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Introduction
Often laboratory and astrophysical plasmas are multicompo-

nent, and diffusion plays an important role in many phenomena 
in such plasmas. For instance, diffusion can be responsible for the 
formation of chemical inhomogeneities which influence emission, 
heat transport, conductivity, etc see, e.g., [1-3]. In fusion experi-
ments, the source of trace elements is usually the chamber walls, 
and diffusion determines the penetration depth of these elements 
and their distribution in plasma see, e.g., [4-6]. Even a small admix-
ture of heavy ions increases drastically radiative losses of plasma 
and changes its thermal properties. In astrophysical conditions, 
diffusion leads to the formation of element spots detected on the 
surface of many stars see, e.g., [7-9].

Diffusion in chatged gases or fluids can differ qualitatively from 
that in media con-sisting of neutral paticles because of the presence 
of electrons and electric currents. A mean motion of electrons 
caused by electric currents provides an additional internal force 
those results in diffusion of trace elements. One more important 
contribution of electrons in diffusion is relevant to the Hall effect. 
The magnetic field can magnetize the charged particles that lead 
to anisotropic transport. In the case of electron transport, such 
anisotropy is characterized by the Hall parameter,  e Be ex ω τ=  
where    /Be eeB m cω =  is the gyrofrequency of electrons and eτ  is their 
relaxation time; B is the magnetic field. In a hydrogen plasma,   

( )3/2 4 3  / 4 2e e bm k T e nτ π√ √= Λ  see [10] where n and T are the 
number density of electrons and their temperature, respectively, Λ 
is the Coulomb logarithm. At  1ex ≥ , the rates of diffusion along  

 
and across the magnetic field become different and, in general, 
diffusion can lead to the inhomogeneous distribution of elements.

In this paper, we consider the diffusion process that can lead 
to formation of chemical inhomogeneities in plasma. This process 
is caused by a combined influence of electric currents and the Hall 
effect. Using a simple model, we show that the interaction of the 
electric current with trace elements leads to their diffusion in the 
direction perpendicular to both the electric current and magnetic 
field. This type of diffusion can alter the distribution of chemical 
elements in plasma and contribute to formation of chemical spots 
even if the magnetic field is relatively weak and does not magnetize 
electrons ( 1ex  ). We also argue that the current-driven diffusion 
in combination with the Hall effect can be the reason of the 
particular type of modes in which the number density of a trace 
element oscillates alone. The considered diffusive process is rather 
general and can be important in any medium consisting of charges 
particles.

Basic Equations and Diffusion Coefficients

Consider plasma with the magnetic field parallel to the axis 
z,   ~ zB B e= , where (s, ϕ, z) are cylindrical coordinates and ( 
~ ,  ~ ,  ~s ze e eφ ) the corresponding unit vectors, respectively. We 
assume that plasma is cylindrical and the magnetic field depends 
on the cylindrical radius alone, ( )  B B s=  . Then, the electric current 
is given by

( )  / 4 / .j c B sφ π= − ∂ ∂                                                       (1)
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We suppose that  0jφ →  at large s and, hence, 0  B B→  
=const at    s → ∞ . Note that the dependence B(s) cannot be 
an arbitrary function of s because, generally, the cylindrical 
magnetic configurations are unstable if B(s) increases with s or 
decreases sufficiently slowly see, e.g., [11-13]. In real conditions, 
the magnetic field has a more complex topology than our simple 
model. However, our model describes correctly the main qualitative 
features of current-driven diffusion and, in some cases; it can even 
mimic real magnetic fields see, e.g., [14]. We assume that plasma 
consists of electrons e, protons p, and a small admixture of heavy 
ions i. The number density of species i am small and it does not 
influence dynamics of plasma. The partial momentum equations 
in fully ionized multicom-ponent plasma have been considered by 
a number of authors see, e.g., [15]. The momentum equation for 
particles ( )   ,  ,  e p iα α =   reads

ÿ ( ) ) ·   (h iV V V Vm n p n eZ n E B R
c

Fα α α α α α α α α
αα α+ ∇ = −∇ + + + × +       (2)

The dot denotes the partial time derivative. Here, mα  and Zα  
are the mass and charge number of particles α, nα  and pα  are 
their number density and pressure, respectively, Vα  is the mean 
velocity, Fα  is an external force acting on the particles α; E and B 
are the electric and magnetic fields, respectively: Rα  is the internal 
friction force caused by collisions of particles α with other sorts of 
particles. Since Rα  is the internal force, the sum of Rα  over α is zero 
in accordance with Newton’s third law. We neglect the influence of   
Fα  because it is usually small.

If there are no mean hydrodynamic velocity and only diffusive 
velocities of trace elements are non-vanishing, the partial 
momentum equation for particles α reads

(  0) p Z en E V
C

B R
α

α α α α−∇ + + × + =                                           (3)

The friction forces iR  for trace particles i can be represented as 
i ie ipR R R= +  where the force ieR  is caused by scattering of ions i 

on electrons and Rip by scattering on protons. If i pn n  ,  
ieR  is given 

approximately by 
2

eRi i
ie

p

Z nR
n

= −
 

                                                                      (4)

Where  eR


 is the force acting on the electron gas [15]. In this 
case, eR



 is determined by Scattering of electrons on protons but 
scattering on ions i gives a small contribution. Therefore we can use 
for eR



 the expression for [15] for hydrogen plasma. In our model, 
this expression reads

uT uT
ieR u b u T b Tα α β β⊥ ∧ ⊥ ∧= − + × − ∇ − ×∇
    

                     (5)

Where /u j en= −
 

 is the deference between the mean velocities 
of electrons and protons , , uTα α β⊥ ∧ ⊥ , and uTβ⊥  are coefficients 
calucated by [15-18]    /b B B= . The first two terms on the r.h.s. of Eq. 
(11) describe the standard friction force caused by a relative motion 
of the electron and proton gases. The last two terms on the r.h.s. of 
Eq. (11) represent the so-called thermoforce and are vanishing if 
∇T = 0. Taking into account that ~   ~u u eφ=  in our model and using 
Coefficients α⊥   and α⊥   calculated by [15], we obtain the following 
expressions for the cylindrical components of  ieR

2
1( ),e

ie i i
e

mR Z n u
Tϕ δ=   2

4( )e
ies i i

e

mR Z n u
T

δ= ,                          (6)

Where

3 3
1 2 1 2 4 2

1 4 31 1.84  6.42 (0.78 1.7 ), 14.79 3.77, , .( ) Be ex x x x x xδ δ δ δ δ ω τ− −= − + = + = + + =          (7)

The force ipR


 consists of two parts as well, ipR


 and ipR


, 
which are proportional to the relative velocity of ions i and protons 
and to the temperature gradient, respectively. The thermoforce is 
vanishing in our model. The Friction force is given by

  
2

i0.42m n ( )i i
ip i

i

ZR V
T

= −
 

                                                                   (8)

See [16] Where, 3/2 4( ) 3 / 4 2i Bmi k T e nτ π= Λ  and 2/i iZτ  is  the character-
istic timescale of ion-proton scattering; we assume that Coulomb 
logarithms are the same for all types of scattering. The momentum 
equation for the species i (see Eq. (3)) contains components of the 
electric field, Es and Eϕ. These components can be determined from 
the momentum equations (3) for electrons and protons. Taking into 
account the condition of hydrostatic equilibrium and quasi-neutral-
ity ( ) e pn n≈ , we obtain the following expressions for the radial 
and azimuthal electric fields.

4 1
1 1( ), ( )

2
e e

s
e e

m u m uuBE E
c e T e Tϕδ δ= − − = −                             (9)

Substituting Eqs.(6), (8), and (9) into Eq.(3) for the trace 
particles i, we arrive to the expression for a diffusion velocity Vi,

, ,i sis i is ni BV V e V e V V Vϕϕ= + = +
  

                                        (10)

Where
ln, ,i

ni B B i B
dlnn d B dBV D V D V D

ds ds dsϕ ϕ= − = =  ;                  (11)

 nIV  Are the velocities of ordinary diffusion and BV   and iVφ   
are the radial and azimuthal diffusion velocities caused by the 
electric current. The corresponding diffusion coefficients are 

 
2

2
2 2

2.4 2.4, ,
(1 )

i i iB
i

i i i i

c T eBTk TD C q
Z q m Z m c

= = =
+

2 2 4 1

2.4 / 1(1 )(
(1 )

)
2

e

i i i

i
B

cB m xq
m

D
Z Zq Z

δ δ
 

= − + − +  

 
,

2 1 4

2.4 / 1(1 )(
4 (1 )

)
2

e i
B

ii

cB m m
D

en
qx

q Z
q

Zϕ δ δ
π

 
= + −− +  

 .        (12)

Eqs. (10)-(12) describe the drift of ions i under a combined 
influence of  in∇  and j



 . If magnetic field is weak and x ≪ 1, then 
Eq.(12) yields

2 2

2

2.4 , 2.4 , ( 1), (0. ),2 0.7 1.2
4

i i A i e i
B B

i i i i i

c T c T m c ZD D Zi D
Z Z A m enZϕ π

−
≈ ≈ − ≈  . (13)

Where ( )2 2 / 4A pc B nmπ=  [16], The Coefficients D is always 
positive but two other diffusion Coefficients can be positive or 
negative depending on the parameters of plasma. In the opposite 
case of a very strong magnetic field, q ≫ 1, Eq.(12) yields.

2 2

2 2 2

2.4 1.2, ,
8

i

A i A i
B B

i i

c T c T cD D D
Z q Z A q enϕ π

≈ ≈ − ≈  .                                        (14)

In a strong field, diffusion in the radial direction is suppressed 
because all sorts of particles are magnetized. For instance, the 
Coefficients D (Eq. (14)) and the corresponding diffusion velocity   

niV  which characterize the standard diffusion in the s-direction are  
2 1q≈  times smaller than those in the case of a weak magnetic 
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field. The Coefficients DB is also approximately 2q  times smaller in 
a strong magnetic field. Note that BD  reaches saturation and do not 
depend on the field strength at 1q . If the electric current is fixed 
(dB/ds =const), the radial diffusion velocity BV  caused by currents 
decreases 1/ B∝ . As far as the azimuthal diffusion is concerned, 
the Coefficients BD φ  does not depend on the magnetic field in both 
cases, strong and weak magnetic fields. However, BD φ   in a strong 
field is greater by a factor                      .

Element Spots Caused by Electric Currents
It is generally believed that standard diffusion smoothes 

chemical inhomogeneities on a diffusion timescale 2 /L D∼  where L 
is the length scale of a non-uniformity. This is not the case, however, 
for diffusion given by Eq. (12). In this case, chemical inhomogeneities 
can exist during a much longer time than 2 /L D∼   because the 
equilibrium distribution is reached due to balance of two diffusion 
processes, standard ( )in∝∇  and current-driven ( )/dB ds∝  ones, 
which push ions in the opposite directions. As a result,  0isV =  in the 
equilibrium state and this state can be maintained as long as the 
electric current exists. Note that the radial velocity is vanishing in 
the equilibrium state but the azimuthal velocity is non-zero in this 
state. It turns out that impurities rotate around the magnetic exist 
even if equilibrium is reached. The direction of rotation depends 
on the sign of dB/ds and is opposite to the electric current. Since 
electrons move in the same direction, heavy ions turn out to be 
carried along the flow of electrons. Different ions move with 
different velocities around the axis. If the magnetic field is weak 
( 1)x , the difference between different sorts of ions iVϕ∆ , is of the 
order of 

3 4
1/2

14 10

3 10
4

e
i

i i

m Bc dB cmV
en m ds n L A sϕ π

−∆ ×                     (15)

Where 4
4  /10B B G= , 14 3

14  /10n n cm−= , and 10
10  /10L L cm=  . Since 

different impurities rotate around the magbetic axis with different 
velocities, periods of such rotation also are different for different 
ions. The difference in periods can be estimated as 

 
2 1/2

6 10 14

4

2 10 iL n ALP yrs
V B
π

∆ =
∆

 .                                           (16)

If the distribution of impurities is non-axisymmetric then such 
diffusion in the azimuthal direction should lead to slow variations 
in the abundance peculiarities. Note that in the case of a strong field 
( 1)q  all sorts of trace particles rotate around the axis with the 
same period that depends only on the number density and electric 
current. The condition of hydrostatic equilibrium in our model is 
given by

/  0p j B c−∇ + × =
 

 ,                                                                 (17)

Where p and ρ are the pressure and density, respectively. Since 
the background plasma is hydrogen,   2 Bp nk T≈  where Bk  is the 
Boltzmann constant? Integrating the s-component of Eq. (13) and 
taking into account that the temperature is constant in our model, 
we obtain

1 1
0 0(1 )n n β β− −= + −  ,                                                           (18)

Where 2
0 8 /p Bβ π= ; 0 0 0 0,  ,  (  ),p n T β  are the values of 

, , ),( p n T β at S →∞ . Consider the equilibrium distribution of trace 

elements in cylindrical plasma. In equilibrium distribution, we have 
 0isV =  and Eq.(10) yields 

i BD
ds D

dlnn d
s

lnB
d

=  .                                                                      (19)

The term on the r.h.s. describes the effect of electric currents 
on the distribution of trace elements. We consider first the case of a 
weak magnetic field with 1x . Then, one has from Eq. (17)

( )
8B

d B dBnk T
ds dsπ

= −  .                                                               (20)

Substituting Eq. (19) into Eq.(18) and integrating, we obtain

0 0

( )i

i

n n
n n

µ=  ,                                                                             (21)

Where 2 0.( )2 0.7i iZ Zµ = − −                                                  (22)

And 0in  is the value of in  at   s → ∞ . Denoting the local 
abundance of the element i as  /i in nγ =  and taking into account 
Eq. (17), we have

1 1

0 0 0

1 1( ) (1 )i

i

n
n

µ µγ
γ β β

− −= = + −  ,                                            (23)

Where, 0 0 0 /i in nγ =  Local abundances turn out to be flexible 
to the field strength and, particularly, these concerns the ions 
with large charge numbers. If other mechanisms of diffusion are 
negligible and the distribution of elements is basically current-
driven, then the exponent ( )1µ−  can reach large negative values 
for elements with large iZ  and, hence, produce strong abundance 
anormalies. For instance, ( )1µ−  is equal 1.16, -0.52, and -2.04 for 

iZ  =2, 3, and 4, respectively. Note that (µ − 1) changes its sign as iZ  
increases:  ( )1µ− > 0 if   iZ = 2 but  ( )1µ− < 0 for  3iZ ≥ . Therefore, 
elements with  3iZ ≥  are in deficit ( )0 i iγ γ<  in the region with a 
weak magnetic field ( )0B B<  but, on the contrary, these elements 
should be overabundant in the region where the magnetic field is 
stronger than 0B .

A distribution of the impurities can be substantially different if 
the magnetic field is strong and q ≫ 1. Using the same procedure as 
in the case of a weak field, we obtain

1 1

0 0 0

1 1( ) (1 )Zi Zii

i

n
n

γ
γ β β

− −= = + −                                  (24)

Therefore, all trace elements with Zi > 1 are overabundant in 
the regions with the magnetic field weaker than B0. On the contrary, 
these elements are under abundant in the regions with a stronger 
magnetic field.

Compositional waves
In our simplified model of plasma cylinder with the velocity 

given by Eq.(10), the continuity equation for trace ions i reads
1 1( ) ( ) 0i is i

i
isnV nn

s
V

t s s ϕ+
∂ ∂

+
∂

=
∂

                                   (25)

Consider the behaviour of small disturbances of the number 
density of trace ions by making use of a linear analysis of Eq. (25). In 
the basic (unperturbed) state, plasma is assumed to be in diffusive 
equilibrium and, hence, the unperturbed impurity number density 
satisfies Eq. (19). Since the number density of impurity i is small, its 
influence on parameters of the basic state is negligible. For the sake 
of simplicity, we consider disturbances that do not depend on z. 
Denoting disturbances of the impurity number density by inδ   and 

/i em m∼
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linearizing Eq.(25), we obtain the equation governing the evolution 
of such small disturbances,

1 1( ) ( ) 0Bi
B

i
i i

D dB D
B d

n n dBsD s n n
t s s s s ds sϕ
δ δ δ δ

ϕ
∂ ∂∂ ∂

− − + =
∂ ∂ ∂ ∂        (26)

For the purpose of illustration, we consider only disturbances 
with wavelengths shorter than the length scale of unperturbed 
quantities. In this case, we can use the so called local approximation 
for a consideration of linear waves and assume that small 
disturbances are ( )   exp iks iMφ∝ − −   where k is the wave vector  
( )1ks and M is the azimuthal wave number. Since the basic 
state does not depend on time, inδ  can be represented as inδ   

i t iks iMe ω φ− −∝  where ω should be calculated from the dispersion 
equation. Substituting inδ  in such form into Eq. (26), we obtain the 
following dispersion equation

2, , , ,R I R I S S B B
dInB M dInBi i Dk kD BD

ds s dsϕ ϕ ϕω ω ω ω ω ω ω ω ω= − + = = + = =        (27)

This dispersion equation describes spiral waves in which only 
the number density of impurities oscillates and, therefore, such 
waves can be called “compositional”. The quantity Rω  characterizes 
decay of these waves with the characteristic timescale ( ) 12Dk

−
∼  

typical for a standard diffusion. The frequency Iω  describes 
oscillations of impurities caused by the combined action of electric 
current and the Hall effect. Note that Iω  can be of any sign but  

Rω  is always positive, the frequency Sω  characterizes oscillations 
in the radial direction and φω  in the azimuthal direction. The 
compositional waves are a periodic if  R Iω ω>  and oscillatory if

  I Rω ω>  . We consider the compositional waves in particular 
cases of weak (x ≪ 1) and strong ( 1)q  magnetic fields. Weak 
magnetic field ( )1x << , If  ks M  (radial waves), the condition 
|  |I Rω ω>  in a weak field is equivalent to

2 2 1 1/ 0.2| 1 ,|0.71A s i ic c Z Z kL− −> −                                        (28)

Where 1    /L d ln B ds −=  and sc  is the sound speed, 
2   /s B pc k T m= . In the opposite case M ks  (azimuthal waves), 

the compositional waves are oscillatory if

( )( )2 2/ / .A sc c x ks M kL                                                (29)

Both conditions (28) and (29) require the magnetic field such 
strong that the magnetic pressure is substantially greater than the 
gas pressure. The frequency of com-positional waves is higher in 
the region where the magnetic field has a stronger gradient or, 
in other words, where the density of electric currents is greater. 
Note that different impurities oscillate with different frequences. 
Consider first the radial waves with M = 0. Substituting M = o into 
Eq. (27), we obtain the dispersion equation for such waves in the 
form

( )2  ,   ,     / .R B R B Bi i Dk kD d ln B dsω ω ω ω ω= − + = =                (30)

This dispersion equation describes waves in which only the 
number density of trace particles oscillates and oscillations of  in  
occur only in the radial direction. The order of magnitude estimate 
of Sω   yields

  ( )( )( )1/ / / ,I A i i A i ikc Z A c c l Lω ∼                             (31)

Where  i i il cτ=  is the mean free-path of ions i. Note that 
different impurities oscillate with different frequences. Therefore, 
if there are several sorts of trace ions in plasma, the chemical 
structure should exhibit variations of local abundances under the 
influence of compositional waves. The dispersion equation for non-
axisymmetric waves with M ≫ ks reads in a weak field

( ) ( )  ,  /   /R B B Bi i M s BD d ln B dsφ φ φω ω ω ω= − + =  (32)

In non-axisymmetric waves, trace ions rotate around the 
cylindrical axis with the frequency φω   and decay slowly on the 
diffusion timescale 1 Rω

−∼ . The frequency of such waves is typically 
higher than that of radial waves. One can estimate the ratio of these 
frequencies as

( ) ( ) ( )( )/ / 1/ /S B B iBD D A x M ksφ φω ω ∼ ∼                      (33)

Since these estimates are justified only in the case of a weak 
magnetic field ( )1x << , the period of non-axisymmetric waves is 
shorter for waves with ( )  iM A x ks> . The ratio of diffusion timescale 
and period of non-axisymmetric waves is

( ) ( )( )( )( )2 2/ 1/ / / 1/R A s i ix c c Z A kLφω ω ∼                     (34)

And can be large. Therefore, azimuthal waves can be oscillatory 
as well.

Strong magnetic field ( 1)q  in a strong magnetic field, the 
order of magnitude estimates of the characteristic frequences are

. , .
2 2S

j jK M
q en s en

ϕ ϕ
ϕω ω≈ ≈ −                                                      (35)

Like the case of a weak field, the frequency of compositional 
waves is higher in the region where the density of electric currents 
is greater. Oscillations of different trace ions occur with different 
frequences in radial waves but azinuthal oscillations have the same 
frequency for different impurities. The frequency of azimuthal 
waves is higher than that of radial waves if

/M ks q

 .                                                                       (36)

If the magnetic field is such strong that q ≫ 1 then the azimuthal 
waves oscillate with a higher frequency than the radial ones even 
for not very large M. The condition that radial waves exist in a 
strong magnetic field, S Rω ω  |, is given by

( )2 2/  2 /A s ic c Z kL>  .                                                        (37)

Like the case of a weak magnetic field, compositional waves 
occur in plasma only if the magnetic pressure is greater than the gas 
one. The analgous condition for azinuthal waves, Rφω ω  , reads

( )( )2 2/  1/ /A s ic c qZ ks M kL>                                   (38)

Note that this condition can be satisfied even if the magnetic 
pressure is smaller than the gas one but q and M are large.

Conclusion
We have considered diffusion of heavy ions under the influence 

of electric currents. Generally, the diffusion velocity in this case 
can be comparable to or even greater than that caused by other 
diffusion mechanisms. The current-driven diffusion can form 
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chemical inhomogeneities even if the magnetic field is relatively 
weak whereas other diffusion mechanisms require a substantially 
stronger magnetic field. The current-driven diffusion is relevant 
to the Hall effect and, therefore, it leads to a drift of ions in the 
direction perpendicular to both the magnetic field and electric 
current. As a result, a distribution of chemical elements in plasma 
depends essentially on the geometry of the magnetic fields 
and electric current. Chemical inhomogeneities can manifest 
themselves, for example, by emission in spectral lines and a non-
uniform plasma temperature. Usually, diffusion processes play an 
important role in plasma if hydrodynamic motions are very slow. In 
some cases, however, chemical spots can be formed even in flows 
with a relatively large velocity but with some particular topology 
(for example, a rotating flow).

Our study reveals that a particular type of waves may exist in 
multicomponent plasma in the presence of electric currents. These 
waves are slowly decaying and characterized by oscillations of the 
impurity number density alone. They exist only if the magnetic 
field is such strong that the magnetic pressure is greater than the 
gas pressure. Generally, the frequency of such waves turns out to 
be different for different impurities. This frequency is rather low 
and is determined mainly by a diffusion timescale. If M = 0, it can 
be estimated as 2/ /I B A i ikD L c A Lω τ λ∼ ∼   where   2 / kλ π=  is 
the wavelength of waves. In astrophysical conditions, such waves 
can manifest themselves in the atmospheres of magnetic stars 
where the magnetic field is of the order of 104 G and the number 
density and temperature are 1014 cm−3 and 104 K, respectively. If 
the length scale, L, and the wavelength, λ, are of the same order of 
magnitude (for in-stance,  cm), then the period of compositional 
waves is  yrs. This is much shorter than the stellar lifetime (see, e.g., 
[17, 18]) and generation of such waves in the atmospheres should 
lead to spectral variability with the corresponding timescale.

Compositional waves can occur in laboratory plasmas as well 
but their frequency is essentially higher. If 510B G∼ , 15 310n cm−∼  , 

610T K∼  , and 210L λ∼ ∼  cm, then the period of compositional waves 
is 810 s−∼  . Note that this is only the order of magnitude estimate 
but frequencies of various impurities can differ essentially since the 
period of compositional waves depend on the sort of heavy ions. In 
terrestrial conditions, the compositional waves also can manifest 
themselves by oscillations in spectra. Note that these waves exist 

only if the magnetic pressure is greater than the gas pressure. The 
current-driven diffusion can be important not only in plasma but 
in some conductive fluids if the magnetic field is sufficiently strong 
there.
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