


Coordinate systems used below
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Our primary coordinate system is associated with the direction of total angular
momentum, J. The unit vector e is aligned with this direction, while the vectors e

and e are in the perpendicular plane. The direction of orbital angular momentum

is characterised by inclination angle i and rotational angle a, while directions of stellar
spins are characterised by inclination angles 6, and rotational angles v, . The angles {3,

determine the relative inclination of the spins and the orbital angular momentum.



General dynamical equations follow from the law of
conservation of angular momentum and definitions of the inclination

angles
J=L+ Z S,

Si; = Si(cosdge. + sindi(cosyie, +sinyge,)) for b =1,2

L = L(cosie, + sini(cos ae, + sinae,))
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The torques

TLJ;. is mainly determined by the stellar flattening, the corresponding
contribution has a well known form (e.g. Barker, O'Connel,
1975)

T”_jflT has been derived in Ivanov & Papaloizou 2021, it can be
represented in the form
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In general, equations are rather cumbersome

dL
== Z T“ﬁ‘ sin (3.

di 1 1 . ) ,. . - L
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but, only three of them are independent.



The case S << L

In this case equations take a simpler form

do ;. T||L 1L g .
= — | — sin(v, — «)

dt Si St s1in 0y
d I T 1.k
dt Sy sin 6y

When variations of deltas are small, we can set

0 = 0p + Ay

In this case r.h.s of the dynamical equations do not depend on
the dynamical variables. In particular, we have

1y &
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The evolution near the critical curve TWiot — 0

We arrange the indices 1 and 2 in such a way that
£ = Sosindy/(Sysindy) <1

In this case, when the inclination angles of the system are not very close to
90 degrees, only

A = A is expected to vary significantly due to the presence of the
— =1 parallel torque

the dynamics is reduced to the equation of simple pendulum

F — _S2|| HlllH l ([]L -

which has the integral of motion I — —+ SZﬁ(l — COS 9).

|

when the last term on r.h.s. is
neglected.



Examples of the critical curves
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Numerical calculations

for DI Herc system
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CONCLUSIONS

The joint evolution of stellar rotational axis and the apsidal line allows for a
rather non-trivial dynamics in case of inclined systems of two distributed
stars. When the orbital parameters are such that the system happens to be
close to the critical curve there is a possibility to have librations of the
apsidal line.

The results obtained would allow one to model the dynamical evolution of the inclined
systems on timescale smaller than a tidal dissipation timescale. We provided
a detailed prescription of determination of all variables needed for this purpose.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

