (see, e.g., Tange
1975). In these devices, the current-driven diffusion causes
heavy ions to diffuse away from the hot plasma region (e.g.,
Markvoort & Rem 1975). Unfortunately, this type of diffu-
sion has not been considered in detail in stellar conditions
except in a recent study by Urpin (2015) where the main
qualitative features of this process are discussed and a com-
parison of the diffusion rate caused by electric currents with
that of other types of diffusion is made. In combination with
other mechanisms, this process can contribute to the forma-
tion of chemical spots.

In the present paper, we continue the study of current-
driven diffusion in stars. By making use of a simple model,
we argue that such diffusion in combination with the Hall
effect can be the reason of particular type of modes in stellar
atmospheres. In these modes, the impurity number density
oscillates alone whereas other parameters of the plasma re-
main unchanged. These modes can be responsible for vari-
ations in the atmospheric abundances of magnetic stars.

2 Diffusion velocity

Consider a cylindrical plasma configuration with the mag-
netic field parallel to the axis z, B = B(s)ez; (s, ϕ, z) and
(es, eϕ, ez) are cylindrical coordinates and the correspond-
ing unit vectors. The electric current in such configuration
is

jϕ = −(c/4π)(dB/ds). (3)

We suppose that jϕ → 0 at large s and, hence, B → B0 =

const at s → ∞. The magnetic geometry of ApBp stars is
not well studied and, therefore, we use this simplified model
to understand the main qualitative features of the current-
driven diffusion mechanism. Note that, in some cases, the
considered configuration can mimic real magnetic fields
with a high accuracy. This is valid, for example, for the mag-
netic field near the magnetic pole where field lines are very
close to a cylindrical geometry (see, e.g., Urpin & Van Riper
1993).

Note that B(s) can not be an arbitrary function of s be-
cause, generally, the magnetic configurations can be unsta-
ble for some dependences B(s) (see, e.g., Tayler 1973; Bo-
nanno & Urpin 2008a,b). The characteristic timescale of
this instability is usually of the order of the time taken for
an Alvén wave to travel around the star, i.e. much shorter
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than the diffusion timescale. Therefore, any formation of
chemical structures in such unstable magnetic configura-
tions seems to be impossible.

We assume that plasma is fully ionized and consists of
electrons e, protons p, and a small admixture of heavy ions i.
The number density of species i is small and does not influ-
ence the dynamics of plasma. Therefore, these ions can be
treated as trace particles interacting only with a background
hydrogen plasma.

The partial momentum equations in a fully ionized mul-
ticomponent plasma have been considered by a number of
authors (see, e.g., Urpin 1981). This study deals mainly with
a hydrogen-helium plasma. However, the derived equations
can be applied for a hydrogen plasma with a small admix-
ture of any other ions if their number density is small. If
the mean hydrodynamic velocity of the plasma is zero and
only small diffusive velocities are non-vanishing, the partial
momentum equation for the species i reads

−∇pi + Zieni

(
E +

Vi

c
× B

)
+ Rie + Rip + Fi = 0, (4)

where Zi is the charge number of the species i, pi and ni are
its partial pressure and number density, E is the electric field
in plasma, and Vi is the diffusion velocity. Since diffusive
velocities are usually very small, we neglect the terms pro-
portional (Vi · ∇)Vi in the momentum equation (4). For the
sake of simplicity, we consider the case T = const and ne-
glect thermodiffusion. The force Fi is the external force on
species i; in stellar conditions, Fi is the sum of gravitational
and radiative forces. The forces Rie and Rip are caused by
the interaction of ions i with electrons and protons, respec-
tively. Note that forces Rie and Rip are internal, but the sum
of internal forces over all plasma components is zero in ac-
cordance with Newton’s third law. If ni is small compared
to the number density of protons, Rie is given by

Rie = −(Z2
i ni/n)Re, (5)

where Re is the force acting on the electron gas (see, e.g.,
Urpin 1981). Since ni 
 n, Re is determined mainly by scat-
tering of electrons on protons but scattering on ions i gives
a small contribution to Re as well. Therefore, we can use
for Re the expression for a hydrogen plasma calculated by
Braginskii (1965).

Generally, the force Re contains terms proportional to
the temperature gradient and the relative velocity of elec-
trons and protons. In our model, the plasma is assumed to
be isothermal, therefore the expression for Re reads

Re = −α‖u‖ − α⊥u⊥ + α∧ b × u, (6)

where u = − j/en is the current velocity of electrons; b =
B/B; the subscripts ‖, ⊥, and ∧ denote the parallel, per-
pendicular, and the so called Hall components of the cor-
responding vector; α‖, α⊥, and α∧ are the coefficients calcu-
lated by Braginskii (1965). The force (6) describes a stan-
dard friction between different components in a magne-
tized plasma caused by a relative motion of the electron
and proton gases. Taking into account Eq. (3), we have

u = (c/4πen)(dB/ds) eϕ. Since B ⊥ u in our model, we have
u‖ = 0.

In this paper, we consider diffusion only in a rela-
tively weak magnetic field that does not magnetize elec-
trons, xe 
 1. Substituting Eq. (6) into Eq. (5) and using
the coefficients α⊥ and α∧ calculated by Braginskii (1965),
we obtain, accurate in linear terms in xe,

Rieϕ = Z2
i ni

(
0.51

me

τe
u

)
, Ries = Z2

i ni

(
0.21x

me

τe
u

)
. (7)

If T = const, the friction force Rip is proportional to the
relative velocity of ions i and protons. Like Re (see Eq. 6),
this force also has a tensor character and, generally, depends
on the magnetic field. In the presence of the magnetic field,
it can be represented in the form

Rip = α
(W)
‖ (Vp − Vi)‖ + α

(W)
⊥ (Vp − Vi)⊥ +

α
(W)
∧ b × (Vp − Vi), (8)

where the coefficients α(W)
‖ , α(W)

⊥ , and α(W)
∧ have been cal-

culated by Urpin (1981). However, the dependence of these
coefficient on the magnetic field becomes important only
if the magnetic field is of the order of or greater than
Bi = BpZ2

i . The field Bi is always greater than Be (Eq. 1)
and Bp (Eq. 2) which is qualitatively clear because it is more
difficult to magnetize heavy ions with Zi > 1 than protons or
electrons. Surprisingly, only this effect of the magnetic field
on the anisotropy of diffusion processes is usually taken into
account in calculations of chemical inhomogeneities in stars
(see, e.g., Michaud et al. 1976; Vauclair et al. 1979; Alecian
& Stiff 2006). The effects associated with Re are usually
neglected but we will show that they are important as well,
particularly in stars without very strong magnetic fields.

The force Rip has an especially simple shape if Ai =

mi/mp � 1 (see Urpin 1981), and we consider only this
case. We neglect the influence of the magnetic field on Rip

since this influence becomes important only in a strong
magnetic field ≥ Bp. Taking into account that the velocity
of the background plasma is zero, Vp = 0, the friction force
Rip can be written as

Rip = (0.42miniZ
2
i /τi), (−Vi), (9)

where τi = 3
√

mi(kBT )3/2/4
√

2πe4nΛ, and τi/Z2
i is the

timescale of ion-proton scattering. We assume that Λ is the
same for all types of scattering (see, e.g., Urpin 1981).

The cylindrical components of Eq. (4) yield

− d
ds

(nikBT ) + Zieni

(
Es +

Viϕ

c
B

)
+ Ries + Rips = 0, (10)

Zieni

(
Eϕ −

Vis

c
B
)
+ Rieϕ + Ripϕ = 0, (11)

− d
dz

(nikBT ) + ZieniEz + Riez + Ripz + Fiz = 0. (12)

In our simplified magnetic configuration, we have Riez = 0.
Eqs. (10)–(12) depend on cylindrical components of the
electric field, Es, Eϕ, and Ez. These components can be de-
termined from the momentum equations for electrons and
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protons,

−∇(nkBT ) − en
(
E +

u
c
× B

)
+ Re + Fe = 0, (13)

−∇(nkBT ) + enE − Re + Fp = 0. (14)

In these equations, we neglect collisions of electrons and
protons with the ions i since these ions are considered as
the test particles and their number density is assumed to be
small.

The sum of Eqs. (13) and (14) yield the equation of hy-
drostatic equilibrium. The difference of Eqs. (14) and (13)
yields the following expression fo the electric field:

E = −1
2

u
c
× B +

Re

en
− 1

2en
(Fp − Fe). (15)

Taking into account the friction force Re (Eq. 6) and the
coefficients α⊥ and α∧ calculated by Braginskii (1965), we
obtain with accuracy in linear terms in xe

Es = −
uB
2c
− 1

e

(
0.21

meu
τe

xe

)
, Eϕ = −

1
e

(
0.51

meu
τe

)
,

Ez = −
1

2en
(Fpz − Fez). (16)

Substituting Eqs. (5) and (16) into the vertical compo-
nent of the momentum equation (12), we obtain the follow-
ing expression for the velocity of vertical diffusion:

Viz = −D
d ln ni

dz
+

D
nikBT

F(i)
z , (17)

where D = 2.4c2
i τi/Z2

i is the diffusion coefficient, c2
i =

kBT/mi, and

F(i)
z = Fiz −

Zini

2n
(Fpz − Fez). (18)

Usually, radiative acceleration due to the radiative en-
ergy flux and gravitational settling gives the main contribu-
tion to the external force F(i)

z (Michaud et al. 1976). The dif-
fusion velocity caused by these forces can be relatively fast
and, therefore, the vertical diffusion often is faster than dif-
fusion in the tangential direction parallel to the surface. As a
result, the vertical distribution of chemical elements reaches
a quasi-steady equilibrium on a relatively short timescale.
Note, however, that expression (17) for Viz does not depend
on the magnetic field in our approximation (xe 
 1) and,
therefore, the vertical diffusion cannot form chemical spots
if the magnetic field is relatively weak and B
 Be. This
conclusion is obvious in our approach because we neglect
the magnetization of heavy ions deriving Eq. (17). The ver-
tical diffusion can form chemical spots only if Viz depends
on tangential coordinates. Such departures from spherical
symmetry can appear in stars, for example, if one take into
account small corrections to α(W)

‖ and α(W)
⊥ caused by the

magnetic field. However, these corrections are of the order
of (ωBiτi)2 where ωBi is the cyclotron frequency of ions and
they are small if B
 Bp/Z2

i (see Eq. 2). This condition is
satisfied in all Ap-stars and, therefore, the rate of forma-
tion of element spots by vertical diffusion is much smaller
than the rate of vertical diffusion itself. Since the vertical

diffusion is considered in detail by a number of authors, we
concentrate mainly on the horizontal diffusion.

The tangential components of the diffusion velocity can
be obtained from Eqs. (10) and (11). Taking into account
Eq. (9) for Rip, one can transform Eqs. (10) and (11) into

Vis − qViϕ = A, Viϕ + qVis = G, (19)

where

A =
D

nikBT

(
−dpi

ds
+ ZieniEs + Ries

)
, (20)

G =
D

nikBT

(
ZieniEϕ + Rieϕ

)
, q = 2.4

eB
Zimic

τi. (21)

Then the diffusion velocities in the s- and ϕ-directions are

Vis =
A + qG
1 + q2

, Viϕ =
G − qA
1 + q2

. (22)

The parameter q is of the order of ωBiτi and is small even
for magnetic fields typical for Ap-stars. Then, we have for
q 
 1

Vis ≈ A, Viϕ ≈ G. (23)

Substituting Eqs. (7) and (16) into expressions (20)–(21) for
A and G, we obtain the following expressions for the diffu-
sion velocities:

Vis = Vni + VB, Vni = −D
d ln ni

ds
, VB = DB

d ln B
ds
, (24)

Viϕ = DBϕ
dB
ds

; (25)

Vni is the velocities of ordinary diffusion and VB is the diffu-
sion velocity caused by the electric current. The correspond-
ing diffusion coefficients are

D =
2.4c2

i τi

Z2
i

, DB =
2.4c2

Aτi

ZiAi
(0.21Zi − 0.71), (26)

DBϕ = 1.22

√
me

mi

c(Zi − 1)
4πenZi

. (27)

where c2
i = kBT/mi and c2

A = B2/(4πnmp). Equations (24)–
(25) describe the drift of ions i under the combined influence
of ∇ni and j. Note that heavy ions diffuse not only in the
radial direction but also rotate around the magnetic axis.

3 Distribution of ions caused by current-
driven diffusion

The condition of hydrostatic equilibrium in our model reads

−∇p + F +
1
c

j × B = 0, (28)

where p is the gas pressure, ρ is the density, and F is an
external force acting on the plasma. Since the background
plasma is fully ionized hydrogen, p ≈ 2nkBT , where kB is
the Boltzmann constant. Under stellar conditions, F is usu-
ally the sum of two forces, F = Fg + Frad, where Fg = ρg

is the gravity force, and Frad is caused by radiative acceler-
ation due to the radiative energy flux from the interior. We
assume that the two external forces Fg and Frad act in the
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vertical direction. Then, the z-component of Eq. (28) deter-
mines the vertical distribution of a background plasma and
reads ∂p/∂z = Fz. The s-component of these equation de-
scribes the transverse structure of a magnetic atmosphere.
Integrating the s-component of Eq. (28), we obtain

n = n0

(
1 + β−1

0 − β−1
)
, (29)

where β = 8πp0/B2; (p0, n0, T0, β0) are values of the corre-
sponding quantities at s→ ∞.

Consider the equilibrium distribution of heavy ions in
our model. In equilibrium, we have Vis = 0, and Eq. (24)
yields

D
d ln ni

ds
= DB

d ln B
ds
. (30)

The term on the r.h.s. describes the effect of electric currents
on the distribution of impurities. Note that this type of diffu-
sion is driven by the electric current rather than by an inho-
mogeneity of the magnetic field. The conditions dB/ds � 0
and j � 0 are equivalent in our simplified magnetic config-
uration. Equation (28) yields

d
ds

(nkBT ) = − B
8π

dB
ds
. (31)

Substituting Eq. (31) into Eq. (30) and integrating, we
obtain
ni

ni0
=

(
n
n0

)μ
, (32)

where

μ = −2Zi (0.21Zi − 0.71) (33)

and ni0 the value of ni at s → ∞. Denoting the local abun-
dance of the element i as γi = ni/n and taking into account
Eq. (29), we have

γi

γi0
=

(
n
n0

)μ−1

=

(
1 +

1
β0
− 1
β

)μ−1

, (34)

where γi0 = ni0/n0. Local abundances turn out to be flex-
ible to the field strength, and this concerns ions with large
charge numbers in particular. The exponent (μ−1) can reach
large negative values for elements with large Zi and, hence,
produce strong abundance anomalies. For instance, (μ−1) is
equal 0.16, –0.52, and –2.04 if Zi =2, 3, and 4, respectively.
Note that (μ−1) changes its sign as Zi increases: (μ−1) > 0
if Zi = 2 but (μ−1) < 0 for Zi ≥ 3. Therefore, elements with
Zi ≥ 3 are in deficit (γi < γi0) in the region with a weak
magnetic field (B < B0), but these elements should be over-
abundant in the spot where the magnetic field is stronger
than the external field B0.

Note that the dependence of the exponent (μ − 1) on Zi

can be responsible for the increase of the helium abundance
in magnetic stars with stellar age. This increase was first
discovered by Bailey et al. (2014) and is very unexpected
within the framework of the standard theory because radia-
tive levitation of He is very weak and becomes weaker as
the star evolves. However, the increase of the helium abun-
dance seems to be rather natural if one takes into account
the current-driven diffusion. Indeed, observations indicate

that the magnetic field decreases with the stellar age (see,
e.g., Bailey et al. 2014) because of Ohmic dissipation and,
hence, a contrast between the magnetic spots and the ambi-
ent plasma becomes weaker. As it follows from Eq. (34), a
weaker contrast of the magnetic field leads to a higher local
abundance of He in a spot.

It is generally believed that standard diffusion is smooth-
ing chemical inhomogeneities on a timescale of the order of
L2/D, where L is the length scale of a non-uniformity. How-
ever, this is not the case for a chemical distribution given by
Eq. (34) which can exist during a much longer time than
∼L2/D. In our model, the distribution (34) is reached due
to the balance of two diffusion processes, standard (∝ ∇ni)
and current-driven (∝ dB/ds) diffusion which pushes heavy
ions in the opposite directions. As a result, Vis = 0 in the
equilibrium state and this state can be maintained as long as
the electric currents exist. Therefore, the characteristic life-
time of chemical structures is of the order of the decay time
of electric currents, i.e. determined by Ohmic dissipation,
and is ∼ 4πσL2/c2, where σ is the electrical conductivity.
The decay of the magnetic field is very slow under stellar
conditions, and the decay timescale can be longer than the
diffusion timescale if D > c2/4πσ. Under such conditions,
the lifetime of a spot is entirely determined by the Ohmic
decay time.

Note that Vis = 0 in the equilibrium state but the ϕ-
component of the diffusion velocity is non-zero. It turns out
that impurities rotate around the magnetic axis even if equi-
librium is reached, Viϕ � 0. The direction of rotation de-
pends on the sign of dB/ds and is opposite to the electric
current. Since electrons move in the same direction, heavy
ions turn out to be carried along electrons. Different ions
move with different velocities around the axis, and the dif-
ference between different sorts of ions, ΔViϕ, is of the order
of

ΔViϕ ∼
c

4πen

√
me

mi

dB
ds
∼ 3×10−3 B4

n14 L10 A1/2
i

cm s−1, (35)

where B4 = B/104 G, n14 = n/1014 cm−3, and L10 = L/1010

cm. Since different impurities rotate around the magnetic
axis with different velocities, the periods of such rotations
are also different for different ions. The difference in periods
can be estimated as

ΔP =
2πL
ΔV
∼ 106 L2

10 n14 A1/2
i

B4
yr. (36)

If the distribution of impurities is non-axisymmetric then
such diffusion in the azimuthal direction should lead to slow
variations in the abundance peculiarities.

4 Oscillatory diffusion modes

In our model of plasma with a cylindrical symmetry, the
continuity equation for ions i reads

∂ni

∂t
− 1

s
∂

∂s

(
sD
∂ni

∂s
− sni

DB

B
dB
ds

)
= 0. (37)
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Together with Eqs. (24)–(25), this equation describes the
diffusion of ions i in the presence of electric currents.

Let us assume that the plasma is in a diffusion equilib-
rium (Eq. 30) and, hence, the distribution of elements in
such a basic state is given by Eqs. (34). Consider the be-
haviour of small disturbances of the number density of im-
purity from this equilibrium by making use of a linear anal-
ysis of Eq. (37). Since the number density of impurity i is
small, its influence on parameters of the basic state is negli-
gible. For the sake of simplicity, we assume that small dis-
turbances are axisymmetric and do no depend on the vertical
coordinate, z. Such disturbances have a shape of cylindrical
waves. Denoting disturbances of the impurity number den-
sity by δni and linearizing Eq. (37), we obtain the equation
governing the evolution of such small disturbances,

∂δni

∂t
− 1

s
∂

∂s

(
sD
∂δni

∂s
− sδni

DB

B
dB
ds

)
= 0. (38)

For the purpose of illustration, we consider only dis-
turbances with a wavelength shorter than the length scale
of unperturbed quantities. In this case, we can use the so
called local approximation and assume that small distur-
bances are ∝ exp(−iks), where k is the wavevector, ks � 1.
Since the basic state does not depend on time, δni can be
represented as δni ∝ eiωt−iks, where ω should be calculated
from the dispersion equation. Substituting δni in such form
into Eq. (38), we obtain the following dispersion equation:

iω = −ωR + iωI , ωR = Dk2, ωI = kDB (d ln B/ds). (39)

This dispersion equation describes a particular type of cylin-
drical waves in which only the number density of impuri-
ties oscillates. The quantity ωR characterizes decay of these
waves with the characteristic timescale ∼ (Dk2)−1 which is
typical for standard diffusion. The frequency ωI describes
oscillations of impurities caused by the Lorentz force. Note
that the frequency can be of any sign but ωR is always pos-
itive. The diffusion waves are aperiodic if ωR > |ωI| and os-
cillatory if |ωI| > ωR. The latter condition is equivalent to

c2
A/c

2
i > (Ai/Zi) |0.21Zi − 0.71|−1kL, (40)

where L = |d ln B/ds|−1 is the length scale of the magnetic
field. Diffusion waves become oscillatory if the field is suf-
ficiently strong and the magnetic pressure is greater than the
gas pressure. The frequency of diffusion waves is higher in
the region where the magnetic field has a strong gradient.
The order of magnitude estimate of ωI is given by

ωI ∼ kcA(1/ZiAi)(cA/ci)(li/L), (41)

where li = ciτi is the mean free-path of impurity ions. Note
that different impurities oscillate with different frequencies.
Therefore, the local abundances of different elements can
exhibit variations with the time. The characteristic timescale
of these variations is shorter in plasma with a stronger mag-
netic field.

5 Conclusion

We have considered diffusion of elements under a combined
influence of standard and current-driven diffusion mecha-
nisms. A diffusion velocity caused by the electric current
can be estimated as

VB ∼ cA(cA/ci)(1/ZiAi)(li/L) (42)

if the magnetic field is relatively weak and electrons are
not magnetized. Generally, this velocity can be comparable
to velocities caused by other diffusion mechanisms (Urpin
2015). The current-driven mechanism can form chemical
inhomogeneities in a plasma even if the magnetic field is
weak (∼10–100 G) whereas other diffusion processes re-
quire a substantially stronger magnetic field (see Eqs. 1 and
2). Using Eq. (24), the velocity of current-driven diffusion
can be estimated as

VB ∼ 1.1×10−2A−1/2
i B2

4 n−2
14 T 3/2

4 Λ10 L−1
10 cm s−1, (43)

whereΛ10 = Λ/10. The velocity VB turns out to be sensitive
to the field (∝ B2) and, therefore, diffusion in a weak mag-
netic field requires a longer time to reach the equilibrium
abundances (34).

The current-driven mechanism leads to a drift of ions in
the direction perpendicular to both the magnetic field and
electric current. Therefore, the distribution of chemical el-
ements in a plasma depends essentially on the geometry of
fields and currents. The mechanism considered can operate
both in laboratory plasmas and in various astrophysical bod-
ies where the electric currents are non-vanishing.

Our study reveals that a particular type of magnetohy-
drodynamic modes exists in a multicomponent plasma in
the presence of electric currents. These modes are character-
ized by oscillations of the impurity number density and ex-
ist only if the magnetic pressure exceeds essentially the gas
pressure. The frequency of such waves is given by Eq. (39)
and turns out to be relatively small. The frequency of dif-
fusion modes is different for different impurities. Therefore,
generation of such modes should lead to slow variations of
relative abundances of different elements in chemical spots.

The considered mechanism does not depend on the na-
ture of electric currents and can operate if the current is
maintained by some mechanism or if it is of fossil ori-
gin. If the length scale of the field is L, the Ohmic decay
timescale is td ∼ 4πσL2/c2, where σ is the conductivity. In
subphotospheric layers, we can estimate σ ∼ 3 × 1014 s−1

and td ∼ 107L2
10 yr. The timescale of diffusion from sub-

photospheric layers is tB ∼ H/VB, where H is the scale
height. Using Eq. (43) and assuming B ∼ 100 G, we ob-
tain tB ∼ 3 × 106H8L10 yr, where H8 = H/108 cm. Hence,
the current-driven diffusion is faster than the Ohmic dis-
sipation if L10 > 1 and it can form the observed chemical
inhomogeneities even if the magnetic field is of the fossil
origin.

Note that several studies failed to detect significant
global magnetic field in some spotted Hg-Mn stars. For in-
stance, Kochukhov et al. (2011) found an upper limit of
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only 3 G for the mean longitudinal magnetic field of μLep
and concluded that formation of chemical spots in Hg-Mn
stars is not magnetically driven. Recent observations by
Kochukhov et al. (2013) provide an upper limit on the pos-
sible magnetic field of HD 65949 of the order of ∼ 3–6 G.
These limits seems to be much lower than that predicted by
Eq. (1). However, these observations reveal only the mean
longitudinal component of the magnetic field. Indeed, this
component can generally be weak in some stars. However,
the considered mechanism does not require a strong longi-
tudinal magnetic field for formation of spots. As it is seen
from the above discussion, the current-driven diffusion can
operate even if the longitudinal component is vanishing.
The observational upper limits on the mean magnetic field
modulus are not so stringent as those on the longitudinal
component. For example, Kochukhov et al. (2013) found an
upper limit of ∼ 200–700 G for the magnetic field modulus
of HD 65949. This field strength is enough for formation
of a chemical spot by the current-driven diffusion. Note that
the toroidal field in stars can form configurations with a van-
ishing longitudinal component. Such configurations can be
formed in the surface layers of stars by unstructured or tan-
gled fields as well.

Like other diffusion processes, the current-driven diffu-
sion can lead to the formation of chemical spots and their
variability if the star has relatively quiescent surface lay-
ers. This condition is fulfilled in various type of stars and,
therefore, the current-driven diffusion can manifest itself
in different astrophysical bodies. For example, this mech-
anism can contribute to the formation of element spots in
Ap-stars. The magnetic fields have been detected in many
of such spotted stars and, likely, these magnetic fields are
maintained by electric currents located in the surface lay-
ers.

Quiescent surface layers may exist in other types of stars
as well, for example, in white dwarfs and neutron stars.
Many neutron stars have strong magnetic fields and, most
likely, the topology of these fields is very complex with
spot-like structures at the surface (see, e.g., Bonanno et al.
2005, 2006). As shown in the present paper, such magnetic
configurations can be responsible for the formation of a
spot-like element distribution at the surface. Such chemical
structures can be important, for instance, for the emission
spectra, diffusive nuclear burning (Brown et al. 2002; Chang
& Bildsten 2004), etc. The evolution of neutron stars is very
complicated, particularly, in binary systems (see, e.g., Urpin
et al. 1998a,b) and, as a result, the surface chemistry can be
complicated as well. Diffusion processes may play an im-
portant role in this chemistry.
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