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Nuclear fusion in dense matter: Reaction rate and carbon burning
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In this paper we analyze the nuclear fusion rates among equal nuclei for all five different nuclear burning
regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The
rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S factor at low
energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological
formula for the reaction rate that covers all cases. The parameters of this formula can be varied to take into
account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the
12C+12C fusion reaction. This reaction is important for the understanding of nuclear burning in evolved stars,
in exploding white dwarfs producing type Ia supernovas, and in accreting neutron stars. The S factor at stellar
energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence
of the S factor by using a recently developed parameter-free model for the nuclear interaction, taking into account
the effects of the Pauli nonlocality. For illustration, we analyze the efficiency of carbon burning in a wide range
of densities and temperatures of stellar matter with the emphasis on carbon ignition at densities ρ >∼ 109 g cm−3.
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I. INTRODUCTION

We study nuclear fusion rates of identical nuclei in dense
stellar matter. This problem is of utmost importance for
understanding the structure and evolution of stars of various
types. Despite the efforts of many authors, the theoretical
reaction rates are still rather uncertain, especially at high
densities. The uncertainties have two aspects. The first one is
related to nuclear physics and is concerned with the proper
treatment of nuclear interaction transitions (conveniently
described in terms of the astrophysical factor S). The other
issue is associated with aspects of plasma physics and concerns
the proper description of Coulomb barrier penetration (BP) in
a high-density many-body system. We analyze both aspects
and illustrate the results, taking the carbon fusion reaction as
an example.

Considerable experimental effort has been expended on the
study of low-energy fusion reactions such as 12C+12C to inves-
tigate the impact on the nucleosynthesis, energy production,
and time scale of late stellar evolution. Nevertheless, it has been
difficult to develop a global and reliable reaction formalism to
extrapolate the energy dependence of the fusion cross section
into the stellar energy range. The overall energy dependence
of the cross section is determined by the Coulomb barrier
tunnel probability. One goal of the present work is to apply the
São Paulo potential model to provide a general description of
the stellar fusion processes. This model does not contain any
free parameters and represents a powerful tool for predicting
average low-energy cross sections for a wide range of fusion
reactions, as long as the density distribution of the nuclei
involved in the reaction can be determined. In this context
we also seek to introduce a phenomenological formalism for
a generalized reaction rate to describe all the regimes of

nuclear burning in a one-component plasma ion system. In
this paper we want to demonstrate the applicability of the
method on the specific example of 12C+12C and to evaluate
the reliability and uncertainty range of the proposed formalism
through the comparison with the available low-energy data.
In a subsequent publication we want to extend the model to
multi-ion systems with the aim of simulating a broad range of
heavy-ion nucleosynthesis cases, from thermonuclear burning
in hot stellar plasma to pycnonuclear burning in high-density
crystalline stellar matter.

Carbon burning represents the third phase of stellar
evolution for massive stars (M >∼ 8M�); it follows helium
burning that converts He fuel to 12C by means of the triple
α process. Carbon burning represents the first stage during
stellar evolution determined by heavy-ion fusion processes
(e.g., Ref. [1]). The most important reaction during the carbon
burning phase is the 12C+12C fusion [2]; additional processes
can be 12C+16O and 16O+16O, depending on the 12C/16O
abundance ratio, which is determined by the 12C(α,γ )16O
reaction rate [3,4]. The most important reaction branches are
12C(12C, α)20Ne (Q = 4.617 MeV) and 12C(12C, p)23Na (Q =
2.241 MeV). Carbon burning in evolved massive stars takes
place at typical densities of ρ ∼ 105 g cm−3 and temperatures
T ∼ (6–8) × 108 K.

Carbon burning is also crucial for type Ia supernovas.
These supernova explosions are driven by carbon ignition in
cores of accreting massive CO white dwarfs [5]. The burning
process proceeds from the carbon ignition region near the
center of a white dwarf by detonation or deflagration through
the entire white dwarf body. The ignition conditions and time
scale are defined by the 12C+12C reaction rate, typically
at T ∼ (1.5–7) × 108 K and ρ ∼ (2–5) × 109 g cm−3 [6,7].
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Depending on the 16O abundance, other fusion reactions
may also contribute. For these high densities the reaction
cross sections are affected by strong plasma screening, which
reduces the repulsive Coulomb barrier between interacting 12C
or 16O nuclei (e.g., Refs. [8,9]; also see Sec. III).

Explosive carbon burning in the crust of accreting neutron
stars has recently been proposed as a possible trigger and
energy source for superbursts [10–12]. In this case, small
amounts of carbon (3–10%), which have survived in the
preceding rp-process phase during the thermonuclear runaway,
ignite after the rp-process ashes are compressed by accretion
to a density of ρ ∼ 1.3 × 109 g cm−3. The ignition of a carbon
flash requires an initial temperature of T >∼ 109 K, triggering
a photodisintegration runaway of the rp-process ashes after
a critical temperature of T ∼ 2 × 109 K is reached [13]. For
these cases, carbon burning proceeds in the thermonuclear
regime with strong plasma screening (see Sec. III for details).

At high densities and/or low temperatures the thermonu-
clear reaction-rate formalism is insufficient because the fusion
process is mainly driven by the high-density conditions in
stellar matter (Secs. III and IV). This is particularly important
for nuclear fusion in the deeper layers of the crust of an
accreting neutron star [14]. At sufficiently high ρ and low
T, nuclei form a crystalline lattice. Neighboring nuclei may
penetrate the Coulomb barrier and fuse owing to zero-point
vibrations in their lattice sites. In this pycnonuclear burning
regime the reaction rate depends mainly on the density and
is nearly independent of temperature (e.g. [15,16]). Pycnonu-
clear burning regimes may not be limited to carbon-induced
fusion reactions only, but may be driven by a broad range of
fusion reactions between stable and neutron-rich isotopes [14].

In Sec. II, we discuss the theory of fusion cross sections
and calculate the astrophysical S factor for carbon burning
in the framework of a generalized parameter-free potential
model. In Sec. III we study the Coulomb barrier problem for
identical nuclei, and propose an expression for the reaction
rate that describes all the regimes of nuclear burning in a
dense one-component plasma of atomic nuclei. In Sec. IV we
analyze, for illustration, the main features of 12C burning from
high-temperature gaseous or liquid plasma to high-density
crystalline matter. We summarize and conclude in Sec. V.

II. FUSION CROSS SECTION AND
ASTROPHYSICAL S FACTOR

Nuclear reactions are possible after colliding nuclei tunnel
through the Coulomb barrier. Recently, a parameter-free
model for the real part of the nuclear interaction (São Paulo
potential) based on nonlocal quantum effects was developed
[17–20]. In previous work [21], this model was applied to
the study of fusion processes by use of the BP formalism for
about 2500 cross-section data, corresponding to approximately
165 different systems. Within the nonlocal model, the bare
interaction VN (r, E) is connected with the folding potential
VF (r):

VN (r, E) = VF (r)e−4v2/c2
, (1)

where c is the speed of light, E is the particle collision energy
(in the center-of-mass reference frame), v is the local relative
velocity of the two nuclei 1 and 2,

v2(r, E) = 2

µ
[E − VC(r) − VN (r, E)] , (2)

VC(r) is the Coulomb potential, µ = A1A2mu/(A1 + A2) is
the reduced mass, and mu is the atomic mass unit. The folding
potential depends on the matter densities of the nuclei involved
in the collision:

VF (R) =
∫

ρ1(r1) ρ2(r2) V0 δ(R − r1 + r2) d r1, (3)

with V0 = −456 MeV fm3. The use of the matter densities
and delta function in Eq. (3) corresponds to the zero-range
approach for the folding potential, which is equivalent [20]
to the more usual procedure of using the M3Y effective
nucleon-nucleon interaction with the nucleon densities of the
nuclei. The advantage in adopting the São Paulo potential to
describe the fusion cross section relies on the fact that no
additional parameter is necessary once the density distribution
of the participating nuclei has been determined. The model
is therefore a good choice for a generalized treatment of
low-energy heavy-ion fusion reactions.

There are several ways to determine the nuclear density
distribution [20,22–28]. Density functional theories (DFTs)
provide for example a successful description of many nuclear
ground-state properties, in particular, of charge distributions
in the experimentally known region. Because these theories
are universal in the sense that their parameter sets are
carefully adjusted and valid all over the periodic table, one
can expect that they also yield reliable predictions for nuclei
far from stability. Nonrelativistic density functionals, such as
the Skyrme or Gogny functional, have been widely used in the
literature. In recent years, relativistic density functionals have
played an increasingly important role because they provide
a fully consistent description of the spin-orbit splitting. This
is of greatest importance for nuclei far from stability. The
spin-orbit splitting determines the shell structure, the most
basic ingredient in any microscopic theory of finite nuclei. In
fact, the results obtained with relativistic functionals are in
very good agreement with experimental data, throughout the
periodic table, despite having a smaller number of adjustable
parameters in comparison with the nonrelativistic case. Best
known is the relativistic Hartree-Bogoliubov (RHB) theory
[22–24], which includes pairing correlations with finite-range
pairing forces. It provides a unified description of mean-field
and pairing correlations in nuclei.

These functionals contain a strong density dependence,
either through nonlinear coupling terms between the meson
fields (e.g., in the Lagrangians with the parameter sets NL2
[25] and NL3 [26]) or by use of an explicit density dependence
for the meson-nucleon vertices (e.g., in the parameter sets
DD-ME1 [27] and DD-ME2 [28]).

In this paper, we consider only spherical nuclear shapes.
Pairing correlations are in principle included, but they vanish
for the 12C nucleus. In Fig. 1 we compare the calculated
densities with experimental data [29]. The RHB calculations
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FIG. 1. Self-consistent densities for the ground state of 12C
calculated with different parametrizations of the relativistic mean
field (RMF) Lagrangian. The densities obtained with the DD-ME1
and DD-ME2 interactions are very similar. The experimental data are
taken from Ref. [29].

are in good agreement with surface properties best described
by the NL2, DD-ME1, and DD-ME2 effective interactions.

To apply the BP model for calculating fusion cross sections,
one needs the effective potential defined as a sum of the
Coulomb, nuclear, and centrifugal components:

Veff(r, E) = VC(r) + VN (r, E) + �(� + 1)h̄2

2µr2
. (4)

Following the BP model, one can associate the fusion cross
section with the particle flux transmitted through the barrier:

σij (E) = π

k2

�cr∑
�=0

(2� + 1) T�. (5)

It is important to point out that the sum in Eq. (5) is performed
up to a maximum � wave (�cr), which corresponds to the
greatest value of angular momentum that produces a pocket
(and a barrier) in the corresponding effective potential, Eq. (4).
For � waves with effective barrier heights VB� < E, the shape
of the effective potential can be approximated by a parabola
with curvature defined as

h̄ω� =
∣∣∣∣h̄2

µ

d2Veff

dr2

∣∣∣∣1/2

RB�

, (6)

where RB� is the barrier radius. In such cases, the transmission
coefficients have been obtained through the Hill-Wheeler
formula [30]:

T� =
{

1 + exp

[
2π (VB� − E)

h̄ω�

]}−1

. (7)

On the other hand, for � waves with VB� > E, we employ,
instead of the Hill-Wheeler formula, a more appropriate
heuristic treatment based on a WKB approximation [31]:

T� = [1 + exp(S�)]−1, (8)

S� =
∫ r2

r1

√
8µ

h̄2 [Veff(r, E) − E] dr, (9)
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FIG. 2. Astrophysical factor S(E) as a function of the center-of-
mass energy E, derived from experimentally measured cross sections.
Curves show theoretical results obtained within the BP model for the
different model density distributions (see text for details). Various
symbols denote experimental results.

where r1 and r2 are the classical turning points. At low energies,
the WKB method gives values for the transmission coefficients
that are quite different from those of the Hill-Wheeler formula.
In this case, we define the barrier curvature by connecting
Eqs. (6) and (7):

h̄ω� = 2π (VB� − E)

S�

. (10)

The overall results provided by the BP model are in very
good agreement with the fusion data for energies above the
s-wave barrier height. For light systems (µ � 8mu) the model
also shows very good agreement with fusion data at subbarrier
energies [21]. Therefore the use of the BP model in calculating
the fusion cross section at energies of astrophysical interest for
the 12C+12C system is entirely justified.

Historically, reaction cross sections σ (E) at very low
energies, typical for astrophysical conditions, have been
expressed in terms of the astrophysical S factor (e.g., Ref. [32]):

S(E) = σ (E)E e2πη, (11)

where η = (Z1Z2e
2/h̄)

√
µ/(2E) is the usual Gamow param-

eter.
Considerable efforts have been made over the past decades

to measure the 12C+12C fusion cross section at very low
energies [33–38]. The experimentally determined S factors are
shown in Fig. 2. For reaction-rate calculations the experimental
S-factor needs to be extrapolated toward the stellar energy
range, the Gamow window, which depends sensitively on the
temperature and density conditions of the stellar environment.
The typical range of energy E for thermonuclear carbon burn-
ing, in the center-of-mass reference, varies from 1 to 4 MeV.
For pycnonuclear carbon burning in the neutron star crusts, the
energies can be as low as 10 keV. Large discrepancies between
the different experimental results at low energies complicate a
reliable extrapolation of S(E) toward such low E. In addition,
the S factor shows pronounced resonant structures, presumably
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resulting from quasi-molecular doorway states. Theoretical
calculations of S(E) by use of the effective interactions NL2,
NL3, DD-ME1, and DD-ME2 agree reasonably well, within
a factor of ∼3.5, in the limit E → 0 (Fig. 2). Furthermore,
the resonant behavior of the data cannot be described with
the BP calculations because the effects of nuclear structure
are neglected. However, an average description of the data
(neglecting resonant oscillations) for the subbarrier region
(E <∼ 6.0 MeV) is reproduced satisfactorily. Such a description
of an average S factor is quite sufficient because the reaction-
rate formalism relies on the average S-factor behavior over the
entire Gamow range.

In this context it is important to emphasize that the main
purpose of this paper is not to investigate the oscillations
in the 12C+12C fusion excitation function. To reproduce the
resonances we could, for example, use the concept of internal
and barrier waves based on a semiclassical description [39] or
adopt the R matrix formalism (e.g., Michaud and Vogt [40]).
However, neither theoretical approach would allow us to
extrapolate with confidence the fusion cross section to the
energy region of astrophysical interest.

To calculate the carbon burning rate, we use the values
of S(E) obtained on the basis of the well-established NL2
effective interaction. As one can see from Fig. 1, the 12C
density distribution obtained with the parameter set NL2 can
describe satisfactorily the surface properties, which is the most
important region for the fusion process at low energies. The
values of S(E) calculated at E � 19.8 MeV can be fitted by an
analytic expression

S(E) = 5.15×1016 exp

[
−0.428 E − 3 E0.308

1 + e0.613 (8−E)

]
MeV b,

(12)
where the center-of-mass energy E is expressed in mega-
electron-volts. The formal maximum fit error, 16%, occurs
at E = 5.8 MeV. However, let us bear in mind that the values
of S(E) provided by the NL2 model and given by Eq. (12) are
actually uncertain within a factor of ∼3.5.

With the aim of investigating the validity of our assumption
for the real part of the nuclear interaction, we performed an
optical-model (OM) analysis of the 12C+12C elastic-scattering
data at energies around and slightly above the Coulomb barrier
[41]. We defined the imaginary part of the optical potential,
which accounts for the nuclear absorption process, as

W (r, E) = NiVN (r, E), (13)

where VN (r, E) is described by Eq. (1), and we determined
Ni = 0.78 by adjusting thirty elastic-scattering angular dis-
tributions corresponding to seven different heavy-ion systems
and measured in a very wide energy range [42]. Figure 3
illustrates a comparison between our OM analysis and five
elastic-scattering angular distribution data of the 12C+12C
system. As one can note, it is possible to obtain a reasonable
description of the data by adopting the São Paulo potential to
account for the real part of the nuclear interaction, combined
with a simple model to describe the imaginary part of the
optical potential. This means that both elastic-scattering and
fusion processes can be described by the same real part of the
nuclear interaction, which has been well accounted for by the
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FIG. 3. Elastic-scattering angular distributions for the 12C+12C
system at energies around and slightly above the Coulomb barrier
[41]. The curves are the results of an OM calculation in which
the São Paulo potential was assumed to describe the real part
of the nuclear interaction, combined with a simple model to describe
the imaginary part of the optical potential (see details in the text).

São Paulo potential, Eq. (1). As discussed in Ref. [42], details
on the absorption part of the interaction are not very important
for describing the elastic-scattering data, which allows us to
get reasonable estimates for the 12C+12C system.

Further experiments at lower energies are necessary to
confirm the validity of the predicted 12C+12C S factor and its
impact on the reaction rate. However, the S factor is not the only
uncertainty for a reliable description of the 12C+12C fusion
process in stellar matter. The reaction rates are also uncertain
because of the problems in calculating the probability of
Coulomb BP in a dense many-body environment. We discuss
these problems in Sec. III and show that the associated
uncertainties are higher than the current uncertainties in the
values of S(E).

III. NUCLEAR FUSION RATE IN DENSE MATTER

A. Physical conditions and reaction regimes

In the following discussion we turn our attention to the
plasma physics aspects of nuclear burning in dense matter.
We will focus on the formalism of fusion reactions between
identical nuclei (A,Z) + (A,Z) in the wide domain of
temperatures T and densities ρ, characteristic for the range
of stellar environments outlined in the preceding section.

As an example, we consider the 12C+12C reaction in stellar
matter at conditions displayed in the ρ–T phase diagram in
Fig. 4. Under these conditions, carbon is fully ionized (either
by electron pressure and/or by high temperature) and immersed
in an almost uniform electron background. The electrons are
typically strongly degenerate; their degeneracy temperature
TF is shown in the figure.

The state of ions (nuclei) is determined by the Coulomb
coupling parameter 
 = Z2e2/(aT ), where a = [3/(4πni)]1/3

is the ion-sphere radius and ni is the number density
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FIG. 4. Temperature-density diagram for carbon matter. Short-
dashed curves show the electron degeneracy temperature TF , the
temperature Tl of the appearance of ion liquid, the melting temper-
ature Tm of ion crystal, and the ion plasma temperature Tp . Solid
curves correspond to the carbon burning times τburn = 1 s and τburn =
1010 yr, and to carbon ignition; they are calculated with the most
reliable model of carbon burning (Sec. III G). Hatched strips show
theoretical uncertainties of these curves (limited by the minimum and
maximum reaction-rate models). The long-dashed curve exhibits the
unreliable part of the ignition curve; nearby thin dashed-and-dotted
curves (to the right and left) indicate its assumed uncertainties.

of ions; the Boltzmann constant is set kB ≡ 1. If 
 <∼ 1 (which
happens at T >∼ Tl = Z2e2/a; see Fig. 4), the ions constitute a
Boltzmann gas, whereas at higher 
 they constitute a strongly
coupled Coulomb liquid. The gas transforms smoothly
into the liquid, without any phase transition. At small T
(large 
) the liquid can solidify. In the density range displayed
in Fig. 4, the solidification occurs at T = Tm = Z2e2/a
m,
where 
m = 175 (e.g., De Witt et al. [43]). The important
measure of quantum effects in ion motion is provided by the
ion plasma frequency ωp =

√
4πZ2e2ni/m or the associated

ion plasma temperature Tp = h̄ωp (m is the ion mass). As a
rule, the quantum effects are strongly pronounced at T below
Tp.

Figure 4 shows that the ion system can have very different
properties, depending on T and ρ. As a result, there are five
qualitatively different regimes of nuclear burning in dense
matter (Salpeter and Van Horn [15]). These are (1) the classical
thermonuclear regime, (2) the thermonuclear regime with
strong plasma screening, (3) the thermopycnonuclear regime;
(4) the thermally enhanced pycnonuclear regime, and (5) the
zero-temperature pycnonuclear regime. The regimes differ
mainly in the character of the Coulomb BP of reacting nuclei.
The penetration can be greatly complicated by Coulomb fields
of ions that surround the reacting nuclei. These fields are
fluctuating and random (e.g., Alastuey and Jancovici [44]).

A strict solution of the BP problem should imply the
calculation of the tunneling probability in a random potential,
with subsequent averaging over an ensemble of random
potentials. This program has not been fully realized so far. The
exact theory should take into account a range of effects that
can be subdivided (somewhat conventionally) into classical

and quantum ones. The classical effects are associated with
classical motion of plasma ions and with the related structure
of Coulomb plasma fields (including spatial and temporal
variability of these fields). The quantum effects manifest
themselves in ion motion (e.g., zero-point ion vibrations),
quantum “widths” of ion trajectories during Coulomb BP, and
quantum statistics of reacting nuclei. The effects of quantum
statistics are usually small for the obvious reason that quantum
tunneling lengths are typically much larger than nuclear radii.
The smallness of these effects has been confirmed by Ogata
[45] in path-integral Monte Carlo (PIMC) simulations.

The reaction rates in the classical thermonuclear regime are
well known (e.g., Fowler, Caughlan, and Zimmerman [32]);
they have been tested very successfully by the theory and
observations of the evolution of normal stars. This theory is
only shortly reviewed in the following subsection. The reaction
rates in other regimes have been calculated by a number
of authors in different approximations. In the following
discussion we summarize the main results published after the
seminal paper by Salpeter and Van Horn [15] (see that paper
for references to earlier works). Let us stress that the reaction
rate is a rapidly varying function of plasma parameters. In
the most important density-temperature domain it varies over
tens of orders of magnitude (Sec. IV). In this situation, a very
precise calculation of the reaction rate is very difficult but not
required for many applications.

B. Classical thermonuclear reaction rate

The classical thermonuclear regime takes place at suffi-
ciently high T and low ρ so that the ions constitute a Boltzmann
gas (T � Tl ; Fig. 4). The tunnel probability (penetrability)
through the Coulomb barrier depends on the energy of the
interacting ions; the main contribution to the reaction rate
comes from ion collisions with energies approximately equal
to the Gamow peak energy Epk (which is much higher than T ).
This regime is typical for all nuclear burning stages in “normal”
stars (from the main sequence to presupernovas).

The thermonuclear reaction rate is expressed by

Rth = n2
i

2
4

√
2Epk

3µ

S(Epk)

T
exp(−τ ), (14)

where Epk = T τ/3 is the Gamow peak energy and

τ =
(

27π2µZ2
1Z

2
2e

4

2T h̄2

)1/3

=
(

27π2mZ4e4

4T h̄2

)1/3

(15)

is the parameter that characterizes the penetrability ∼exp(−τ ).
The parameter τ can be rewritten as

τ = 3 (π/2)2/3(Ea/T )1/3, Ea ≡ mZ4e4/h̄2. (16)

Now the reaction rate can be presented as

Rth = n2
i

2
S(Epk)

h̄

mZ2e2
PthFth, (17)
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where h̄/(mZ2e2) is a convenient dimensional factor, Fth is the
exponential function, and Pth is the preexponent:

Fth = exp(−τ ), Pth = 8π1/3

√
321/3

(
Ea

T

)2/3

. (18)

The classical thermonuclear reaction rate decreases exponen-
tially with decreasing T.

C. Thermonuclear burning with strong plasma screening

The thermonuclear regime with strong plasma screening
operates in a colder and denser plasma (Tp <∼ T <∼ Tl), where
ions constitute a strongly coupled classical Coulomb system
(liquid or solid). The majority of ions in such a system are
confined in deep Coulomb potential wells (Z2e2/a >∼ T ). The
main contribution into the reaction rate comes from a small
amount of higher-energy, unbound ions with E ≈ Epk � T

from the tail of the Boltzmann distribution. The plasma
screening effects are produced by surrounding plasma ions
and simplify close approaches of the reacting nuclei, required
for successful Coulomb tunneling. This enhances the reaction
rate with respect to that given by Eqs. (17) and (18).

The enhancement has been studied by a number of authors,
beginning with Salpeter [8]; it can reach many orders of mag-
nitude. Calculations show that the equations given in Sec. III B
remain valid in this regime, but the penetrability function Fth

has to be corrected for the screening effects:

Fth = Fsc exp(−τ ), Fsc = exp(h), (19)

where Fsc is the enhancement factor and h is a function of
plasma parameters.

Plasma screening effects are usually modeled by introduc-
tion of a mean-force plasma potential H (r). In this approxima-
tion, the reacting nuclei move in a potential W (r) = Z2e2/r −
H (r). The mean-force plasma potential H (r) is static and
spherically symmetric. It cannot take into account dynamical
variations of plasma microfields and their instantaneous spatial
structures in the course of an individual tunneling event. In
the mean-force approximation, the function h consists of two
parts, h = h0 + h1, where the leading term h0 = H (0)/T

(� |h1|) is calculated assuming a constant plasma potential
H (r) = H (0) during the quantum tunneling, whereas h1 is
a correction that is due to a weak variation of H (r) along
the tunneling path. Note that according to simple estimates
(e.g., Ref. [46]) typical tunneling lengths of reacting ions in
the thermonuclear regime (where T >∼ Tp) are considerably
smaller than the ion-sphere radius a, and typical tunneling
times are much smaller than the plasma oscillation period
∼ω−1

p . This justifies the assumption of almost constant and
static plasma potential during a tunneling event.

The mean-force plasma potential H (r) for a classical
strongly coupled system of ions (liquid or solid) can be
determined by use of classical Monte Carlo (MC) sampling
(e.g., DeWitt, Graboske, and Cooper [47]). MC sampling
gives the static radial-pair distribution function of ions g(r) =
exp[−W (r)/T ] that enables one to find H (r). In this way one
can accurately determine g(r) and H (r) at not too small r
(typically, at r >∼ a), because of poor MC statistics of close

ion separations. The potential H (r) at small r, required for
a tunneling problem, is obtained by extrapolation of MC
values of H (r) to r → 0; the extrapolation procedure is a
delicate subject and may be ambiguous (as discussed, e.g., by
Rosenfeld [48]).

It is only H (0) that is required for finding h0. For a
classical ion system, H (0) can be determined by H (0) = �F ,
where �F is a difference of Coulomb free energies (for
a given system and for a system with two nuclei merging
into one compound nucleus; e.g., DeWitt et al. [47]). In this
approximation, the enhancement factor of the nuclear reaction
becomes a thermodynamic quantity and acquires a Boltzmann
form, exp(h0) = exp(�F/T ), showing that plasma screening
increases the probability of close separations (and subsequent
quantum tunneling); h0 becomes the function of one argument

. Assuming a linear mixing rule in a multicomponent
strongly coupled ion system, Jancovici [49] obtained h0 =
2f0(
) − f0(25/3
), where f0(
) is a Coulomb free energy
of one ion in a one-component plasma of ions (in units of
T ). In a Coulomb liquid at 
 >∼ 1 the linear mixing rule
is highly accurate (DeWitt and Slattery [50]); the function
f0(
) is now determined from MC sampling with very high
accuracy (e.g., Refs. [50,51]). In this way the function h0(
)
has been calculated in many papers (e.g., Refs. [46,48,49,52]),
and the results are in very good agreement. Let us present the
analytical approximation of h0(
) that follows from the recent
MC results of DeWitt and Slattery [52] for a Coulomb liquid
at 1 � 
 � 170:

h0 = 1.0563
 + 1.0208
0.3231 − 0.2748 ln 
 − 1.0843. (20)

However, this accurate expression is inconvenient for further
use, and we propose another fit:

h0 = Csc

3/2/[(Csc/

√
3)4 + 
2]1/4, (21)

where Csc = 1.0754. It approximates eh0 with the maximum
error of ∼40% at 
 = 170, quite sufficient for our purpose.
There may be still some uncertainty of the reaction rate
associated with the choice of Csc, but it seems to be no higher
than the uncertainty in the S factor (Sec. II). Our fit function
in Eq. (21) is chosen in such a way to reproduce also the
well-known expression h0 → √

3 
3/2 derived by Salpeter [8]
for the classical thermonuclear regime (
 � 1), where h0 � 1
and the plasma screening is weak. In the Coulomb liquid,
at 
 >∼ 1, we have actually the linear function h0 = Csc
.
Such a function was obtained by Salpeter [8], who used a
simple model of ion spheres (with a slightly lower coefficient,
C

Salp
sc = 1.057).

Some authors calculated h0 and the associated enhancement
factor eh0 by extrapolating MC H (r) to r → 0 (as just
discussed). In particular, Ogata et al. [53,54] employed this
formalism to study the enhancement of nuclear reactions
in one-component and two-component strongly coupled ion
liquids. The enhancement factor eh0 for a one-component ion
liquid, calculated in these papers {e.g., Eq. (6) in Ref. [53]}, is
systematically higher than the factor given by Eq. (20) or (21).
The difference reaches a factor of approximately 40 for 
 ∼
170. Because the enhancement factor itself becomes as high
as eh0 ∼ 1074 at 
 ∼ 170, such a difference is insignificant for
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many applications. As shown by Rosenfeld [48], the difference
comes from the problems of extrapolation of H (r) to r → 0
in Refs. [53,54]. The function h0 was also calculated by
Ogata [45], who used the direct PIMC method. His result
[his Eq. (19)] is in much better agreement with Eq. (20).
The maximum difference of eh0 reaches a factor of only
approximately 6 at 
 = 170. Recently new PIMC calculations
have been performed by Pollock and Militzer [55], but the
authors have not calculated directly h0(
).

Let us emphasize that the enhancement factor eh0 , derived
in a constant mean-force plasma potential H (0), is invariant
with respect to the order of the mean-force averaging and
the tunneling probability calculation. One can consider a real
(random) plasma potential, constant over a tunneling path
in an individual tunneling event. Calculating the tunneling
probability and averaging over an ensemble of realizations
of plasma potentials, one comes (e.g., Ref. [46]) to the same
expression for h0 as given by the mean-force potential.

In addition to eh0 , the enhancement factor Fsc in Eq. (19)
contains a smaller factor eh1 , associated with variations of
the plasma potential along the tunneling path. Numerous
calculations of h1 have commonly employed the mean-force
potential H (r). The results are sensitive to the behavior of
H (r) at small r (where this behavior is not very certain). For
example, Jancovici [49] got h1 = −(5/32) 
 (3
/τ )2. Note
that, for the thermonuclear burning (T >∼ Tp, Sec. III A), the
ratio 3
/τ ≈ rt/a ∼ (T/Tp)2/3 can be regarded as a small
parameter (rt being the tunneling length). It is possible that
the mean-force approximation is too crude for calculating
h1. For that reason, we do not specify h1 in this section.
Our final expression for the reaction rate includes h1, but
phenomenologically, when we combine reaction rates in all
regimes (Sec. III G).

D. Zero-temperature pycnonuclear fusion

The zero-temperature pycnonuclear regime operates in a
cold and dense matter (T well below Tp) in a strongly coupled
quantum system of nuclei. In this regime the Coulomb barrier
is penetrated owing to zero-point vibrations of neighboring
nuclei that occupy their ground states in a strongly coupled
system. One usually considers pycnonuclear reactions in a
crystalline lattice of nuclei but they are also possible in a
quantum liquid. The main contribution to the reaction rate
comes from pairs of nuclei that are most closely spaced.
The reaction rate is temperature independent but increases
exponentially with increasing density, as we discuss in the
following text.

Pycnonuclear reaction rates between identical nuclei in
crystalline lattice have been calculated by many authors
using different approximations. In analogy with Eq. (17), the
resulting reaction rates can be written as

Rpyc = n2
i

2
S(Epk)

h̄

mZ2e2
PpycFpyc, (22)

where Fpyc and Ppyc depend on the density and have the form

Fpyc = exp(−Cexp/
√

λ), Ppyc = 8 Cpyc 11.515/λCpl . (23)

The dimensionless parameters Cexp, Cpl, and Cpyc are model
dependent (see subsequent discussion). The dimensionless
parameter λ is expressed in terms of the mass fraction Xi

contained in atomic nuclei (in a one-component ion plasma
under study) and the mass density ρ of the medium:

λ = h̄2

mZ2e2

(ni

2

)1/3
= 1

AZ2

(
1

A

ρXi

1.3574 × 1011g cm−3

)1/3

.

(24)

For densities ρ lower than the neutron drip density (∼ 4 ×
1011 g cm−3; e.g., Ref. [56]), one can set Xi = 1, whereas
for higher ρ one has Xi < 1 because of the presence of free
(dripped) neutrons.

The reaction rate can be expressed numerically as

Rpyc = ρXiAZ4S(Epk)Cpyc1046 λ3−Cpl

× exp(−Cexp/
√

λ)s−1 cm−3, (25)

where ρ is in grams percubic centimeter and S(Epk) is in
mega-electron-volts times barns. The typical energy of the
interacting nuclei is Epk ∼ h̄ωp.

Table I lists the values of Cexp, Cpl, and Cpyc reported in
the literature for two models (1 and 2) of Coulomb BP by
Salpeter and Van Horn [15], for six models (3–8) by Schramm
and Koonin [16], and for one model (9) by Ogata, Iyetomi,
and Ichimaru [53]. The corresponding carbon burning rates
are plotted as functions of density in Fig. 5. In this figure (as
well as in Figs. 4 and 6) we use the astrophysical factors given
by fit expression (12). Actually, the S factors are uncertain
within one order of magnitude (Sec. II) but we ignore these
uncertainties (because they seem to be much lower than those
associated with the Coulomb BP).

All the authors just cited have treated quantum tunneling by
fixing the center of mass of reacting nuclei in its equilibrium
position. All models, except for models 5–8, focus on nuclear
reactions in the body-centered-cubic (bcc) lattice of atomic
nuclei. This lattice is thought to be preferable over other
lattices, particularly, over the face-centered-cubic (fcc) lattice.
The main reason is that the bcc lattice is more tightly bound in
the approximation of a rigid electron background. However,
the difference in binding energies of bcc and fcc lattices is
small (see, e.g., Ref. [16]), and a finite polarizability of the
electron background complicates the problem [57]. Therefore
one cannot exclude that the lattice type is fcc.

Salpeter and Van Horn [15] calculated the quantum tun-
neling probability of interacting nuclei in a bcc Coulomb
lattice by using the three-dimensional WKB approximation
(most adequate for the given problem). The authors employed
two models, static and relaxed lattice (models 1 and 2 in
Table I), to account for the lattice response to the motion
of tunneling nuclei. The static-lattice model assumes that
surrounding nuclei remain in their original lattice sites during
the tunneling process. The relaxed-lattice model assumes
that the surrounding nuclei are promptly rearranged into
new equilibrium positions in response to the motion of
the reacting nuclei. Simple estimates show that the actual
tunneling is dynamical (neither static not relaxed). Thus the
static-lattice and relaxed-lattice models impose constraints on
the actual reaction rate. In Ref. [15] the screening potential
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TABLE I. Coefficients Cexp, Cpyc, and Cpl of the pycnonuclear reaction rate obtained at T = 0 [see Eq. (25)]. The dimensionless parameter
CT , which is related to the “renormalized” temperature [Eq. (29)], is also included.

Model no. Cexp Cpyc Cpl CT Model Refs.

1 2.638 3.90 1.25 0.724 bcc; static lattice [15,16]
2 2.516 4.76 1.25 0.834 bcc; relaxed lattice—Wigner-Seitz [15,16]
3 2.517 4.58a 1.25 0.834 bcc; relaxed lattice [16]
4 2.659 5.13a 1.25 0.707 bcc; effective mass approx. [16]
5 2.401 7.43a 1.25 0.960 fcc; static lattice [16]
6 2.265 13.5a 1.25 1.144 fcc; relaxed lattice—Wigner-Seitz [16]
7 2.260 12.6a 1.25 1.151 fcc; relaxed lattice [16]
8 2.407 13.7a 1.25 0.953 fcc; effective mass approx. [16]
9 2.460 0.00181 1.809 0.893 bcc; MC calculations [53]

10 2.450 50 1.25 0.904 Maximum rate Present paper
11 2.650 0.5 1.25 0.711 Minimum rate Present paper

aCorrected for the curvature factor as explained in the text.

for the relaxed-lattice model was calculated approximately;
the energy difference between the initial state and the fused
state was evaluated by subtraction of the energies of the
corresponding Wigner-Seitz (WS) spheres. The relaxed lattice
simplifies Coulomb tunneling and increases the reaction rate
with respect to the static lattice (cf., curves 1 and 2 in
Fig. 5).

Schramm and Koonin [16] applied this treatment to the
bcc and fcc, static and relaxed lattices in the same WKB
approximation. They calculated the screening potential for
the relaxed lattice model with improved accuracy (model 3
of Table I for the bcc lattice and model 7 for fcc). For
comparison, they also used the screening potential for the
relaxed lattice obtained in the WS approximation (as in
Ref. [15]). Unfortunately, when they calculated the tunneling
probability they neglected the correction eK for the “curvature

FIG. 5. Rates of pycnonuclear carbon burning at T = 0 as
functions of density for the different theoretical models (from Table I).
Solid and dashed curves refer to the burning in bcc and fcc crystals,
respectively; the dashed-and-dotted curve K is the model by Kitamura
[62] (for bcc crystals). Hatched strip shows assumed uncertainties of
the reaction rates for bcc crystals (limited by models 10 and 11 from
Table I).

of trajectories” of reacting ions. This is the main reason for
the formal disagreement between the results of Salpeter and
Van Horn [15] and Schramm and Koonin [16] for the static-
lattice and relaxed-lattice WS models (1 and 2) of bcc crystals.
The inclusion of the curvature correction should reduce the
constant Cpyc in Eq. (25) and the reaction rates calculated
in Ref. [16]. Fortunately, one can extract this correction by
comparing Eq. (38) of Ref. [15] with Eq. (31) of Ref. [16].
In this way we get eK = 0.067 for the static bcc lattice, and

FIG. 6. Temperature dependence of the carbon fusion rate at ρ =
5 × 109 g cm−3. Solid curve 1 is our most optional interpolation
expression (Sec. III G), based on model 1 from Table I with � = 0.5.
Double hatched region shows theoretical uncertainties of model 1
associated with variations of � from 0.35 to 0.65. The dashed-and-
dotted curve K is the interpolation of Kitamura [62]. Short-dashed
curve 1 is calculated from the expressions of Salpeter and Van Horn
[15], which are valid in the pycnonuclear regime (T = 0 and with the
thermal enhancement). Long-dashed curves show the thermonuclear
reaction rates calculated with plasma screening, (Sec. III C) and
without screening (Sec. III B) taken into account. Single hatched
region displays total assumed theoretical uncertainties of the reaction
rates.
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eK = 0.050 for the relaxed WS bcc lattice. After this correction
is introduced into the coefficients Cpyc, obtained formally
from the results of Schramm and Koonin, these coefficients
become identical to those given by Salpeter and Van Horn.
Thus Schramm and Koonin actually exactly reproduce models
1 and 2 of Salpeter and Van Horn. The curvature correction for
models 3–8 of Schramm and Koonin have not been determined.
We expect it to be eK ≈ 0.050 for model 3 and eK = 0.067
for model 4 (bcc crystals), and we introduced such corrections
in Table I. We introduced, somewhat arbitrarily, the correction
eK = 0.05 in all fcc lattice models 5–8.

The two versions of the screening potential for the relaxed
lattice (WS and more accurate) almost coincide. Accordingly,
models 2 and 3 yield almost the same reaction rates for the bcc
lattice, and models 6 and 7 yield nearly identical rates for the
fcc lattice (Fig. 5).

Schramm and Koonin [16] also took into account the
dynamical effect of motion of the surrounding ions in response
to the motion of tunneling nuclei in the relaxed lattice
(models 4 and 8). This effect was described by introduction
of the effective mass of the reacting nuclei. The effective
mass appears to be noticeably higher than the real nucleus
mass, reducing the tunneling probability. It turns out that
the reduction almost exactly compensates for the increase of
the tunneling probability that is due to the lattice relaxation,
neglecting the effective-mass effects [15]. Accordingly, model
4 of Schramm and Koonin [16] gives almost the same reaction
rate as model 1 (for bcc); and model 8 gives almost the same
rate as model 5 (for fcc). This means that the two limiting
approximations, the static lattice and relaxed lattice, yield very
similar reaction rates. It is natural to expect that the actual
reaction rate (to be calculated for the dynamically responding
lattice) would be the same, and the problem of dynamical
tunneling is thus solved [16]. Note that this conclusion is made
with the curvature corrections eK already adopted (whereas the
accurate curvature correction for the effective-mass model has
not been calculated).

Zero-temperature pycnonuclear reactions in bcc crystals
were also studied by Ogata et al. [53] and Ichimaru, Ogata,
and Van Horn [58], who used MC lattice screening potentials.
These authors considered one-component and two-component
ion systems. Model 9 of Table I represents their results
for one-component bcc crystals. To calculate the tunneling
probability, the authors used the mean-force plasma screening
potential H (r), obtained from MC sampling in a classi-
cal bcc crystal at r >∼ a and extrapolated to r → 0 (see
Sec. III C). This potential is static and spherically symmetric.
It cannot take into account the dynamics of lattice response
and the anisotropic character of the real screening potential in
a lattice. Furthermore, the BP was calculated by numerical
solution of the effective radial Schrödinger equation. This
procedure is more approximate than the direct WKB approach
of Salpeter and Van Horn [15] and Schramm and Koonin
[16] (In particular, it neglects the curvature corrections).
Numerically, Ogata et al. [53] give a reaction rate that is close
to that of the relaxed-lattice model (model 2) of Salpeter and
Van Horn [15]. The main reason for the coincidence of these
rates is that the screening potential in the radial equation of

Ogata et al. is close to the relaxed-lattice screening potential
of Salpeter and Van Horn at ion separations r ∼ 1.5 a, which
is most important for pycnonuclear tunneling problem (see
Fig. 2 in Ref. [53]).

In spite of the differences in theoretical models 1–9,
they result in similar reaction rates (Fig. 5). According to
the preceding discussion, models 1 and 4 seem to be the
most reliable among all available models for the bcc lattice,
whereas models 5 and 8 seem to be the most reliable for
fcc. These reaction rates may be modified, for instance, by
taking into account the quantum effect of the spreading of
WKB trajectories or by a more careful treatment of the
center-of-mass motion of reacting nuclei. Such effects will
possibly reduce the reaction rate (as discussed in Ref. [55]
with regard to the spreading of WKB trajectories). This could
have been studied by direct PIMC simulations (e.g., Refs.
[45,55]). PIMC is also a good tool to confirm the conclusions
on dynamical effects of lattice response. However, PIMC
is time consuming and requires very powerful computers.
It is not clear whether today’s computer capabilities are
sufficient for obtaining accurate PIMC pycnonuclear reaction
rates.

We suggest calculating the reaction rates from Eq. (25),
taking into account that the constants Cexp, Cpl, and Cpyc are not
known very precisely. In particular, we propose two “limiting”
purely phenomenological sets of these constants, labeled as
models 10 and 11 in Table I. These limiting parameters define
the maximum and minimum reaction rates that enclose all
model reaction rates 1–4 and 9 (proposed in the literature
for the bcc lattice in a density range where the pycnonuclear
carbon burning is important). They also enclose the most
reliable models, 5 and 8, for the fcc lattice.

The crucial parameter for modeling pycnonuclear fusion
is the exponent Fpyc = exp(−Cpyc/

√
λ) in Eqs. (23) that

characterizes the probability of Coulomb tunneling. It is easy
to show that the exponent argument behaves as Cpyc/

√
λ =

α(r12/rqm)2 ∝ ρ−1/6, where r12 is the equilibrium distance
between the interacting nuclei in their lattice sites, rqm is
the rms displacement of the nucleus that is due to zero-
point vibrations in its lattice site, and α ∼ 1 is a numerical
factor that depends on a model of Coulomb tunneling.
The usual condition is rqm � r12 (and the tunneling length
� rqm). The exponent argument Cpyc/

√
λ is typically large

but decreases with growing ρ, making the Coulomb barrier
more transparent. The tunneling is actually possible for
closest neighbors (smallest r12); the tunneling of more distant
nuclei (higher r12) is exponentially suppressed. Elastic lattice
properties specify rqm and α and are thus most important
for the reaction rate. The presence of different ion species,
lattice impurities, and imperfections may drastically affect the
rate [15].

E. Thermally enhanced pycnonuclear regime

Thermally enhanced pycnonuclear burning occurs with
increasing T; it operates [15] in a relatively narrow temperature
interval, 0.5Tp/ ln(1/

√
λ) <∼ T <∼ 0.5Tp. In this interval the

majority of the nuclei occupy their ground states in a strongly
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coupled quantum Coulomb system, but the main contribution
to the reaction rate comes from a tiny fraction of nuclei
that occupy excited bound energy states. The increase of the
excitation energy increases the penetrability of the Coulomb
barrier and makes the excited states more efficient than the
ground state.

The thermally enhanced pycnonuclear regime has been
studied less accurately than the zero-temperature pycnonuclear
regime. Salpeter and Van Horn [15] calculated the thermally
enhanced pycnonuclear reaction rate for models 1 and 2 of
a bcc lattice in the WKB approximation. The spectrum of
excited quantum states was determined for a relative motion of
interacting nuclei in an anisotropic harmonic-oscillator field;
the summation over discrete quantum states in the expression
for the reaction rate was replaced with the integration.
According to their Eq. (45), the enhancement of the reaction
rate is approximately described by

Rpyc(T )

Rpyc(0)
− 1 = �

λ1/2
exp

(
−�

Tp

T
+ �1√

λ
e−�1Tp/T

)
, (26)

where �,�1,�, and �1 are model-dependent dimension-
less constants. The exponent exp(−�Tp/T ) reflects the
Boltzmann probability of occupying excited quantum states,
and the double exponent exp[(�1/

√
λ)e−�1Tp/T ] describes the

enhancement itself. In this case the characteristic energy of the
reacting nuclei is

Epk ≈ C1h̄ωp + C2
Z2e2

a
exp

(
−�1

Tp

T

)
, (27)

where C1 and C2 are new dimensionless constants (∼1).
When T increases from T = 0 to T ∼ 0.5 Tp, the characteristic
energy Epk increases from the ground-state level, Epk ∼ h̄ωp,
to the top of the Coulomb potential well, Epk ∼ Z2e2/a.

The thermally enhanced pycnonuclear reaction rate was
studied also by Kitamura and Ichimaru [59], who adopted
the formalism of Ogata, et al. [53] (Secs. III C and
III D). The relative motion of interacting nuclei was described
by a model radial Schrödinger equation that employed the
angle-averaged static MC plasma screening potential. The
excited energy states were determined from the solution of
this equation. Such an approach seems to be oversimplified.
It gives the temperature dependence of the reaction rate
{Eqs. (14) and (15) in Ref. [58]} that, functionally, differs from
the temperature dependence, Eq. (27), predicted by Salpeter
and Van Horn. Nevertheless, numerically both temperature
dependencies at T <∼ 0.5Tp are in a reasonable qualitative
agreement.

We expect that the reaction rate in the thermally enhanced
pycnonuclear regime will be further elaborated in the future.

F. The intermediate thermopycnonuclear regime

The intermediate thermopycnonuclear regime is realized
at temperatures T ∼ Tp (roughly, at Tp/2 <∼ T <∼ Tp) that
separate the domains of quantum and classical ion systems.
The main contribution to the reaction rate stems then from
nuclei that are either slightly bound or slightly unbound with
respect to their potential wells. The calculation of the reaction

rate in this regime is complicated. We describe this rate by
a phenomenological expression presented in the following
subsection.

G. Single analytical approximation in all regimes

Let us propose a phenomenological expression for the
reaction rate that combines all the five burning regimes:

R = Rpyc(T = 0) + �R(T ),

�R(T ) = n2
i

2
S(Epk)

h̄

mZ2e2
PF,

(28)

F = exp

(
−τ̃ + Csc
̃ ϕ e−�Tp/T − �

Tp

T

)
,

P = 8π1/3

√
3 21/3

(
Ea

T̃

)γ

.

In this case, ϕ = √

/[(C4

sc/9) + 
2]1/4; Rpyc(T = 0) is the
zero-temperature pycnonuclear reaction rate (Sec. III D);
�R(T ) is the temperature-dependent part (with a product of an
exponential function F and a preexponent P). The quantities τ̃

and 
̃ are similar to the familiar quantities τ and 
, but contain
a “renormalized” temperature T̃ :

τ̃ = 3
(π

2

)2/3
(

Ea

T̃

)1/3

, 
̃ = Z2e2

aT̃
, T̃ =

√
T 2 + C2

T T 2
p ,

(29)

where CT is a dimensionless renormalization parameter (∼1).
For high temperatures, T � Tp, we have τ̃ → τ, 
̃ → 
, and
T̃ → T . In this case the temperature-dependent term tends
to �R(T ) → Rth(T ) � Rpyc, and Eqs. (29) reproduce the
thermonuclear reaction rate (Secs. III B and III C). At low
temperatures, T <∼ Tp, the quantities τ̃ , 
̃, and T̃ , roughly
speaking, contain “the quantum temperature” Tp rather than
the real temperature T in the original quantities τ, 
, and T. In
the limit of T → 0 we obtain 
̃ = 1/[

√
λ (72π )1/6CT ] and

τ̃ = (3
√

π/λ)/(27/6 C
1/3
T ).

At this point, let us require that, at T � Tp the factor
exp(−τ̃ ) in the exponential function F, Eqs. (29), reduce to
exp(−Cexp/

√
λ) in the exponential function Fpyc, Eqs. (23).

This would allow us to obey Eq. (26) by satisfying the equality

3
√

π/
(
27/6C

1/3
T

) = Cexp. (30)

Taking Cexp, we can determine CT (see Table I). The double
exponent factor in F, Eqs. (28), will correspond to the double
exponent factor in Eq. (26). Strictly speaking, Eq. (26) contains
two different constants, � and �1. However, taking into
account the uncertainties of R in the thermally enhanced
pycnonuclear regime (Sec. III E), we replace two constants
with one.

Finally, the quantity γ in Eqs. (29) should be taken in
such a way as to reproduce the correct limit γ1 = 2/3 at
T � Tp (Sec. III B) and γ2 = (2/3) (Cpl + 0.5) at T � Tp

[see Eq. (26)]. The natural interpolation expression for γ would
be

γ = (
T 2γ1 + T 2

p γ2
)/(

T 2 + T 2
p

)
. (31)
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In addition, we need the reaction energy Epk to evaluate the
astrophysical factor S(Epk). Because the S factor is a slowly
varying function of energy, it is reasonable to approximate Epk

by the expression

Epk = h̄ωp +
(

Z2e2

a
+ T τ

3

)
exp

(
−�Tp

T

)
, (32)

which combines the expressions in the thermonuclear and
pycnonuclear regimes. To avoid the introduction of many fit
parameters (unnecessary at the present state of investigation),
we set C1 = C2 = 1 in expression (27).

Thus we propose to adopt analytic expressions (29) by
using the following parameters:

(1) Csc = 1.0754 for the case of strong plasma screening in
the thermonuclear regime (Sec. III C);

(2) Cexp, Cpyc, and Cpl for conditions of zero-temperature
pycnonuclear burning (see Table I and Sec. III D);

(3) The quantum-temperature constant CT (Sec. III D), which
is important at T ∼ Tp and expressed through Cexp by
means of Eq. (30); the corresponding values of CT are
listed in Table I;

(4) The last constant �, which is important at T ∼ Tp, is still
free.

We have checked (Fig. 6) that taking the optional model
1 from Table I and the value � = 0.5 results in a good
agreement with the carbon burning rate calculated at ρ ∼ 109–
1010 g cm−3 and T <∼ 0.5Tp from Eq. (45) of Salpeter and
Van Horn [15] (for the thermally enhanced pycnonuclear
regime). (Note that model 2 requires slightly lower � ≈ 0.45.)
Taking � = 0.35 leads to a noticeably higher reaction rate at
T <∼ 0.5Tp, while taking � = 0.65 leads to a noticeably lower
rate.

Accordingly, for any model of zero-temperature pycnonu-
clear burning from Table I we suggest adopting � = 0.5
as optional, with � = 0.35 to maximize and � = 0.65 to
minimize the reaction rate. In particular, model 1 with � = 0.5
seems to be the “most optional”; our limiting model 10 from
Table I with � = 0.35 is expected to give the upper theoretical
limit for the reaction rate, whereas the other limiting model
11 with � = 0.65 is expected to give the lower theoretical
limit. We also need the astrophysical factor S(E), which was
described in Sec. II, for the carbon burning. We could easily
introduce additional constants to tune our phenomenological
model when precise calculations of reaction rates appear in the
future.

For illustration, Fig. 6 shows the temperature dependence of
the carbon burning rate at ρ = 5 × 109 g cm−3. The solid curve
is the most optimal model (based on both—zero-temperature
and thermally enhanced—pycnonuclear burning models of
Salpeter and Van Horn [15] for the bcc static lattice). The
double-hatched region shows assumed uncertainties of this
model associated with variations of � from 0.35 to 0.65 (as
if we accept the zero-temperature model but question the
less elaborated model of thermal enhancement). The single
hatched region indicates overall uncertainties (limited by
the models of the maximum and minimum reaction rates).
We obtain the lower long-dashed curve assuming classical

thermonuclear burning without any screening (Sec. III B). We
calculate the upper long-dashed curve by using the formalism
of thermonuclear burning with screening (Sec. III C). The
screening enhancement of the reaction rate becomes stronger
with the decrease of T. The formalism for describing this
enhancement is expected to be valid at T >∼ Tp, but we
intentionally extend the upper long-dashed curve to T =
0.5 Tp, where the formalism breaks down and the curve
diverges from the expected (solid) curve. The short-dashed
curve is calculated from the equations of Salpeter and Van
Horn [15] derived in the thermally enhanced pycnonuclear
regime (model 1) and valid at T <∼ 0.5Tp. We intentionally
extend the curve to higher T, where the formalism of thermally
enhanced pycnonuclear burning becomes invalid and the curve
diverges from the expected curve. Our phenomenological solid
curve provides a natural interpolation at T ∼ Tp between the
short-dashed curve and the upper long-dashed curve.

More complicated expressions for the reaction rate R in
wide ranges of ρ and T were proposed by Kitamura [57],
who combined the results of recent calculations of R in
the different regimes. His expressions are mainly based on
the results of Refs. [45,53,54,57,59], which are not free of
approximations (as discussed in Secs. III C, III D, and III E). In
contrast to our formula, Kitamura’s formula took into account
the effects of electron screening (finite polarizability of the
electron gas), and he considered the case of equal and nonequal
reacting nuclei. However, the electron screening effects are
relatively weak; their strict inclusion in the pycnonuclear
regime represents a complicated problem. We do not include
them but, instead, take into account theoretical uncertainties of
the reaction rates without electron screening. We have checked
that the results by Kitamura [57] for carbon burning in the most
important T − ρ domain lie well within these uncertainties.

Our formula gives a smooth behavior of the reaction rate
as a function of temperature and density, without any jump
at the melting temperature T = Tm. We do not expect a
strong jump of any such kind because the liquid-solid phase
transition in dense stellar matter is tiny. A careful analysis
shows the absence of noticeable jumps of transport coefficients
[60] and the neutrino emissivity owing to electron-nucleus
bremsstrahlung. A direct example is given by the theory of
nuclear burning. Ichimaru and Kitamura [61] predicted a
noticeable jump of the reaction rate at T = Tm, whereas a
more careful analysis by Kitamura [57] considerably reduced
this jump.

IV. CARBON BURNING AND IGNITION
IN DENSE MATTER

In this section we analyze the rate of the 12C+12C reaction
as a function of T and ρ and investigate the conditions for
carbon burning in dense stellar matter.

Because the probability for Coulomb tunneling depends
exponentially on plasma parameters, changes in density ρ and
temperature T have dramatic effects on the burning rate R. In
thermonuclear regimes (Secs. III B and III C) the 12C+12C rate
is more sensitive to changes in temperature T than in density
ρ. On the contrary, in pycnonuclear regimes (Secs. III D
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and III E) the rate depends significantly on the density ρ.
For instance, if T decreases from 3 × 109 K to 3 × 108 K
at ρ = 5 × 109 g cm−3 (Fig. 6; thermonuclear burning with
strong screening), the reaction rate drops by ∼20 orders of
magnitude. when the enhancement that is due to plasma
screening, is neglected, the rate will drop by 10 more orders
of magnitude. An increase in density ρ from 108 to 1011 g
cm−3 at T <∼ 3 × 107 K (in the zero-temperature pycnonuclear
regime) results in a rate increase of ∼100 orders of magnitude
(Fig. 5). Note that no carbon can survive in a degenerate matter
at ρ > 3.90 × 1010 g cm−3 because of the double electron
capture 12

6C → 12
5B → 12

4Be (e.g., Shapiro and Teukolsky
[55]). The electron capture has a well-defined density
threshold, 3.9 × 1010 g cm−3, and proceeds quickly after the
threshold is exceeded. We ignore this process in this section.

The strong dependence of the rate R on density ρ and
temperature T leads to huge variations of the characteristic
time scale τburn = ni/R for carbon burning. Figure 4 shows
two solid curves in the ρ − T plane, along which τburn = 1 s
and 1010 years (nearly the universe age), respectively. They
are calculated with the most optional carbon burning model
(model 1 from Table I, � = 0.5). The curves are almost
horizontal in the thermonuclear burning regime (R is a slowly
varying function of ρ) and almost vertical in the pycnonuclear
regime (R is a slowly varying function of T). The bending
part of the curves corresponds to the thermally enhanced
pycnonuclear and intermediate thermopycno nuclear regimes.
At T and ρ above the upper line the burning time is even shorter
than 1 s; at these conditions no carbon will survive in the dense
matter of astrophysical objects. For conditions below the lower
solid curve, τburn is longer than 1010 years, and carbon burning
can be disregarded for most applications.

Thus the studies of carbon burning can be focused on the
narrow strip in the ρ − T plane between the lines of τburn =
1 s and τburn = 1010 yr. Hatched regions show theoretical
uncertainties of each curve (limited by the maximum and
minimum reaction-rate models; Sec. III G). The uncertainties
are relatively small in the thermonuclear regime where all
models give nearly the same reaction rate. The uncertainties
are higher in other burning regimes.

Having a carbon burning model, we can plot the carbon
ignition curve. This curve is a necessary ingredient for mod-
eling nuclear explosions of massive white dwarfs (producing
supernova Ia events, so important for cosmology; see, e.g.,
Refs. [6,63]) and for modeling carbon explosions of matter
in accreting neutron stars (feasible models of superbursts
observed recently from some accreting neutron stars; e.g.,
Refs. [10–12]).

The ignition curve is commonly determined as the line in
the ρ − T plane (Fig. 4), where the nuclear energy generation
rate is equal to the local neutrino emissivity of dense matter
(the neutrino emission carries the generated energy out of
the star). At higher ρ and T (above the curve) the nuclear
energy generation rate exceeds the neutrino losses and carbon
ignites. In Fig. 4 we present the carbon ignition (solid) curve,
which we calculated by using the most optional model of
carbon burning, together with its uncertainties (limited by the
minimum and maximum rate models). The neutrino energy

losses are assumed to be produced by plasmon decay and
by electron-nucleus bremsstrahlung. The neutrino emissivity
that is due to plasmon decay is obtained from extended tables
calculated by M. E. Gusakov (unpublished); they are in good
agreement with the results by Itoh et al. [64]. The neutrino
bremsstrahlung emissivity is calculated with the formalism
of Kaminker et al. [65], which takes into account electron
band-structure effects in crystalline matter.

For ρ <∼ 109 g cm−3 theoretical uncertainties of the ignition
curve are seen to be small. They become important at ρ >∼
109 g cm−3 and T ∼ (1 − 3) × 108 K in the intermediate ther-
mopycnonuclear burning regime and the thermally enhanced
burning regime. This ρ − T range is appropriate for central
regions of massive and warm white dwarfs that may produce
type Ia supernova explosions. Lower T are also interesting for
these studies (e.g., Baraffe, Heger, and Woosley [7]).

If we formally continue the ignition curve to lower T, it will
bend and shift to lower densities, where the nuclear burning
time scale τburn is exceptionally slow, exceeding the age of the
universe. The bend is associated with a very weak neutrino
emission at T <∼ 108 K. These parts of the ignition curve are
oversimplified because at low T the energy outflow produced
by thermal conduction becomes more efficient than the outflow
that is due to neutrino emission. These parts are shown by the
long-dashed curve (and their uncertainties are indicated by
thin dashed-and-dotted curves). Unfortunately, the conduction
energy outflow is nonlocal and “nonuniversal”. It depends on
specific conditions of the burning environment (a white dwarf
core or a neutron star crust) and the associated thermal con-
ductivity (provided mainly by strongly degenerate electrons).
In this case the ignition becomes especially complicated. A
very crude estimate shows that the ignition curve, governed
by the thermal conduction, is nearly vertical and close to the
τburn = 1010 yr curve in the range of T from 108 to 106 K in
Fig. 4. At T <∼ 106 K the curve is strongly affected by the
thermal conductivity model. In a cold ideal carbon crystal,
umklapp processes of electron-phonon scattering are frozen
out (e.g., Ref. [66]). Under these conditions the electron
conduction is determined by inefficient normal electron-
phonon scattering, leading to high conductivity values. This
shifts the ignition to higher ρ. On the other hand, carbon
matter may contain randomly located ions of other elements
(charged impurities) that can keep the electron Coulomb
scattering rather efficient and maintain a low electron thermal
conductivity. In this case the ignition curve at T <∼ 106 K
remains nearly vertical.

V. CONCLUSION

Our goal in this paper was to develop a phenomenological
formalism for calculating fusion reaction rates between iden-
tical nuclei. This formalism should be applicable for a broad
range of thermonuclear and pycnonuclear burning cases. It
involves a generalized treatment for calculation of the fusion
probability at low energies and the development of a single
simple phenomenological expression for the fusion rate valid
in a wide range of temperatures and densities.
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We have introduced a generalized model approach for
calculating the S factor of heavy-ion fusion reactions relevant
for stellar nucleosynthesis processes. We have demonstrated
the applicability and reliability of the approach by calculating
the astrophysical factor S(E) for the carbon fusion reaction
12C+12C (Sec. II) and by comparing the theoretical results
with experimental data.

Furthermore, we have analyzed (Sec. III) previous calcu-
lations of the fusion rate for identical nuclei in stellar matter,
with emphasis on the complicated problem of Coulomb BP
in a dense-plasma environment. Combining the results of
previous studies, we have proposed a single simple phe-
nomenological expression for the fusion rate, valid in all five
fusion regimes (which can be realized in the different ρ − T

regions). Our formula contains adjustable parameters whose
variations reflect theoretical uncertainties of the reaction
rates.

For illustration, we have considered (Sec. IV) the efficiency
of carbon burning in dense matter and the conditions for
carbon ignition in white dwarf cores and neutron star crusts.
We show that carbon burning is actually important in a
sufficiently narrow ρ − T strip that is mainly determined by
the temperature T ∼ (4 − 15) × 108 K as long as ρ <∼ 3 ×
109 g cm−3, and by the density ρ ∼ (3 − 50) × 109 g cm−3 as
long as T <∼ 108 K. On the basis of these results, we suggest
that the current knowledge of nuclear fusion is sufficient for
understanding the main features of carbon burning in stellar
matter, especially at ρ <∼ 3 × 109 g cm−3.

We have focused on the simplest case of heavy-ion
burning in a one-component Coulomb system, particularly in

a perfect crystal. There is no doubt that dense matter of white
dwarfs and neutron stars are more complicated and require
a more complex approach taking into account mixtures of
different heavy nuclei and imperfections in dense matter. The
complexity ranges from essentially two-component plasma
conditions anticipated in the carbon oxygen cores of white
dwarfs to the multicomponent isotope distribution in the ashes
of accreting neutron stars [67].

In a forthcoming paper we will expand the presented
analysis to the case of the fusion rates between different
isotopes. We will employ this formalism for calculating the
S factors for a broad range of heavy-ion fusion reactions. We
will include the results in a pycno-thermonuclear reaction
network and simulate the nucleosynthesis in high-density
stellar matter.
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[41] W. Treu, H. Fröhlich, W. Galster, P. Dück, and H. Voit, Phys.

Rev. C 22, 2462 (1980).
[42] M. A. G. Alvarez et al., Nucl. Phys. A723, 93 (2003).
[43] H. E. DeWitt, W. Slattery, D. Baiko, and D. Yakovlev, Contrib.

Plasma Phys. 41, 251 (2001).
[44] A. Alastuey and B. Jancovici, Astrophys. J. 226, 1034 (1978).
[45] S. Ogata, Astrophys. J. 481, 883 (1997).
[46] D. G. Yakovlev and D. A. Shalybkov, Sov. Sci. Rev. Sec. E 7,

313 (1989).
[47] H. E. DeWitt, H. C. Graboske, and M. S. Cooper, Astrophys. J.

181, 439 (1973).

[48] Y. Rosenfeld, Phys. Rev. E 53, 2000 (1996).
[49] B. Jancovici, J. Stat. Phys. 17, 357 (1977).
[50] H. DeWitt and W. Slattery, Contrib. Plasma Phys. 43, 279 (2003).
[51] A. Y. Potekhin and G. Chabrier, Phys. Rev. E 62, 8554 (2000).
[52] H. DeWitt and W. Slattery, Contrib. Plasma Phys. 39, 97 (1999).
[53] S. Ogata, H. Iyetomi, and S. Ichimaru, Astrophys. J. 372, 259

(1991)
[54] S. Ogata, S. Ichimaru, and H. M. Van Horn, Astrophys. J. 417,

265 (1993).
[55] E. L. Pollock and B. Militzer, Phys. Rev. Lett. 92, 021101 (2004).
[56] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs,

and Neutron Stars (Wiley-Interscience, New York, 1983).
[57] D. A. Baiko, Phys. Rev. E 66, 056405 (2002).
[58] S. Ichimaru, S. Ogata, and H. M. Van Horn, Astrophys. J. 401,

L35 (1992).
[59] H. Kitamura and S. Ichimaru, Astrophys. J. 438, 300 (1995).
[60] D. A. Baiko, A. D. Kaminker, A. Y. Potekhin, and

D. G. Yakovlev, Phys. Rev. Lett. 81, 5556 (1998).
[61] S. Ichimaru and H. Kitamura, Phys. Plasmas 6, 2649 (1999);

Erratum: 7, 1335 (2000).
[62] H. Kitamura, Astrophys. J. 539, 888 (2000).
[63] A. V. Filippenko, in White Dwarfs: Probes of Galactic Structure

and Cosmology, edited by E. M. Sion, H. L. Shipman, and
S. Vennes (Kluwer, Dordrecht, The Netherlands, in press).

[64] N. Itoh, H. Mutoh, A. Hikita, and Y. Kohyama, Astrophys. J.
395, 622 (1992); Erratum: 404, 418 (1993).

[65] A. D. Kaminker, C. J. Pethick, A. Y. Potekhin, V. Thorsson, and
D. G. Yakovlev, Astron. Astrophys. 343, 1009 (1999).

[66] M. E. Raikh and D. G. Yakovlev, Astrophys. Space Sci. 87, 193
(1982).

[67] S. E. Woosley, A. Heger, A. Cumming, R. D. Hoffman,
J. Pruet, T. Rauscher, J. L. Fisker, H Schatz, B. A. Brown,
and M. Wiescher, Astrophys. J. Suppl. 151, 75 (2004).

025806-14


