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ABSTRACT
We study heat diffusion after an energy release in a deep spherical layer of the outer neutron star crust (107 � ρ � 4 × 1011

g cm−3). We demonstrate that this layer possesses specific heat-accumulating properties, absorbing heat and directing it mostly
inside the star. It can absorb up to ∼1043–1044 erg due to its high heat capacity, until its temperature exceeds T ∼ 3 × 109 K
and triggers a rapid neutrino cooling. A warm layer (T ∼ 108–3 × 109 K) can serve as a good heat reservoir, which is thermally
decoupled from the inner crust and the stellar core for a few months. We present a toy model to explore the heat diffusion within
the heat-accumulating layer, and we test this model using numerical simulations. We formulate some generic features of the
heat propagation that can be useful, for instance, for the interpretation of superbursts in accreting neutron stars. We present a
self-similar analysis of late afterglow after such superbursts, which can be helpful to estimate properties of bursting stars.
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1 IN T RO D U C T I O N

Many neutron stars demonstrate bursting activity. For instance,
accreting neutron stars in low-mass X-ray binaries show X-ray
bursts and superbursts powered by explosive burning of accreted
hydrogen and helium in surface layers and subsequent more powerful
burning of carbon in deeper layers (e.g. Galloway & Keek 2017; in ’t
Zand 2017). These processes involve complicated physics of thermal
evolution of accreting neutron stars, steady-state and explosive
nuclear burning with extended reaction networks, various mass and
heat transport mechanisms (hydrodynamical motions, convection,
thermal diffusion), and so on.

We mainly focus on heat diffusion after energy generation in
deep layers of the outer crust of neutron stars. Such a process has
been extensively simulated numerically and semi-analytically for
about two decades in the context of modeling superbursts; see e.g.
Cumming & Macbeth (2004), Cumming et al. (2006), Keek & Heger
(2011), Altamirano et al. (2012), Keek, Heger & in ’t Zand (2012),
Keek et al. (2015), and references therein.

The outer crust (e.g. Haensel, Potekhin & Yakovlev 2007) is
a relatively thin layer that extends from the stellar surface to the
neutron drip density (ρdrip ≈ 4.3 × 1011 g cm−3). Its width is only
some hundred meters, and its mass is ∼10−5 M�. It consists of
electrons and ions (atomic nuclei). We call it crust for simplicity;
actually, the atomic nuclei can constitute either Coulomb solid,
or Coulomb liquid or gas, depending on density ρ, temperature
T and nuclear composition (our ‘crust’ includes thus the liquid
‘ocean’). We consider a spherically symmetric star, neglecting the
effects of magnetic fields and rotation. We will mainly study heat
propagation at

ρb � ρ � ρdrip, 108 � T � 3 × 109 K, (1)

� E-mail: yak@astro.ioffe.ru

where ρb ∼ 107 g cm−3 (so that the electrons are relativistic and
strongly degenerate), and the ions are fully ionized. Lower T are less
interesting as far as the processes of energy release are concerned
(typical ignition temperatures for deep nuclear explosions are not so
low). We will analyse specific heat-accumulating properties of these
layers.

In our previous studies (e.g. Kaminker et al. 2014; Chaikin,
Kaminker & Yakovlev 2018, and references therein), we have
simulated the heat propagation in a neutron star after some energy
release in its crust (in 1D and 2D geometries, with the heater
placed within a spherical layer or some spot-like region). There we
have mainly considered the heaters that operate quasi-statically over
months or longer, corresponding either to hypothetical energy release
in the crust of magnetars or to the outbursts (accretion periods) in
soft X-ray transients.

Here, we study the heaters that are active on time-scales of
minutes that is closer to the individual X-ray bursts or superbursts
on neutron stars. Our aim is to present a simplified model of
heat diffusion and test it using a modern thermal evolution code.
The model reproduces and elucidates generic properties of deep
superbursts and enables one to estimate how these properties de-
pend on system parameters, particularly on neutron star mass and
radius.

In Sections 2 and 3, we formulate a simplified model for studying
heat diffusion in the ρ − T domain (1) and discuss its formal semi-
analytic solution for an instant burst in a thin layer. Section 4 is
devoted to bursting layers of finite width in domain (1), and Section 5
to bursts in similar layers but extended to lower densities. We
compare analytic solutions with numerical models. In Section 6, we
discuss generic features of heat diffusion after bursts. In Section 7, we
analyse late burst decay and present a simple method for evaluating
parameters of bursting neutron stars from observations of such
decays. We conclude in Section 8, and present some technical details
in Appendix A.
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2 SIMPLIFIED A NALYTIC MODEL O F H EAT
DIFFUSION

2.1 Basic parameters and microphysics

We introduce a simplified ‘toy’ model of a spherically symmetric
outer crust of the neutron star in the ρ − T domain (1). The crust is
thin and can be regarded as locally flat (e.g. Gudmundsson, Pethick &
Epstein 1983). Unless the contrary is indicated, we will use this
locally flat coordinate system. Let z be a proper depth measured from
the neutron star surface (z = 0). The density ρ can be conveniently
expressed through the relativity parameter of degenerate electrons
(Salpeter 1961), xr = pF/(mec) ≈ 1.0088(ρ6Z/A)1/3, where ρ6 =
ρ/(106 g cm−3), pF is the electron Fermi momentum; A and Z are
the mean ion mass and the charge numbers, respectively. The A/Z
ratio is assumed to be constant throughout the outer crust. With these
assumptions, the density profile ρ(z) is determined by (Haensel,
Potekhin & Yakovlev 2007)

x3
r =

[
z

z0

(
2 + z

z0

)]3/2

≈
(

z

z0

)3

, (2)

with z0 = (Zmec2)/(mugsA) and gs = (GM/R2)(1 − rg/R)−1/2 (mu being
the atomic mass unit). Here, gs is the local gravitational acceleration
in the outer crust, which is nearly constant there and is expressed
through the gravitational mass of the star M and its circumferential
radius R; z0 is a characteristic depth of the outermost layer (ρ � 106

g cm−3) in which the degenerate electrons are non-relativistic; rg =
2GM/c2 is the gravitational radius of the star. The last expression in
equation (2) is the asymptote at depths z � z0, where the electrons
are degenerate and ultrarelativistic; it will be used below in the toy-
model analysis. In particular, it gives the column density y = zρ/4;
it becomes inaccurate at ρ � ρb.

The diffusion of heat through the envelope in question is described
by the equation

C
∂

∂t
T − ∂

∂z

(
κ

∂

∂z
T

)
= Q, (3)

where T is the local (non-redshifted) temperature, κ is the thermal
conductivity, C is the heat capacity per unit volume at constant
pressure, and Q is the energy generation rate per unit volume. Since
the electron gas is strongly degenerate, the heat capacities at constant
volume and pressure are sufficiently close. We assume also that
thermal processes do not violate hydrostatic equilibrium (∂P/∂z =
gsρ, where P is the pressure dominated by the relativistic degenerate
electrons).

In reality, C, κ , and Q depend both on density and on temperature,
which makes equation (3) non-linear. In the numerical simulations we
take these dependencies into account. In the toy model, we linearize
equation (3) by assuming that C and κ are temperature-independent
(which is a reasonable approximation, as we argue below) and that
the dependence of energy release on depth and time, Q(z, t), is given
explicitly.

In the given ρ − T region (1), one can suggest two major approx-
imations of C and κ . Since the electrons are strongly degenerate,
the heat capacity is mainly determined by the ions. In an ideal
classical crystal, the ion heat capacity is Ci = 3nikB, where kB is the
Boltzmann constant. Quantum effects strongly reduce Ci at T � Tpi,
where Tpi = �ωpi/kB ≈ 7.8 × 106√ρ6 (Z/A) K and ωpi is the ion
plasma frequency. However, in real strongly coupled, strongly de-
generate non-ideal Coulomb plasma (liquid or crystal), the total heat
capacity per ion remains close to 3kB in a wide range of temperatures
around the melting line Tm ∼ 2.3 × 107(Z/26)2(A/56)−1/3ρ

1/3
6 K

(e.g. Haensel et al. 2007, Section 2.4.6). Bearing in mind an
approximate nature of our analysis, we take

C ≈ 3kBni = az3, a ≈ kB

Zπ2

(
mec

�z0

)3

, (4)

where we use ni = ne/Z due to electric neutrality of the matter. In this
approximation, C is temperature-independent and proportional to ρ.

The thermal conductivity κ is mainly provided by strongly degen-
erate electrons, which scatter off ions (off ion-charge fluctuations,
to be exact). It is determined by the familiar expression (e.g. Ziman
1960) κ = π2k2

BT neτeff/(3m∗
e ), where τ eff is the effective electron

relaxation time and m∗
e = me /

√
1 − v2

F/c
2 is the effective electron

mass, vF = cxr/
√

1 + x2
r being the electron Fermi velocity. For τ eff,

we employ an estimate (Yakovlev & Urpin 1980)

1

τeff
= e2

�vF

(
2 − v2

F

c2

)
kBT u−2

�
, (5)

where u−2 ≈ 13 is a frequency moment of phonon spectrum in a
Coulomb crystal of ions. This estimate is obtained for electrons,
which scatter off phonons at T � Tpi/5. It neglects quantum effects
in ion motions and multiphonon scattering processes (Baiko et al.
1998). It stays roughly valid in a strongly coupled Coulomb liquid
of ions. In our case, it is sufficient to use the relativistic limit (vF →
c), in which case

κ ≈ bz2, b = ζkBc4m2
e

9e2�u−2z
2
0

. (6)

Then, κ is independent of T and b is a constant. Here, we introduce
a phenomenological constant correction factor ζ that makes our
approximation of κ more consistent with advanced calculations
(Potekhin et al. 1999). For the iron plasma to be considered below,
we set ζ = 1/4.

Substituting equations (4) and (6) into equation (3), we have

az3 ∂

∂t
T − b

∂

∂z

(
z2 ∂

∂z
T

)
= Q(z, t). (7)

This is our basic toy-model equation, which is linear in T and can be
solved by standard methods of mathematical physics as we discuss
later.

The accuracy of our approximations (4) and (6) is demonstrated in
Fig. 1. It shows isolines of constant C and κ (the left-hand and right-
hand panels, respectively) in the T−ρ plane. For illustration, here
and below we use the model of the outer neutron star crust composed
of iron. We have chosen iron as a leftover of nuclear burning of
light elements. The numbers next to the lines give the values of
decimal logarithms log C and log κ . The vertical dashed lines are our
approximations. The solid lines are based on numerically accurate
values of C and κ . Accurate C includes the contribution of ions,
electrons, photons, as well as of electron–positron pairs. Accurate
κ includes the contribution of electron–ion and electron–electron
collisions and also of radiative conduction. To guide the eye, the two
grey lines show two characteristic temperatures (e.g. Haensel et al.
2007) as functions of ρ. The lighter line is the melting temperature
Tm of the classical Coulomb crystal of iron ions. The darker line is
Tpi/5. Below this line, quantum effects in ion motion substantially
suppress the heat capacity of the ions.

According to Fig. 1, our approximations of C and κ seem
reasonable. Deviations of accurate and toy model heat capacities at ρ
� 107 g cm−3 and T � 3 × 108 K are mainly due to the contribution
of electrons and photons in the accurate C (the electron degeneracy
becomes reduced that makes the electron and radiative heat capacities
more important). The deviations at ρ � 3 × 1010 g cm−3 and
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Heat diffusion in neutron star crust 4493

Figure 1. Isolines of constant heat capacity C [kB cm−3] (the left-hand panel) and thermal conductivity κ [erg cm−1 s−1 K−1] (the right-hand panel) in the
T−ρ plane for iron matter. The solid lines are accurate values, and the dashed lines refer to the toy-model approximation. The numbers show the values of log
C and log κ . See the text for details.

T � 108 K are due to quantum effects. As for the accurate and
approximate thermal conductivities, their difference comes from the
crudeness of our approximation (6). The accurate electron conduc-
tivity in the Coulomb liquid and crystal does depend on temperature
(Potekhin et al. 1999), although this dependence is not too strong in
the selected T−ρ domain. At ρ � 107 g cm−3 and T � 3 × 108 K the
radiative thermal conductivity becomes rather important.

To be specific, we take the star with M = 1.4 M� and R = 12 km
(gs = 1.59 × 1014 cm s−2). Since the heat diffusion in a thin outer
stellar layer is self-similar (e.g. Gudmundsson et al. 1983), one can
easily rescale to other values of M and R. In our case, we have
z0 = 14.4 m, a = 3.15 × 103 erg cm−6 K−1, and b = 3.9 × 108

erg cm−3 s−1 K−1. In order to rescale a and b, it is sufficient to notice
that z0 ∝ 1/gs in equations (4) and (6).

2.2 Analytic solution

We apply equation (7) for studying heat diffusion from a heater (burst
source), located in the outer crust, to the surface and to the stellar
interiors (to z → 0 and z → ∞, respectively). We will use the solution
at zb ≤ z ≤ zdrip, where zb and zdrip correspond, respectively, to the
densities ρb and ρdrip in equation (1).

We present the solution as

T (z, t) = T0(z) + T1(z, t), (8)

where T0(z) is a temperature profile in a quiet star (i.e. at Q = 0),
and T1(z, t) is the temperature excess due to the burst; T1(z, t) obeys
the same equation (7).

The temperature profile T0(z) is determined by heat outflow from
the neutron star interiors (z > zdrip) and can be treated as stationary
during a burst and its successive decay. In our model, equation (7)
with Q = 0 yields

T0(z) = Tb0 + j0

b

(
1

zb
− 1

z

)
, (9)

where Tb0 = T0(zb), j0 = σSBT 4
s0 is the heat flux emergent from stellar

interiors; it is determined by the effective surface temperature Ts0 (in

the absence of the heater); σ SB is the Stefan–Boltzmann constant. The
second term in equation (9) describes the steady-state temperature
increase within the quiet star.

A solution of equation (3) for T1(z, t) is discussed in Appendix. For
an instant burst at t = th in an infinitely thin shell located at z = zh we
have Q(z, t) = H0 δ(t − th) δ(z − zh), H0 being the energy generated
per unit area of the bursting shell. The solution for t > th = 0 is

T1(z, t) = H0

3bt
√

zzh
exp

(
−u2 + u2

h

4t

)
I 1

3

(uhu

2t

)
, (10)

where I 1
3
(x) is a modified Bessel function (e.g. Bateman & Erdélyi

1953),

u = 2

3

√
a

b
z3/2, uh = 2

3

√
a

b
z

3/2
h . (11)

Equation (10) represents a Green’s function to equation (7). It
allows us to obtain a general solution of equation (7) with arbitrary
heat release distribution:

T1(z, t) =
∫

dzh dth
Q(zh, th)

3bt ′√zzh
exp

(
−u2 + u2

h

4t ′

)
I 1

3

(uhu

2t ′

)
, (12)

where t’= t − th, and the integration is carried out over the entire range
of depths zh occupied by the heater and over entire interval of times
th < t, at which the heater is on at a given depth zh. Equations (10)
and (12) allow fast computation of temperature evolution after any
burst. Since our heat diffusion problem (7) is linear, many features
of heat diffusion from the instant and thin heater apply for a more
general solution (12).

2.3 Toy bursts

The formulated model is restricted by the density and temperature
range (1) and by neglecting neutrino cooling that becomes significant
at temperatures higher than a few × 109 K (e.g. Cumming & Macbeth
2004). For illustration, we consider toy bursts with not very realistic
parameters to stay in the formulated parameter space. We follow heat
propagation after a burst in the toy domain (1) using equation (12).
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Table 1. Two toy burst models A and B and their instant thin counterparts
A and B for a star with M = 1.4 M� and R = 12 km; the ignition density is
ρ2 = 108 g cm−3.

Modela ρ1
b Modelc Hd

0 E0
es

(g cm−3) (erg cm−2) (erg)

A 3 × 107 A 5.02 × 1026 9.08 × 1039

B 3 × 106 B 5.99 × 1026 1.08 × 1040

Notes.a Burning in a thick shell during tburst = 100 s at Qb = 5 keV/N.
b Lowest burning density.
c Instant burning in an infinitely thin ignition shell (ρ1 = ρ2).
d Generated heat per 1 cm2 column.
e Total generated heat in the toy burst domain (1).

We consider two toy finite-shell burst models denoted as A and B
(Table 1). Their bottom (ignition) density is fixed at ρ2 = 108 g cm−3.
For burst A, the top density of the burning shell is ρ1 = 3 × 107

g cm−3. The top density for burst B, ρ1 = 3 × 106 g cm−3, is taken
lower than ρb to mimic standard models of superbursts as detailed
in Section 5.

For bursts A and B, we assume the energy generation rate Q(z, t)
to be proportional to the mass density ρ(z) with a fuel calorimetry
Qb = 5 keV per nucleon. This mimics burning of carbon mixed
with a substrate (e.g. Keek & Heger 2011) in our artificially weak
superbursts. For simplicity, the fraction of carbon in the heater before
the burst is fixed, so that Q(z, t) ∝ z3 and the main energy release
always occurs at the bottom of the heater (at ρ = ρ2). As for the
time dependence of Q(z, t), we assume that the heater is switched on
abruptly, operates at a constant rate, and then it is turned off abruptly
as well. The duty time will be denoted as tburst and set to be 100 s,
for certainty. Note that the toy model allows us to use any Q(z, t)
function, and we have tried some versions in our test runs.

Table 1 lists also the generated heat per 1 cm2 column, H0, and the
total energy E0 = 4πR2H0 generated at the toy-model densities ρ ≥
ρb.

In addition, we will introduce simplified models (Table 1) of
instant bursts in infinitely thin ignition shells (ρ = ρ2), keeping
the total burst energies the same. We will mark them as A and B.
Burst B is essentially the same as A but with slightly higher burst
energy.

2.4 Heat blanket and light curve

We use the toy model solution of free heat diffusion after the burst
in its applicability domain (1). To calculate the effective surface
temperature Ts(t) and the light curves for toy bursts, we will treat the
outer layer at ρ < ρb as the standard iron heat blanketing envelope
(e.g. Potekhin, Chabrier & Yakovlev 1997), where the heat transport
is quasi-stationary and heat flux is conserved. Such envelopes are
studied separately; they establish a relation between Tb and Ts.

The heat blanket changes the heat diffusion regime at ρ < ρb

and allows some heat to leak to the surface and be observable as
the surface emission. Such a scheme is justified if the heat blanket
weakly affects the heat transport under its bottom (see Appendix).
The inner boundary can be taken as isothermal at z → ∞, which is
a good approximation for the considered burst parameters, because
ρdrip � ρ2.

We have calculated the dependence of Tb on Ts in the standard
iron heat blanket, as in Potekhin, Chabrier & Yakovlev (1997), and
used it to obtain the light curves by linking Tb(t), calculated with the
toy model, to the surface luminosity L(t) = 4πR2σSBT 4

s .

Note that z is a proper depth, t is a proper time, and L is
a non-redshifted luminosity (for a local observer). The redshifted
(Schwarzschild) time tS and luminosity L∞ (for a distant observer)
are given by (e.g. Misner, Thorne & Wheeler 1973)

tS = t√
1 − rg/R

, L∞ = (1 − rg/R) L. (13)

According to equation (8), Tb(t) = T0(z) + T1(zb, t), where T0(z) is
the temperature prior to the burst. For simplicity, we will often assume
that T0 is much smaller than the characteristic excess temperature T1

during the burst (T ≈ T1 � T0), and the luminosity L0 prior to the burst
is much smaller than L. We will call this the T0 → 0 approximation.
In some cases, to be more realistic, we will set Tb0 = 108 K. Then,
the surface temperature and thermal luminosity prior to the burst are
Ts0 = 9.73 × 105 K and L0 = 9.2 × 1032 erg s−1, respectively.

2.5 Numerical simulations

Since we do not expect the toy model to be very accurate, we
will check its results with a few test runs done with a numerical
code of neutron-star thermal evolution. Such simulations would be
inappropriate while using the standard cooling codes (e.g. Kaminker
et al. 2014; Chaikin, Kaminker & Yakovlev 2018), which assume the
stationary temperature profiles at ρ < ρb and barotropic equation of
state (that is, T-independent pressure) due to the strong degeneracy
at ρ > ρb. The shallower layers at ρ < 107 g cm−3 can be essentially
non-stationary at the time-scales of hours and days that we consider
in this work. The relaxation time of the envelope could be made
shorter by shifting ρb to lower densities, but such densities cannot
be accurately modeled by the standard cooling codes because the
matter is not strongly degenerate and the equation of state is not
barotropic. We perform the simulations using the numerical code
described in Potekhin & Chabrier (2018), which is free from the
above assumptions. It allows us to get rid of a relatively thick quasi-
stationary heat-blanketing envelope, required in the standard cooling
codes, and to treat evolution of non-degenerate and partially degen-
erate layers of the star on equal footing with the strongly degenerate
interiors. The code employs modern microphysics (see Potekhin,
Pons & Page 2015 for a review). The hydrostatic equilibrium and
heat transport equations are solved consistently, using the number
of baryons inside a given shell as an independent variable (cf.
Richardson, Savedoff & Van Horn 1979). This code still uses an outer
quasi-stationary envelope to simplify the treatment of the zone of
partial ionization, but the choice of the boundary is more flexible. In
this case, the density at the bottom of the outer envelope ρb would be
an inadequate parameter because it depends on T. The temperature-
independent parameter that we actually use is the baryon mass of the
outer envelope Menv.

The heating and cooling simulations were performed for M =
1.38 M� neutron star using the BSk26 model of the equation of
state and composition of the inner crust and the core (Pearson et al.
2018). Having the radius R = 11.83 km, this star has the same
compactness rg/R and almost the same surface gravity gs as our
basic 1.4 M� star with R = 12 km. The outer crust is assumed to
contain only iron ions, as in the toy model. For the outer envelope,
we have chosen Menv = 10−12 M�, 10−13 M� or 10−14 M�. At low
temperatures, these choices roughly correspond to ρb ∼ 106 g cm−3,
2 × 105 g cm−3, or 5 × 104 g cm−3, respectively.

The microphysics of deep stellar layers (at ρ � ρ2) has no direct
effect on bursts A and B. Before the burst, the quasi-equilibrium
temperature profile with T = 108 K at ρ = 107 g cm−3 was selected
from the neutron star cooling sequence. In this case, the core is
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almost completely isothermal. Because of its large heat capacity and
high thermal conductivity, the core keeps a constant temperature on
the time-scales under consideration (during the burst and afterburst
relaxation of the crust). Therefore, the details of the core micro-
physics (composition, superfluidity, neutrino emission mechanisms
etc.) are unimportant in this study. In the simulations, we take the
same heating power Q(z, t) as in the toy bursts A or B. Below, we will
compare the computed temperature profiles and light curves with the
toy models.

2.6 Short nuclear burning phase

Outbursts in neutron star crust are complex phenomena with a
number of different time-scales. The shortest time-scale in our
consideration is the nuclear energy release (taken to be tburst = 100 s).
It is so short that the fraction of heat that escapes from the burst area
during this time is negligible. For this reason, its exact duration is
insignificant for further thermal evolution of bursts A or B; it is the
total generated heat that really matters. Both the numerical and toy
models describe the temperature evolution during the energy release.
We will follow this evolution but will not focus on this phase.

It is important to note that in bursting neutron stars one often uses
(e.g. Cumming & Macbeth 2004; Cumming et al. 2006; Altamirano
et al. 2012) the approximation of instant heater to describe the initial
temperature rise in the burning layer. This approximation assumes
instant transformation of the nuclear energy into heat in any element
of the burning layer, neglecting heat transport mechanisms. Then, the
temperature jumps from its initial values T0(ρ) to the values Tf(ρ),
which are determined solely by the sudden local heating. These
values are controlled by the heat capacity and nuclear energy release.
This approximation allows one to skip the initial fast temperature rise,
which saves computer time.

Since the toy-model assumes the classical ion heat capacity, equal
to 3kB per a nucleus, instant burning gives the excess temperature
jump T1f(ρ) = AQb/(3kB) in the burning layer, with T1f = 0 outside
this layer. With A = 56 andQb = 5 keV per nucleon, we have one and
the same constant temperature jump T1f(ρ) = 1.08 × 109 K within
the heater for burst models A and B in Table 1. The constancy of the
toy-model T1f(ρ) results from constant heat capacity per baryon.
Our numerical simulations use more realistic microphysics with
higher heat capacity at sufficiently low ρ and high T (Fig. 1), mainly
due to a contribution of the electrons, which are less degenerate at
lower densities. Accordingly, the simulations predict lower Tf(ρ)
(compared with the toy model) and rising Tf(ρ) profiles in the
burning zones, as will be discussed in Sections 4 and 5 below (cf.
e.g. Cumming & Macbeth 2004). One can also change the Tf(ρ)
profile assuming density-dependent fraction of nuclear fuel within
the burning layer (for instance, due to nuclear evolution prior to burst
or incomplete burning during the burst; e.g. Cumming & Macbeth
2004; Cumming et al. 2006; Keek et al. 2015).

The initial temperature rise in the idealized promptly bursting
shells A and B (Table 1) is different. For an instant burst in an
infinitely thin spherical shell, the initial temperature rise Tf is a delta
function, which is infinite at the burst moment and at the shell location
(t = 0, ρ = ρ2). It is smoothed out later by heat transport.

2.7 Three burst stages (I, II, III)

After the short burning phase, one often distinguishes three burst
stages that we denote as stages I, II, and III. These stages have
been described in the literature (e.g. Cumming & Macbeth 2004;
Cumming et al. 2006; Altamirano et al. 2012).

Figure 2. Excess temperature profiles versus density at four moments of
time t = 0.1, 1, 10, and 100 h (marked by log t [h]) after an instant toy burst
A in the thin shell at ρ = 108 g cm−3 with the total energy release E0 =
9.08 × 1039 erg (the thin lines). The thick lines are the same but produced by
toy burst A from the shell of finite thickness. See the text for details.

Stage I is characterized by a strong initial dynamical heat transport
above the ignition layer (at ρ < ρ2), corresponding to an increase of
the output heat flux over time. It ends after the onset of a slowly time-
varying (quasi-stationary) heat outflow in the outer layers. This stage
is followed by stage II of most energetic energy release through the
surface. During stage II, the regime of quasi-stationary heat outflow
establishes everywhere above the ignition layer. The final stage III
of burst decay is realized when the generated heat starts to sink
predominantly inside the star; it corresponds to a reversal of the heat
flux in the toy model. We will describe these stages for our models
below.

3 INSTA NT THI N-SHELL BURSTS

We start with the simplest idealized instant (tburst = 0) toy-burst A in
the infinitely thin shell at ρ2 = 108 g cm−3, but with the same total
energy release as in the more realistic model A (Table 1).

3.1 Temperature profiles and light curve

The excess temperature profiles T1(ρ) are given by equation (10).
Fig. 2 shows these profiles (the thin lines) produced in the outer crust
of the neutron star after burst A in an ignition shell with the total
energy release H0 = 9.08 × 1039 erg; T1 is plotted as a function of
density at four moments of time t since the burst starts, t = 0.1, 1,
10, and 100 h. The thick lines show similar profiles for burst A in the
shell of finite thickness.

An initial delta-function temperature spike becomes lower, wider,
and asymmetric and then disappears as the heat spreads over the
crust. In this model, stage I lasts for about 10 h during which the
thermal wave moves predominantly to the surface and reaches the
outer layers (ρ ∼ 107 g cm−3). Stage II lasts till t ∼ (30–40) h. By this
time the T1(ρ) profile becomes nearly horizontal above the ignited
shell. Heat diffusion slows down, which suppresses the heat flow to
the surface. At the last stage III the internal thermal wave moves
slowly inside the star beyond the ignition shell.
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Figure 3. The thick lines show burst luminosity versus time for toy-burst
models A and B (Table 1) assuming T0 → 0. The segments of especially high
L(t) are not shown because the toy-model cannot reproduce them accurately.
The dashed lines are the light curves for the associated models A and B of
instant bursts in the ignition shell (ρ = ρ2). See the text for details.

The appropriate light curve for burst A is plotted in Fig. 3 along
with the light curves for other burst models. The light curve reaches
its peak in t ≈ 20 h when the most energetic part of the thermal
wave emerges at the surface. Later the light curve decays; the decay
is nearly power law at the final stage.

Actually, the temperature profiles T1(ρ) at the early stages of
the instant ignition-shell burst models contain rapidly increasing
segments that are unstable against convection. The convection can
change the temperature profiles and the early segments of light
curves, which we discuss below for more realistic burst model A.

3.2 Basic properties of instant bursts

Equation (10) possesses the following properties.
Firstly, in a small vicinity near the heater (|z − zh| � zh) just after

the heat release equation (10) reduces to

T1(z, t) = H0

2Ch
√

πDht
exp

(
− (z − zh)2

4Dht

)
. (14)

where Dh = b/(azh) and Ch = az3
h have meaning of the diffusion

coefficient and the heat capacity near the heater, respectively. This is
the well-known temperature distribution produced after a point-like
and instant heat release in a uniform medium. Accordingly, just after
the burst one half of the thermal energy diffuses to z → 0 while the
other half diffuses to z → ∞.

Secondly, it is easy to show that if a neutron star crust consisted
solely of the toy-model matter down to the surface z = 0, all the heat
generated within the crust would diffuse, on a long run, within the
star. No heat would be able to flow through the surface because the
toy thermal conductivity (6) vanishes at z = 0. The initial heat outflow
to the surface would be redirected later inside the star (Fig. 2). This
is the basic heat-accumulating property of inner layers of the outer
neutron star crust. This possibility of heat accumulation in the crust
has been pointed out by Eichler & Cheng (1989). Since the heat
diffusion problem is linear in the toy model, the heat propagation
from extended heaters would possess the same property.

The heat diffusion described formally by equation (10) to z =
0 would give finite T1(t) but zero heat flux at z = 0. This excess
temperature T1(t) would grow up when the thermal wave reaches the
surface; it would fall down later when the heat would start sinking
inside the star after reflecting off the absolutely insulating surface.

This unphysical behaviour is caused by the formal extension of
the toy model to z → 0, discussed in the Appendix. Actually, the
physical assumptions underlying the toy model are only justified in
the ρ − T domain (1). Therefore, in the figures we only show the
results obtained using the toy model at ρ > 107 g cm−3. Microphysics
in the outer layer (ρ � 107 g cm−3) is different and allows some heat
to outflow through the surface, which we approximately describe by
introducing the heat blanketing envelope (Section 2.4).

Even in the selected domain (1) the toy model may somewhat
exaggerate the announced heat accumulation (due to the neglect
of quantum suppression of heat capacity of crystalline ions) or to
underestimate it (because of the neglect of the electron contribution
to the heat capacity). Nonetheless, we believe (and confirm by the
numerical simulations) that the model adequately reflects this heat
accumulation and enables one to study its consequences.

Note that at t � (u2 + u2
h)/4 from equation (10), we have

T1(z, t) = H0

3b
√

zhz t �(4/3)

(uhu

4t

)1/3

= H0

3b�(4/3)

( a

9b

)1/3 1

t4/3
, (15)

where �(4/3) ≈ 0.893 is the gamma-function value. In this case,
T1(z, t) becomes independent of z and zh and decreases with t as
t−4/3, determining the very late asymptotic behaviour of the light
curve L(t).

4 FI NI TE-WI DTH SHELL BURST A

4.1 Overview

Here, we discuss burst A (Table 1) in a sufficiently thick spherical
layer [ρ = (3−10) × 107 g cm−3] that fully lies within the toy-model
density range (1). Model A, that has been analysed in Section 3,
represents a thin-shell counterpart of model A.

The thick lines in Fig. 2 show snapshots of the toy-model A excess
temperature profiles T1 versus ρ at different moments of time in
comparison with burst A (the thin lines). The T1(ρ) curves can be
regarded as the T(ρ) curves in the T0 → 0 approximation. We see
that the A and A profiles of T1(ρ) in Fig. 2 are different at t � 1 d.
The largest difference is just after the burst [with flat Tf(ρ)-profile
within the heater for burst A versus sharp spike for burst A] but they
become close later. The appropriate light curves can be compared in
Fig. 3 with the same conclusion.

We have checked that the internal temperature profiles and light
curves at the late stage III (Section 2.7) of burst model B (Table 1)
are well described by the respective model B. This seems to be a
generic feature of bursts associated with the fact that the main burst
energy is released near the ignition density ρ2.

Fig. 4 presents the internal temperature profiles T(ρ) at different
moments of time t (marked by the values of log t [h]) after burst A
assuming the pre-burst temperature Tb0 = 108 K at ρ = 107 g cm−3.
The curves on the left-hand panel are calculated using the toy model,
while the curves on the right-hand panel are calculated by the thermal
evolution code. The lower dotted line is the temperature profile T0(ρ)
without any burst [it is given by equation (9) for the toy model].
As explained in Section 2.5, the code allows us to compute the
T(ρ) profiles at any densities. Here, the outer envelope with mass
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Figure 4. Density dependence of the internal temperature T(ρ) in the outer neutron star crust after burst A at different moments of time t (marked by log t [h])
assuming Tb0 = 108 K at ρ = 107 g cm−3 prior to the burst. The curves on the left-hand panel are calculated with the toy model, while those on the right-hand
panel are computed with the numerical code that allows us to extend them to lower ρ. The lower dotted curves on both panels are pre-burst (= after-burst)
temperatures T0(ρ). See the text for details.

Menv = 10−14 M� is used, which enables us to display the T(ρ) curves
to lower densities ρ ∼ 105 g cm−3 in the right-hand panel.

Fig. 5 presents the light curves for burst A calculated using the toy
model (on the left-hand panel) and the thermal evolution code (on
the right-hand panel). The solid curve in the left-hand panel and both
curves in the right-hand one refers to Tb0 = 108 K at ρ = 107 g cm−3;
the corresponding levels of the quiescent thermal luminosity of the
star are plotted by the horizontal dotted lines. The dashed line for the
toy model presents the light curve assuming T0 → 0 (as in Fig. 3). The
solid and dashed lines on the right-hand panel are computed for the
same burst model but using different heat blankets (with equivalent
ρb = 5 × 104 and 105 g cm−3, respectively). The nice agreement
between these curves shows that the outer quasi-stationary envelope
of Menv = 10−14 M� is sufficiently thin to ensure good accuracy of
the simulations.

According to Fig. 3, burst A becomes pronounced in the surface
emission in a few hours after the explosion, in contrast with ∼10 h
for burst A. This is because the outer part of the burning layer A is
closer to the surface.

4.2 Burst A: toy model versus simulations

Now we can compare the toy-model results with those provided by
the numerical simulations. Figs 4 and 5 allow us to compare T(ρ)
profiles and the light curves of burst A.

The overall qualitative agreement seems reasonable, although
some differences are substantial. The differences are visible at stage
I which lasts for a few hours and at stage II, that ends in about 30 h.
The agreement between the toy and accurate results at the last decay
stage III is more satisfactory.

The main source of disagreement is in the underestimation of
the heat capacity at ρ ∼ 107 g cm−3 in the toy model (as discussed
above; Fig. 1) and much more realistic treatment of the heat transport
to the very surface by the numerical code. With the reduced toy heat
capacity, the instant-afterburst toy temperature Tf(ρ) (Section 2.6)

in the burning zone becomes higher than it should be. These instant
afterburst segments of the Tf(ρ) curves are quite visible in Fig. 4 (at
log t [h] = −1 and −0.5). The largest Tf difference reaches a factor
∼(2−3) at ρ = 3 × 107 g cm−3. As a result, the toy model overheats
the matter at lower densities, making the light curve noticeably
brighter than it should be at stages I and II. It overestimates the burst
energy radiated at these stages through the surface and reduces in this
way heat-accumulating properties of neutron stars. Owing to these
reasons, we do not show most luminous segments of the toy light-
curve B in Fig. 3. According to the simulations, about 20 per cent
of the burst energy emerges through the surface in burst A. The toy
model does not allow us to accurately estimate this value.

Let us note sufficiently large temperature gradients of the toy T(ρ)
profiles (Fig. 4) near ρb = 107 g cm−3 at stage I. They are expected
to be badly compatible with the toy heat blanket model (Section 2.4)
making the toy light curve even less reliable. Note also that the
quiescent (dotted) T(ρ) profile is steeper for the toy model.

On stages II and III, both approaches predict nearly horizontal
segments of the T(ρ) profiles (with small inclinations relative to
the horizontal axis) that correspond to quasi-stationary and nearly
flux-conserving heat propagation. These segments appear rather
insensitive to microphysics of the matter: the heat capacity drops out
of equation (3) in the stationary case and the thermal conductivity
should only be high enough to ensure almost horizontal profiles.

4.3 Convection after burst A

Steeply rising segments of the T(ρ) profiles for bursts A and A at
stage I in Figs 2 and 4 can be convectively unstable. The convection
has been neglected both in the toy model and in the numerical
simulations. Let us outline it for the toy model after burst A. To
estimate the deepest densities of the convective zone, we have used
accurate microphysics of fully ionized plasma of iron matter. We have
employed the Schwarzschild convection criterion and compared the
toy-model temperature gradients with the adiabatic ones.
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Figure 5. Surface luminosity versus time for burst A calculated with the toy model (left) and with the thermal evolution code (right). The solid line on the
left-hand panel as well as the solid and dashed lines on the right-hand panel correspond to Tb0 = 108 K at ρ = 107 g cm−3 prior to the burst; the horizontal
dotted lines display the quiescent luminosity. The dashed line on the left-hand panel shows the toy light curve assuming T0 → 0 (as in Fig. 3). The solid and
dashed lines on the right-hand panel are computed with different heat blanket models. The vertical dotted line in the right-hand panel is a guide to the eye for
comparison with the solid line in the left-hand panel. See text for details.

As a result, we have obtained that the convection can operate at
stage I for about 5 h after the burst. Later the bottom density of
the convective zone becomes lower than ρb = 107 g cm−3, and the
convection disappears from the toy-model domain (1). It can still
operate at ρ < ρb, but it cannot strongly affect the model light curves
and heat propagation at ρ > ρb.

If the convection is on, the real T(ρ) profiles lie between the heat-
diffusion and adiabatic temperature profiles, and the latter can be
essentially higher than the former. We do not plot the adiabatic T(ρ)
curves and we do not follow the consequences of convection in detail
because we regard models A and A as illustrative.

5 THIC K-SHELL BURST B

Fig. 6 shows snapshots of the temperature profiles T(ρ) in the outer
crust of the star after burst B (Table 1) at different moments of
time t. The curves are calculated using the toy model (the left-hand
panel) and the thermal evolution code (the right-hand panel) under
the assumption that T = 108 K at ρ = 107 g cm−3 prior to the burst.
Fig. 6 is analogous to Fig. 4 for burst A. As in Fig. 4, the temperature
profiles are traced to lower ρ in the right-hand panel.

Burst B is designed to be a more adequate representation of a
realistic superburst than burst A. Let us recall that the toy model
is justified at ρ > ρb = 107 g cm−3, while it is widely accepted
that explosive carbon burning in superbursts occurs also at much
lower densities, down to ρ1 ∼ 104 g cm−3 or lower (e.g. Keek &
Heger 2011; Keek et al. 2012). However, the main energy release
takes place at ρ � ρb so that the burning at lower densities does
not change the total energy budget, although it affects the temper-
ature distribution at ρ � ρb, including densities somewhat higher
than ρb.

To be consistent with standard simulations of superbursts, in the
toy model B we use the solution of equation (12), in which the
heat source is extended to lower densities ρ1, as in real superbursts.
We have taken ρ1 = 3 × 106 g cm−3; making ρ1 still lower would

not change our results. This choice of the toy-model solution gives
realistic behaviour of the temperature distribution T(z, t) in the toy-
model domain (1). However, some extra energy is now released in the
density range ρ < 107 g cm−3, where we use the heat-blanket solution
to calculate the light curve. The heat-blanket model is obtained
without any additional short-term heating. Accordingly, we cannot
rely on our light curve as long as the extra heat is confined in the
heat blanket and the usual steady-state heat outflow is not established
there.

Using the above procedure, we obtain the toy-model T(ρ) profiles
at ρ ≥ 107 g cm−3 (the left-hand panel of Fig. 6) that are stable against
convection and resemble those obtained in advanced simulations of
superbursts.

The main difference of these profiles from those for toy burst
A on the left-hand side of Fig. 4 is the absence of temperature
peaks associated with the finite width of the heater A. The toy-model
temperature gradient for burst B is mainly negative at ρ ≥ ρb =
107 g cm−3 at all moments of time because of the heat-accumulation
nature of the toy model. In the density range ρb ≤ρ �ρ2, this gradient
decreases with time, leading to the appearance of quasi-isothermal
zones (in t ≈ 30 h for burst B). The extra heat accumulated in this
zone mainly sinks slowly inward the star in the same manner as in
burst A.

The calculated toy-model temperature profiles are in reasonable
qualitative agreement with those computed using the thermal evo-
lution code and presented on the right-hand panel of Fig. 6 (as in
Section 4 for burst A). However, the toy model stronger overestimates
T at ρ ∼ 107 g cm−3 at earlier stages I and II, although the overall
agreement at the late stage III is satisfactory. The slower toy-model
thermal diffusion is also quite visible. Apparently faster cooling of
the heated layer in the numerical calculations is realized because of
stronger heat outflow through the surface. As explained above, the
extra energy, generated at ρ < ρb, complicates construction of the
toy-model light curve at the initial stages I and II of burst B, although
the agreement improves with time and becomes better at stage III.
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Figure 6. Same as in Fig. 4 but for burst B.

Figure 7. Surface luminosity versus time for bursts from the four shells
extended from ρb to 108 g cm−3 (see the legend), computed assuming a
quasi-stationary outer envelopes of masses Menv = 10 −12, 10−13, 10−14 M�,
corresponding to the T-dependent bottom densities ρb(T), whose approximate
values ∼(106, 2 × 105, 5 × 104) g cm−3 are marked in the legend. The dotted
line for burst A (Fig. 5) is shown for comparison with the other lines, which
are computed for model B. The lower horizontal dotted line is the quiescent
luminosity (with T0 = 108 K at ρ = 107 g cm−3). See the text for details.

In Fig. 7, we present three light curves calculated by the numerical
code for burst B model (ρ1 = 3 × 106 g cm−3) compared with one
light curve for burst A (ρ1 = 3 × 107 g cm−3). The former three
curves differ by the masses Menv of the quasi-stationary envelope
used in simulations. We parametrize these masses by the approximate
equivalent values of ρb listed in Section 2.5. Although the light curves
for burst B are somewhat different at stage I (t � 10 min), they merge
in the single curve later. At stage III (t � 20 h), this curve is similar
but slightly higher than the dotted curve for burst A because burst

B is more energetic (Table 1). This similarity is a genetic feature of
light curves at stage III, as discussed below. Very similar behaviour
is due to the same bottom density ρ2 of the bursting shells in models
B and A. According to the numerical simulations, about 25 per cent
of the energy released in burst B emerges through the surface. It is
higher than 20 per cent in burst A because model B contains heating
layers located closer to the surface.

6 G ENERI C FEATURES OF BURSTS

Let us outline generic features of the stages I, II, and III in the
evolution of deep bursts (Section 2.7).

Stage I is short and dynamical. It can be accompanied or not
accompanied by convection, depending of the fuel distribution in the
burning shell. For realistic bursts of thick shells filled with fuel to low
densities (�104 g cm−3), convection seems unimportant (because of
reduction of temperature gradients). Stage I ends with the onset
of quasi-stationary flux-conserving heat outflow at ρ ∼ (106−107)
g cm−3.

The next stage II of the strongest energy release through the surface
is accompanied by quasi-equilibration of the heat propagation though
the entire bursting shell (down to the ignition depth ρ2). According to
many simulations (e.g. Cumming & Macbeth 2004; Cumming et al.
2006; Altamirano et al. 2012), the light curves L(t) show a rapid
initial rise (not always observable) followed by a slow, e.g. power-
law fall; the power-law index is often treated as universal. Typically,
the initial afterburst temperature profiles Tf(ρ) gradually increase
with density. However, as demonstrated by Keek et al. (2015), one
can obtain steeper profiles, for instance, assuming that the fraction
of burnt fuel increases with ρ within the heated layer. In this case,
the authors obtained the L(t) curves containing smooth peaks at the
most energetic stage. Light curves of both types, with a slow L(t) fall
and with a preceding peak, have been observed.

We remark that microphysics in bursting sources can be different,
for example, due to different ignition densities and temperatures
(see Section 7.2). Accordingly, we do not expect that the L(t)-profile
at burst stage II is universal. Varying microphysics and the fuel
distribution, one can construct rather sophisticated profiles.
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By the end of the most energetic burst stage II, the quasi-stationary
regime of flux-conserving heat outflow (e.g. Cumming et al. 2006) is
established from the outer zone to the bottom of the initially heated
layer, ρ1 ≤ ρ � ρ2.

Recall that the temperature becomes almost independent of heat
capacity and thermal conductivity in nearly isothermal zones. Once
such zones appear, calculated values of T within them start to be
insensitive to the underlying microphysics.

Before the temperature equilibrates in the entire heated zone
during stage II, the heat has not enough time to sink deeply inside
the crust. The latter sinking mainly proceeds at the final stage III of
the burst.

7 LATE STAG E O F BU R S T D E C AY

Here, we focus on stage III of late burst decay. So far our consid-
eration was restricted to one neutron star model (M = 1.4 M�, R =
12 km) and to fixed ignition density (ρ2 = 108 g cm−3). We also
restricted ourselves to unrealistically low fuel calorimetry, in order
to meet the assumptions inherent to the toy model (in particular, the
neglect of neutrino emission). In this section, we will base on generic
properties of bursts (Section 6) and perform a semiquantitative
analysis of the late decay stage III for rather arbitrary neutron
star models, ignition depths, and burst energies. Our consideration
will also be independent of possible strong neutrino cooling of the
bursting shell at earlier stages I and II. The analysis will be not too
rigorous but hopefully reproduces the main features of stage III under
the assumption that the internal temperature is much higher than in
quiescence, T � T0.

7.1 Transition time to the late-decay stage

The transition from the most energetic stage II to the final stage III
can be observable as a transition to faster light curve decay. Let ttr

be the corresponding transition time and Ttr be the temperature in
the nearly isothermal zone at this epoch. It is natural to state (e.g.
Cumming & Macbeth 2004; Cumming et al. 2006; Altamirano et al.
2012) that ttr is the time of thermal wave propagation from the bottom
of the heater through the entire outer zone (from the ignition density
ρ2 ≈ ρ tr to the surface). This time can be estimated as (Henyey &
L’Ecuyer 1969)

ttr = 1

4

∣∣∣∣∣
∫ z2

0
dz

√
C

κ

∣∣∣∣∣
2

, (16)

where the integration is along the T(z) track at t ∼ ttr. For deep and
strong bursts, the internal temperature by that time becomes nearly
uniform, T ≈ Ttr, over the most important part of the track which
contributes mainly to the integral.

In the toy model, it is sufficient to replace the lower integration
limit by zb (which is appropriate to ρb = 107 g cm−3). Using
equations (4) and (6), we obtain

ttr = a

9 b

(
z

3/2
2 − z

3/2
b

)2 ≈ a

9 b
z3

2 ≈ 0.35 ρtr6 h; (17)

the final expression is obtained by setting z2 � zb, and the estimate
is given for M = 1.4 M� and R = 12 km, with ρ tr6 = ρ tr/106 g cm−3.
This gives ttr ≈ 35 h for toy bursts A and B.

Disregarding the toy model, we have calculated ttr from equa-
tion (16) along the T = Ttr tracks for a dense grid of log ρ tr [g cm−3]
(from 7.5 to 10 with step of 0.1) and log Ttr [K] (from 8 to 9.5 with
step of 0.1). We have taken the lower integration limit at ρ = 106

g cm−3 and used full realistic physics input. The calculated values

present realistic estimates of thermal diffusion time from depths ρ tr

at temperatures Ttr to the surface. The entire family of these diffusion
times can be fitted by

t
(0)
tr [h] = p1ρ

p3+1
tr6

/(
1 + p2ρ

p3
tr6

)
, (18)

where

p1 = 0.07483(lT − 7.786)

1 + exp(11.37(lT − 8.576))
+ 3 × 10−5,

p2 = 0.5582(lT − 7.777)

1 + exp(10.87(lT − 8.587))
+ 3.9 × 10−4,

p3 = 0.8209 + 0.3865 sin(3.658(lT − 14.04)),

and lT = log10(Ttr [K]). The maximum relative fit error is about
9 per cent (at log ρ tr[g cm−3] = 7.5 and log Ttr[K] = 8) and the rms
relative error is 3 per cent, quite sufficient for our semiquantitative
analysis. The superscript (0) in t

(0)
tr indicates that the calculated

values refer to a star with M = 1.4 M�, R = 12 km and gs0 =
1.59 × 1014 cm s−2.

Note that we determine ttr in the local reference frame. According
to equation (13) and simple self-similarity arguments, a distant
observer would measure

tS
tr = g2

s0

g2
s

t
(0)
tr√

1 − rg/R
(19)

for a neutron star with arbitrary values of M and R (and corresponding
surface gravity gs).

For example, Fig. 8 shows the isolines of constant log ttr[h] = 0.5,
1, 1.5, and 2 in the ρ tr−Ttr plane for neutron stars with the canonical
mass M = 1.4 M� but two values of radius R = 10 km (the left-hand
panel) and R = 12 km (the right-hand panel). It is seen that ttr depends
mainly on ρ tr. For the same ρ tr, the diffusion time is noticeably
shorter in a more compact star because its crust is geometrically
thinner. In the toy model, the diffusion time (17) appears somewhat
larger because our toy-model thermal conduction is slower.

Inferring ttr from observations allows one to estimate the ignition
depth ρ tr (or ignition column ytr) and put constraints on possible mass
and radius of the star. At t ∼ ttr, one expects Ttr ∼ (1−3) × 109 K
and the luminosity of a real superburst Ltr ∼ (5−50) × 1035 erg s−1.

7.2 Late decay rate

Here, we analyse the burst decay rate at t � ttr.
First of all we note that the transition temperature Ttr can roughly

be estimated as the temperature of the outer layer ρmin � ρ � ρ2

heated by the nuclear column energy (that is, the energy per unit
surface area), H0tr, released in the outer layer by the moment t ∼
ttr. Generally, the initial heat H0 can be transported outwards (to the
surface), inwards (to the core), and carried away by neutrinos from
the heated layer. The inward heat transport is slow; it can usually be
ignored at t � ttr. The heat transport to the surface can be efficient at
t � ttr but later it becomes less important compared with the inward
heat flux. The neutrino emission (which we ignore in the bulk of this
paper) can substantially reduce the thermal energy but this energy
loss is quick (because it is the strongly T-dependent, see Yakovlev
et al. 2001). It is expected to become weak at t � ttr. Thus, we can
estimate Ttr as

Ttr ∼ H0tr/(Ctrztr), (20)

where Ctr = C(ztr, Ttr).
The last stage of the burst decay is controlled by sinking of the

heat inside the star. The heat capacity of the outer crust under the
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Figure 8. Isolines of constant thermal diffusion times (log tS
tr [h] =0, 0.5, 1, 1.5, 2, 2.5, and 3) in the log ρtr−log Ttr plane for neutron stars with M =1.4 M�

and two values of R = 10 km (left-hand panel) and 12 km (right-hand panel). Upper horizontal scales show column densities ytr (instead of ρtr) as commonly
used in the literature. See the text for details.

heater is so large that the matter easily absorbs the spreading heat.
Accordingly, in spite of high thermal conductivity, the heat wave
moves slowly inside the star, increasing heat-accumulating property
of the outer crust.

This slow heat sinking is governed by equation (3) with Q =
0. At t � ttr, an approximate solution can be obtained using self-
similarity properties inherent to this equation. Let z∗, T∗, C∗, and
κ∗ be, respectively, characteristic depth, excess temperature, heat
capacity, and thermal conductivity of the inner front (z∗ � ztr) of
the spreading heat at moment t. At t � ttr one can use the following
order-of-magnitude estimates,

T∗C∗z∗ ∼ H0tr, t ∼ C∗z2
∗/κ∗. (21)

The first estimate ensures approximate conservation of the overall
heat content over time, in agreement with equation (20), and the
second one describes ordinary heat diffusion.

Now let us assume arbitrary power-law dependencies of C and κ

on temperature and density

C(z, T ) = Ctr

(
z

ztr

)α1
(

T

Ttr

)α2

, (22a)

κ(z, T ) = κtr

(
z

ztr

)β1
(

T

Ttr

)β2

, (22b)

and analyse the thermal wave propagation recalling that ρ ∝ z3,
in deep layers of the outer crust. Here, Ctr and κ tr normalize
the heat capacity and the thermal conductivity, while α1, α2, β1,
and β2 specify their density and temperature dependence. For a
normalization point, we take z = ztr at the moment t = ttr at
which the late afterburst relaxation stage III starts, with T∗ = Ttr.
We substitute equations (22) into (21) and obtain two equations
containing powers of t/ttr, z∗/ztr and T∗/Ttr. These equations yield the
self-similar solution for arbitrary microphysics of the matter in the
form of power-law decay:

T∗
Ttr

∼
(

ttr

t

)ν

∼
(

ztr

z∗

)(α1+1)/(α2+1)

, (23)

where the power index is

ν = 1 + α1

2 + α1 + α2 + (1 + α1)β2 − (1 + α2)β1
. (24)

The toy model corresponds to α1 = 3, β1 = 2, α2 = β2 = 0 and
gives ν = 4/3. At H0tr ∼ H0 equation (23) qualitatively reproduces
the exact asymptotic solution (15) of the toy model problem for
the internal temperature decay and yields the law of thermal wave
propagation inside the star, ρ∗/ρ tr ∼ (z∗/ztr)3 ∼ t/ttr, which agrees
with the toy model calculations. However, let us stress that, for the
parameters employed, the exact toy asymptotic regime is realized
too late to be observed in real events.

Nevertheless, the real plasma deviates from the toy-model due
to the complexity of microphysics involved (Section 2.1). We see
that the index ν reflects the rate of temperature decrease in the
vicinity of the depth ztr at the moment of time ttr. This ν is local
(depends on local density ρ tr and temperature Ttr), but independent
of neutron star mass and radius. For any pair of ρ tr and Ttr, we have
calculated the parameters α1, 2 and β1, 2 in equation (22a) as local
power laws, e.g. α1 = ∂ln C(z, T)/∂ln z (at z = ztr and T = Ttr)
with accurate microphysics of the matter. Then, we have found ν

from equation (24). Fig. 9 presents isolines of constant ν = 0.3, 0.4,
0.5, 0.6, and 0.7 in the ρ tr−Ttr plane. One can see that higher ν are
realized at sufficiently large densities and low temperatures.

Indeed, the microphysics of the matter varies with density and
temperature. For instance, at densities ρ ∼ 107 g cm−3 the approxima-
tion of temperature-independent thermal conductivity of degenerate
electrons (6) is violated, and the linear dependence κ ∝ T becomes
more suitable (e.g. Potekhin et al. 1999). Then, as long as the
degenerate electrons remain relativistic, one has κ ∝ Tρ1/3, which
corresponds to β1 = β2 ≈ 1. As for the heat capacity, it may still
be mostly provided by ions, with C ∝ ρ (α1 = 3, α2 = 0), as in the
toy model; see equation (4). In that case, we have ν = 1/2, so that
T∗/Ttr ∼ √

ttr/t and ρ∗/ρ tr ∼ (t/ttr)3/8. Note that Cumming & Macbeth
(2004) obtained ν = 2/3 which is largely used in the literature. Fig. 9
demonstrates that a wide range of ν can be realized in one star.
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Figure 9. Isolines of constant power-law indices in equation (23), ν =
0.3, 0.4, 0.5, 0.6, and 0.7, on the log ρtr−log Ttr plane for neutron stars
(independent of M and R). See the text for details.

Now we can outline the behaviour of the light curve L(t) at the
decay stage III. To this aim, we can assume that at t � ttr the internal
temperature profile at densities ρb � ρ � ρ∗ is nearly flat, T(ρ) ≈
T∗. Then, we can estimate the surface temperature Ts and the surface
luminosity L(t) = 4πR2σSBT 4

s with the aid of the Ts−Tb relation
for the heat blanketing envelope (Section 2.4). These results can be
roughly approximated by the power-law decay

L(t) ≈ (ttr/t)
γ Ltr, (25)

with the index γ = dln L(t)/dln t at t = ttr. Unfortunately, our
calculations show that accurate values of γ do depend on deviations
of T(ρ) from constants Ttr near the heat blanket (ρ > 107 g cm−3)
and on exact behaviour of the Ts−Tb relation at ρ = ρb. The problem
of accurate calculation of γ deserves a special study. The robust
conclusion is that γ is larger for deeper bursts (higher ρ tr) and lower
Ttr. These results do not support the idea that γ is universal for all
superbursts.

One should bear in mind that the self-similar approach is only an
approximation based on the assumptions that local miscophysical
parameters, such as α1, 2 and β1, 2 vary sufficiently slowly. It is
natural that as the crust is cooling at stage III, microphysics of
the characteristic density and temperature domain, that controls the
cooling, is changing. This may lead to a variable γ along the cooling
track.

7.3 Analysing late superburst tails

The results on times t � ttr of late superburst decay onset (Section 7.1)
and on light-curve slope γ during the late tail stage III (Section 7.2)
can be used for a preliminary semiquantitative ‘express’ analysis of
superbursts. A transition time tS

tr from stage II to stage III can be
observed as a change of the light-curve slope (from a slow to faster
decay). A power-law index γ can potentially be inferred from an
observed light curve at stage III. Note that both measurements (of
tS
tr and γ ) do not require normalization of light curves. It is worth

to remark that the accurate determination of γ is a serious problem
because of large errorbars of L(t) at the tail stage when the source is
fading. Analysing ttr seems more informative.

For instance, let us consider six superbursts detected with Bep-
poSAX and analysed by Cumming et al. (2006). They were the
superbursts from 4U 1524–690 observed in 1999 (in ’t Zand et al.
2003), 4U 1735–444 (1996, Cornelisse et al. 2000), KS 1731–
260 (1996, Kuulkers et al. 2002), GX 17 + 2 (1999, in ’t Zand,
Cornelisse & Cumming 2004), Ser X-1 (1997, Cornelisse et al.
2002), and 4U 1636–536 (2001, Strohmayer & Markwardt 2002;
Kuulkers et al. 2004). The observed light curves and theoretical fits
are given in figs 5–10 of Cumming et al. (2006); the fit parameters
are listed in table 1 of that paper.

Let us take, for instance, the KS 1731–260 superburst (fig. 5)
and determine tS

tr as the time after which the theoretical fit becomes
nearly power law. We have tS

tr ≈ 10 h. Since Cumming et al. (2006)
took M = 1.4 M� and R = 10 km for their interpretation, we use
the left-hand panel of Fig. 8, adopt log Ttr [K] ≈ 9−9.3 and obtain
log ytr [g cm−2] ≈ 12 and log ρ tr[g cm−3] ≈ 8.7, in nice agreement
with Cumming et al. (2006). Similar agreement takes place for other
five superbursts. Note, however, that in order to explain the reported
log ytr [g cm−2] ≈ 11.7 (log ρ tr[g cm−3] ≈ 8.5) for the shortest
superburst (tS

tr ≈ 2 h), demonstrated by 4U 1636–536, we need to
assume higher log Ttr [K] ≈ 9.5.

Now let us return to the KS 1731–260 superburst and take the
same M = 1.4 M� but larger R = 12 km. In this case, we should
use the right-hand panel of Fig. 8. With the same tS

tr and log Ttr we
obtain log ytr[gcm−2] ≈ 11.3 and log ρ tr[g cm−3] ≈ 8.2. With the
larger radius R, the crust becomes thicker, which makes thermal
diffusion slower. Accordingly the ignition density ρ tr has to be about
three times smaller to ensure the same time tS

tr for the late stage III
onset. Similar shifts of the ignition density to the surface would take
place for other superbursts, meaning that theoretical interpretation of
superbursts is rather sensitive to neutron star mass and radius. Our
Fig. 8 and equations (18) and (19) can be helpful for understanding
which M and R are more suitable.

Let us mention again the remarkable superburst of 4U 1636–536
with tS

tr ≈ 2 h. Recall that Cumming et al. (2006) assumed M =
1.4 M� and R = 10 km and obtained log ytr [g cm−2] ≈ 11.7 and
log ρ tr [g cm−3] ≈ 8.5. Keek et al. (2015) adopted the same M but
R = 12 km and obtained log ytr [gcm−2] ≈ 11.3 and log ρ tr [g cm−3]
≈ 8.2, in agreement with the right-hand side of Fig. 8. The interesting
feature of this source is that the superburst tail has been measured
to rather low luminosities (fig. 2 in Keek et al. 2015). Although the
tail measurements show substantial time variations, they might be
interpreted in a way that the late tail decays faster (with larger γ )
than its beginning. Keek et al. (2015) attribute this effect to some
instabilities in the accretion disc.

We would like to note that there may be another explanation
associated with the genuine acceleration of the crustal cooling at
stage III. According to Fig. 9, as the temperature goes down in the
crust at the tail stage, the local power-law ν can substantially increase
and accelerate the cooling (Section 7.2). Note that the neutron star can
be more compact (for instance, it could be more massive). Then, the
ignition is shifted to higher densities, which facilitates the process.
This is just a possibility that might be checked in detailed simulations.

8 C O N C L U S I O N S

We have developed a simplified analytic model (toy model) to study
heat diffusion after a burst in deep layers of the outer neutron star
crust, at sufficiently high densities and temperatures, see equation (1).

The applicability of this model is quite restricted. It cannot follow
nuclear reaction networks and associated evolution of microphysical
properties of the matter. It does not allow one to study the stages
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of accretion, accumulation and procession of nuclear fuel, the
appearance of shocks and precursors before a burst, dynamics of
nuclear burning and nucleosynthesis, heat outflow due to neutrino
emission (in contrast to modern computer codes, e.g. Cumming et al.
2006; Keek & Heger 2011; Keek et al. 2012, 2015; Galloway & Keek
2017; in ’t Zand 2017 and references therein).

However, the toy model is simple and requires no special computer
resources. It can simulate important fragments of real events and
predicts generic features of real bursts.

It is important that a warm outer crust of a neutron star has
large heat capacity and operates as a huge heat reservoir. It can
easily keep the heat generated in a burst for a few months. Generic
features include the appearance of a quasi-isothermal zone above the
layer, where the main burst energy is released, and a very slow heat
diffusion to the inner crust. This leaves the bottom of the outer crust
sufficiently cold and thermally decoupled from the heated zone in the
upper layers. The burst energy is mainly transported inside the star,
although some fraction can be carried away by neutrinos from the
bursting layer while another fraction diffuses to the surface and can
be observable. Typically, the burst that is seen from the surface fades
before the heat wave reaches the inner crust. We have shown that the
toy model can be useful to describe the late stage of the afterburst
relaxation.

Note that our method can be inaccurate at lower temperatures, T �
108 K. In that case, the heat capacity is strongly reduced by quantum
effects in the motion of ions. Also, the thermal conductivity of
degenerate electrons becomes essentially dependent on temperature
and on the presence of impurities (ions of different types; e.g.
Potekhin, Pons & Page 2015). Moreover, the toy model cannot be
directly applied to the inner crust of the neutron star, where free
neutrons appear in the matter, in addition to atomic nuclei and
strongly degenerate electrons. These free neutrons are numerous
there. If they were normal, they would be the source of large heat
capacity, but they most likely are superfluid. Their superfluidity
greatly reduces the heat capacity of the inner crust (e.g. Cumming
et al. 2006). Generally, the inner crust seems to be a poorer heat
reservoir than the outer crust (e.g. Haensel et al. 2007).

The toy model can be generalized to include the effects of neutrino
cooling. Such models can be used to guide more elaborated numerical
simulations of bursting neutron stars.
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APPENDI X A : G REEN’S FUNCTI ON

We need to solve equation (7) that is obtained from equation (3)
with C = az3 and κ = bz2 in accordance with equations (4) and (6).
Instead, we will be more general here and set

C = azα, κ = bzβ, (A1)

with arbitrary α and β, assuming constant values of a
[erg cm−α−3 K−1] and b [erg cm−β−1 s−1 cm−1]. Then, the equation
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to be solved reduces to

azα ∂

∂t
T − b

∂

∂z

(
zβ ∂

∂z
T

)
= Q(z, t). (A2)

Let us use the Laplace transformation of equation (A2) with respect
to t at Q = 0,

T̃ (z, s) =
∫ ∞

0
dt exp(−st) T (z, t), (A3)

and introduce a dimensionless variable x,

x =
(

z

zs

)μ

= u
√

s, u = zμ

μ

√
a

b
, (A4)

with μ = (α − β + 2)/2. Then, we obtain the second-order
homogeneous differential equation

x2T̃ ′′ + α + β

α − β + 2
xT̃ ′ − x2 T̃ = 0 (A5)

for T̃ as a function of x; primes denote differentiation over x.
Introducing λ = (β − 1)/(α − β + 2) and Y = T̃ xλ, we come to

the Bessel equation of imaginary argument

x2Y ′′ + xY ′ − (
x2 + λ2

)
Y = 0, (A6)

for Y = Y(x, s) as a function of x. A general solution of equation (A5)
for T̃ is

T̃ (x, s) = 1

xλ
[D1(s)Kλ(x) + D2(s)Iλ(x)] , (A7)

where Iλ(x) and Kλ(x) are the modified Bessel functions; D1(s) and
D2(s) remain to be determined.

The Laplace transform of the thermal flux density q(z, t) =
−κ∂T(z, t)/∂z is

q̃(x, s) = −q0 x2λ+1∂T̃ (x, s)/∂x, (A8)

where q0 = μbzβ−1
s . Using equation (A7), we find

q̃(x, s) = q0x
λ+1 [D1(s)Kλ+1(x) − D2(s)Iλ+1(x)] . (A9)

Now, let us construct the Green’s function G(z, t) of equation (A2)
with the source function

Q(z, t) = δ(z − zh) δ(t − th) H0, (A10)

where H0 [erg cm−2] is the total column heat (per 1 cm2). The source
is assumed to be active at t = th on a spherical shell at z = zh. We
are looking for the temperature T(z, t) determined by diffusion of the
generated heat at t > th from the source (z = zh) to small z (to the
stellar surface) and to large z (to the stellar interior).

Going from variable z to x in equation (A2) with Q(z, t) from
(A10), then taking the Laplace transform (A3) of (A2) and using
the definition (A8) in the second (transformed) term on the left-hand
side of (A2), we obtain the equation for T̃ (x, s) ≡ G̃(x, s),

∂q̃(x, s)/∂x + q0x
1+2λ G̃(x, s) = H0δ(x − xh) exp(−sth). (A11)

In this case, equation (A7) has a piece-like solution, T̃−(x, s) with
coefficients D−

1 (s) and D−
2 (s) ≡ D−(s) at x < xh and T̃+(x, s) with

coefficients D+
1 (s) ≡ D+(s) and D+

2 (s) at x > xh. According to (A4)
we have x = xh at z = zh The two regions z < zh and z > zh.
correspond to x < xh and x > xh, respectively.

The coefficients D±
1,2(s) have to be determined from the boundary

conditions. To proceed analytically, we introduce the following
approximation that allows us to come to the explicit solution (which
is checked by comparison with numerical simulations in Sections 4.2
and 5). Instead of solving the problem in the finite interval zb < z <

zdrip, we extend it to 0 < z < ∞. Considering that Kλ(x) → 2λ − 1(λ
− 1)! x−λ, the requirement of finite temperature at z → 0 (or x →
0) leads to D−

1 (s) = 0. On the other hand, at z → ∞, considering
that Iλ(x) → ex/

√
2πx we should put D+

2 = 0. Accordingly, the
piece-like solution in the two regions becomes

T̃−(x, s) = x−λD−(s)J−(x) at x < xh (z < zh), (A12a)

T̃+(x, s) = x−λD+(s)J+(x) at x > xh (z < zh), (A12b)

where xh = uh

√
s, uh is the same as u in equation (A4) but with z →

zh, J−(x) ≡ Iλ(x), J+(x) ≡ Kλ(x).
Integrating equation (A11) over an infinitesimal vicinity of x =

xh, we have

q̃+(xh, s) − q̃−(xh, s) = H0 exp(−sth). (A13)

In the same vicinity, we can rewrite equation (A13) using (A8) as a
first-order differential equation:

∂G̃(x, s)

∂x
= −H0 exp(−sth)

q0x2λ+1
. (A14)

Integration of (A14) over the same infinitesimal vicinity of xh gives

G̃+(xh, s) = G̃−(xh, s). (A15)

The boundary conditions (A13) and (A15) connect solutions at 0 <

x < xh and x > xh. Combining the solutions (A7) and (A9), we have

D+(s)Kλ(xh) = D−(s)Iλ(xh), (16a)

D+(s)Kλ+1(xh) + D−(s)Iλ+1(xh) = H0
exp(−sth)

q0x
λ+1
h

, (16b)

which gives

Dσ (s) = H0 exp(−sth)

q0x
λ
h

J−σ (xh), (A17)

with σ = ± and −σ = ∓. Substituting Dσ (s) into equation (A7), we
have

G̃σ (x) = H0 exp(−sth)

q0(xxh)λ
J−σ (xh) Jσ (x). (A18)

Finally, inverting the Laplace transform and using the identity
q0(xxh)λ = μb (zzh)(β − 1)/2, we obtain the Green’s function,

Gσ (z, τ ) = H0

μb(zzh)(β−1)/2
Lσ (z, τ ), (A19)

where

Lσ (z, τ ) = 1

2π i

∫ γ+i∞

γ−i∞
ds exp(sτ ) J−σ (uh

√
s) Jσ (u

√
s). (A20)

Here τ = t − th > 0, γ is real and placed to the right of all singular
points of the integrand on the imaginary s-plane.

To integrate in equation (A20), we use an integral representation
of the product Iλ(x)Kλ(X) with X > x [Bateman & Erdélyi 1953,
equation 7.7.6.(37)],

M ≡ 1

2

∫ ∞

0

dy

y
exp

(
−y

2
− s

u2 + u2
h

2y

)
Iλ

(
s

uhu

y

)

=
{

Iλ(uh
√

s) Kλ(u
√

s), u > uh;
Iλ(u

√
s) Kλ(uh

√
s), u < uh.

(A21)

We extend M(z, s) as a function of s analytically along a purely
imaginary axis in the s-plane from γ − i∞ to γ + i∞. Then,
we use in equation (A21) an integral representation of the mod-
ified Bessel function Iλ(uhus/y) (e.g. Gradshteyn & Ryzhik 2007,

MNRAS 500, 4491–4505 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/4491/5983110 by Institute of C
ytology user on 08 February 2021



Heat diffusion in neutron star crust 4505

equation 8.431.5) and present M = M(z, s) in the form

M = 1

2π

∫ ∞

0

dy

y
exp

(
−y

2
− s

u2 + u2
h

2y

)

×
[∫ π

0
dx cos (λx) exp

(
s

uhu

y
cos x

)

− sin(λπ )
∫ ∞

0
dx exp

(
−λx − s

uhu

y
cosh x

)]
. (A22)

Using equation (A22) and rearranging the order of integration in
equation (A20), we obtain

J±(z, τ ) = 1

2π

∫ ∞

0

dy

y
exp

(
−y

2

) [∫ π

0
dx cos (λx) �1

− sin(λπ )
∫ ∞

0
dx exp (−λx) �2

]
, (A23)

where

�1 = 1

2π i

∫ γ+i∞

γ−i∞
ds exp

[
s

(
τ − u2 + u2

h

2y
+ uhu

y
cos x

)]
,

and �2 is obtained from �1 by replacing cos x → – cosh x.
In the integral over s, we introduce a real variable ω = is.

This results in real values of J±(z, τ ) and justifies employing the
integral representation for Iλ(x)Kλ(y) in equation (A21). Then, �1 is
expressed via the Dirac delta-function,

�1 = y

τ
δ

(
y − (u − uh)2

2τ
− uhu

τ
(1 − cos x)

)
, (A24)

and a similar expression is valid for for �2, with cos x → – cosh x.

Furthermore, after trivial integrations over y in equation (A23) we
are left with the integration over x that is carried out using the same
integral representation as in equation (A22):

J± = 1

2τ
exp

[
− (u − uh)2

4τ

]
exp

(
−uhu

2τ

)
Iλ

(uhu

2τ

)
. (A25)

Then, employing equations (A19), (A25), and (A4), we come to
the final expression for the Green’s function:

G(z, τ ) = H0

2μbτ (zzh)(β−1)/2
exp

(
−u2 + u2

h

4τ

)
Iλ

(uhu

2τ

)
. (A26)

A similar Green’s function was derived by Eichler & Cheng (1989;
although without proper normalization).

In the bulk of this paper, we have used the toy model with α = 3,
β = 2, μ = 3/2, and λ = 1/3. Then,

G(z, τ ) = H0

3bτ
√

zzh
exp

(
−u2 + u2

h

4τ

)
I 1

3

(uhu

2τ

)
, (A27)

which is essentially the same as (10).
A more general solution (A26) can be used to describe heat

diffusion in some local stellar layers where the heat capacity C and
thermal conductivity κ are independent of temperature but depend on
density. One can also obtain similar analytic solutions if (in addition
to the density dependence) C and κ are power-law functions of
temperature with the same power index.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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