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Quasar Spectroscopy and Cosmology
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2St.-Petersburg State Polytechnical University

E-mail: varsh@astro.ioffe.ru

Abstract. Absorption spectra of distant quasars are the main source of our knowledge of
physical conditions, structures, and composition of matter in the Early Universe. The detailed
analysis of such spectra gave us a possibility to discover HD/H2 molecular clouds existed 12−13
Gyr, investigate them and derive some important cosmological conclusions.

1. Introduction
Quasars are the most powerful sources of radiation and can be observed from distances up to
10−13 Gyr light years. In other words, the spectra of quasars measured at the present time
were formed 10−13 Gyr ago. The emission of quasars themselves is used to probe remote
clouds of interstellar and intergalactic gas along the line of sight. These clouds “imprint” their
absorption lines with corresponding redshifts into the quasar spectrum. Most of the absorption
lines are Lyman alpha lines at various redhshifts which are less then quasar redshift. These lines
are associated with the higly ionized, high temperature intergalactic gas. Absorption systems
formed in intergalactic medium can be used to probe large scale structure of the Universe. By
means of correlation in Lyα forest absorptions in the spectra of distant quasars it is possible to
determine Baryonic Acoustic Oscillation [1]. Some studies related to absorption lines of heavy
element such as Mg II, C IV, which associated with the clouds in the halo of intervening galaxies
(see e.g. [2]). Other studies are focused on Damped Ly-α systems which are thought to arise
when the light from quasar pass through the intervening galaxies, and therefore provide an
estimate of neutral gas density in the Universe and its evolution with time (e.g. [3]). There are
also several cosmological problems that can be solved using quasar absorption system analysis:
the determination of the baryon density in the Universe, the estimation of the temperature of the
cosmic microwave background radiation at high redshifts, constrains on the possible variations
of the fundamental physical constants and others. The first of these problems is closely related
to Big Bang nucleosynthesis model.

As it is well known, at the early Universe there was a short period of synthesis of light nuclides
from protons and neutrons. At that time, the Universe was filled with almost homogenous fully
ionized plasma with the temperature T∼ 109 − 108 K. However, at that stage only the lightest
nuclides D, 3He, 4He, 6Li, 7Li and 7Be could be formed in sufficient amounts. As well as the rates
of relevant reactions at certain energy are well known, the relative abundance of these nuclides
formed during the BBN can be reliably calculated. Left panel of Fig. 1 shows the evolution
of the abundance of light nuclides with time during the BBN nucleosynthesis. The only free
parameter of such calculations is η = (nB/nγ) - the relative baryon number density nB to the
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Figure 1. The results of primordial nucleosynthesis. Left panel: the evolution of abundance of
light nuclides with time t and, accordingly, with the temperature T. Right panel: the relative
abundance of the relic nuclides eventually formed as a function of the baryon-to-photon number
density η10 or baryon density ΩB. The solid lines are the theoretical calculations. The vertical
strip shows the range of ΩB obtained from different astronomical observations of primordial
nuclide abundance. The dashed line corresponds to ρB = ρcr.

photon number density nγ . This ratio has to be constant during the adiabatic expansion of the
Universe. Therefore this parameter can be determined from comparison of observed abundance
of primordial nuclides with the calculation results. On the right panel of Fig. 1 the dependencies
of the relative abundance of light nuclides as a function of the η10 = 1010η (or the ΩB = ρB/ρcr
– baryon density ρB in units of critical density ρcr) are presented. It is clearly seen that the
relative abundance of primordial deuterium (D/H)p is the most sensitive to the baryon number
density. For example, if the density of baryon matter were equal to the critical one ρB = ρcr,
we would not observe primordial deuterium at all. The isotopic abundance ratio (D/H) could
only decrease during the subsequent evolution of the Universe because deuterium rapidly burns
out into helium in stellar interiors. Therefore to infer baryon number density from (D/H) ratio,
it is necessary to determine isotopic composition of the interstellar or intergalactic medium at
as early cosmological epoch as possible, when the composition was close to the primordial one.

Until very recently, the relative abundance of (D/H) at high redshifts was measured using
only atomic HI and DI by means of Lyman series lines detected in quasar absorption spectra
[4]. However, such measurement encounters with severe obstacles. The spectra of HI and DI
are virtually the same, with only all wavelengths are shifted at about 81 km/s. This value
is closed to the typical velocity offset between multiply components seen in quasar absorption
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Figure 2. The high resolution optical spectrum of Q 0812+320 obtained at KECK telescope.
Synthetic H2 spectrum of the absorption system at z = 2.62649 fitted into the observed spectrum
shown by red line. The bands of Lyman and Werner series of H2 are marked.

spectra, which is believed to be several clouds on the line of sight located in gravitationally
bounded systems like galaxy or protogalaxy. Also number density of DI is lower by 4-5 order
of magnitude relative to HI, that makes line profile analysis very complicated. These facts can
possibly explain the significant dispersion of values of the (D/H) ratio measured by atomic lines.

Difficulties with line identification did not arise in measurement of the relative abundance of
HD and H2 molecules, since their spectra are significantly differs and most of absoprtion lines
are much narrow then atomic one. This methods applied only recently with first detection of
HD molecules at high redshifts [5].

2. HD/H2 absorption systems
One kind of absorption systems identified in quasar spectra are the molecular hydrogen
absorption systems, which are very rare detected in quasar spectra. Only in < 1% of quasar
spectra it is possible to detect H2 absorption system. Additionally, H2 absorption system
can be identify only in high resolution spectra (R∼50000), which is available only on the
biggest optical telescope like Very Large Telescope and KECK. Molecular hydrogen absorption
systems are supposed to be a diffuse interstellar clouds located in the intervening galaxy. These
remote galaxies are detected in quasars spectra as Damped Lyman alpha (DLA) systems -
absorption systems with damped Lyman alpha line, with column density of neutral hydrogen
log(N)> 1020cm−2. This amount of neutral hydrogen is sufficient to shield medium from diffuse
cosmic UV background. Analysis of H2 absorption systems allows us to study the physical
conditions of diffuse clouds in remote galaxies. Numerous absorption lines of molecules H2, in
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Figure 3. HD absorption lines, associated with H2 absorption system at z=2.62649 in spectrum
of Q0812+320. Top and bottom panels show absorption lines for J=0 and J=1 level, respectively.

some cases HD and CO, and metals in different ionization states show that this cloud have
typical temperatures ∼ 10 ÷ 100 K and number densities in range ∼ 1 − 100 cm−3. There are
indications that size of these clouds are about parsec and subparsec, that is well agreed with
what observed in nearby galaxies.

To date there are only 24 H2 absorptions systems detected at high redshifts. Only in 6 of
them have HD absorption lines. The detected HD/H2 absorption systems are shown in Table 1.
Fig. 2 shows spectrum of Q 0812+320 (obtained at 10 meter optical KECK telescope with high
resolution spectrograph HIRES), in which one of the H2 absorption system was detected [6]
and it is shown by red profiles. Numerous (up to 80) absorption lines of H2 from different
rotational levels were detected in this systems. This allows us to obtain H2 column density of
this absorption system with great accuracy. Later, HD molecules were detected in this system [7],
[8]. Some of the detected HD lines are shown on Fig. 3. The column densities of HD molecules
are presented in Table 1. Additionally HD absorption lines corresponding J=1 rotational levels
(see lower panels on Fig. 3) were detected in this system for the first time at high redshift.
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Table 1. List of known HD/H2 absorption systems at high redshifts detected in quasars spectra.
Rmag is the magnitude of QSO. zabs and zem - are the redshifts of absorption system and quasar,
respectively. N(H I), N(H2) and N(HD) - are log of the column densities (in cm−2) of neutral
hydrogen, H2 and HD molecules of absorption systems, respectively.

Quasar Rmag zabs zem N(H I) N(H2) N(HD) reference

Q 0812+320 17.88 2.63 2.70 21.4 19.9 15.4 [7], [8]
Q 1232+082 18.40 2.34 2.57 20.9 19.7 15.5 [9], [10]
Q 1331+170 16.26 1.78 2.08 21.2 19.7 14.8 [11], [7]
Q 1439+113 18.07 2.42 2.58 20.1 19.4 14.9 [12]
J 1237+064 18.21 2.69 2.78 20.0 19.2 14.5 [13]
J 2123−005 15.83 2.06 2.26 19.2 17.6 13.8 [14]

H2 and HD molecules are easily destroyed by the ultraviolet radiation. After absorbing UV
photon in Lyman and Werner bands molecular hydrogen gets to the excited electronic states.
Then it quickly returns in the electronic ground state. However about 13% of molecules fall
in the continuum of ground electronic state, i.e. dissociated. When UV radiation penetrates
into the cloud, Lyman and Werner lines becomes saturated, and rate of excitation decreases,
therefore the rate of photodissociation decreases too. Calculation shows that at column density
N> 1015 cm−2 HD (as well as H2) molecules are effectively shield itself from destructive UV
radiation. Models of HD/H2 clouds [15] demonstrate that in case of self-shielding all D will be
in form of HD and all H will be in form of H2. Therefore, for the self-shielded clouds the ratio
of column densities N(HD)/2N(H2) is well agreed with isotopic D/H ratio.

From 6 known HD/H2 absorption systems we selected two systems corresponding the
condition of self-shielding: z=2.33771 in spectrum of Q 1232+082 and z=2.62649 towards
Q0812+320. The abundance of heavy elements (obtained from measurement of associated
absorption lines) was found to be about an order magnitude less then the solar one. It may
indicate that these identified clouds have composition close to the primordial one. We have
estimated D/H isotopic ratio for these clouds by using N(HD)/2N(H2) ratio. It is consistent
with the values of D/H determined from analysis of atomic D I and H I lines and the value
obtained from analysis of the Cosmic Microwave Background fluctuations.

3. Conclusions
We have found for the first time [5] and investigated high-redshift molecular clouds containing
HD as well as H2 molecules, which existed at early cosmological epoch, 12-13 Gyr ago. The
composition of these HD/H2 clouds and the proper physical conditions were determined.
Obtained low abundance of element heavier then H and He indicates that their composition
were almost the primordial one. The typical value of abundance of heavy elements is one order
lower then the solar abundance.

D/H isotopic ratio that existed in such clouds 12-13 Gyr ago has been estimated by new
method – from abundance of HD to H2 molecules. This ratio can be derived only for absorption
systems with high HD column density, which corresponds condition that in the cloud all D is in
form of HD and all H in form of H2. From two HD/H2 systems with higher HD molecules column
density at z=2.33771 at spectrum of Q 1232+082 and z=2.62649 at Q 0812+320 spectrum we
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Figure 4. The results of the measurements of the isotopic D/H ratio at high redshifts. The
blue points correspond to the atomic D I to H I absorption lines observed in quasar spectra.
The two red points are the measurements of D/H isotopic values derived from the analysis
of HD/H2 absorption systems identified in Q 1232+082 and Q0812+320. The blue and red
horizontal stripe is mean values for blue and red points, respectively. The dotted line shows the
dependence of D/H ratio as a function of η10 inferred from BBN. The green vertical strip is the
value obtained from the analysis of the Cosmic Microwave Background fluctuations.

derived
D/H = N(HD)/2N(H2) = 2.97+0.52

−0.50 × 10−5

The baryon fraction in the Universe has been estimated from D/H isotopic ratio obtained on
the base of the standard model of Big-Bang Nucleosynthesis, as we believed that all deuterium
was formed just through this process

ΩB(BBN) = ρb/ρcr = 4.1± 0.3%

This value of ΩB (within errors) is consisted with value obtained from Cosmic Microwave
Background fluctuations [16]

ΩB(CMB) = ρb/ρcr = 4.6± 0.3%,

although the corresponding epochs are quite different.
Thus high resolution spectroscopy of high redshifted astrophysical objects may be a high-way

to the fundamental cosmological parameters.
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