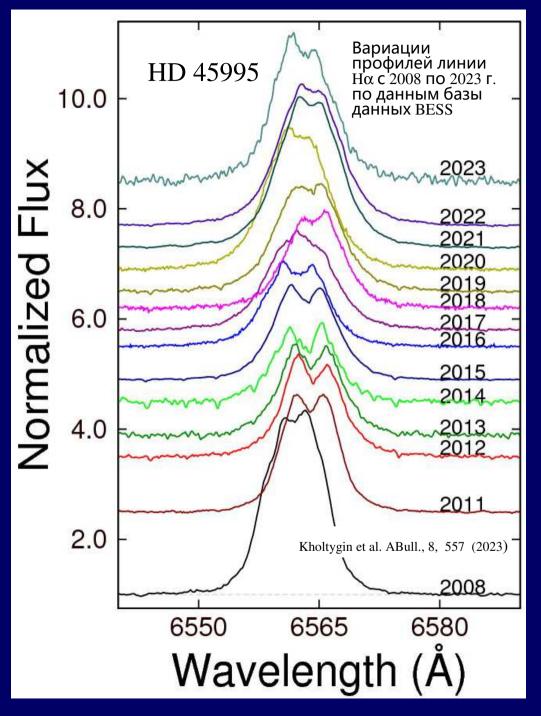

А.Ф. Холтыгин Санкт-Петербургский государственный университет

Загадка рентгеновского излучения звезд типа gamma Cassiopeia решена?


В кооперации с: Мариной Бурлак (ГАИШ), Владиславом Бухариновым (СПбГУ), Александром Додиным (ГАИШ), Натальей Иконниковой (ГАИШ), Дмитрием Мокшиным (СПбГУ), Анастасией Моисеевой (САО), Елизаветой Рыспаевой (КрАО), Ильей Якуниным (САО)

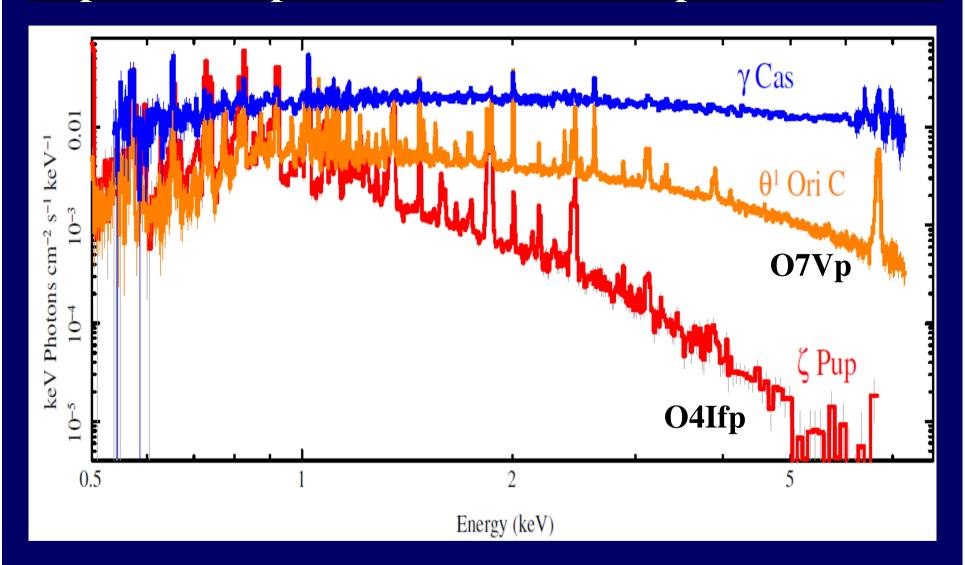
Ноябрь 19, 2024, ФТИ, Санкт-Петербург

Классические Ве звезды

Ни у одной Ве звезды не найдено магнитного поля. ud-Doula et al. (2018) - моделирование Кеплеровского декреционного диска с Ве звездой с дипольным магнитным полем. Даже при полярной напряженности 10 Гс диск может быть разрушен, а при напряженности в 100 Гс, соответствующей верхнему пределу, полученному по измерениям магнитного поля Ве звезд, диск будет разрушен за несколько дней. То есть наличие даже небольшого магнитного поля у Ве звезды препятствует образованию декреционного диска.

Звезды типа у Cassiopeia (аналоги у Cas)

Звезды типа γ Cas — подкласс (1%) Ве звезд. Оптические спектры звезд типа γ Cas не отличаются от спектров других **Ве звезд**. Звезды этого типа выделяются по их аномальному рентгеновскому спектру

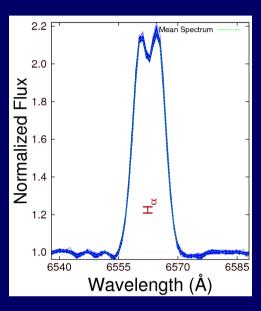

Характеристики звезд типа <mark>γ Cas</mark>:

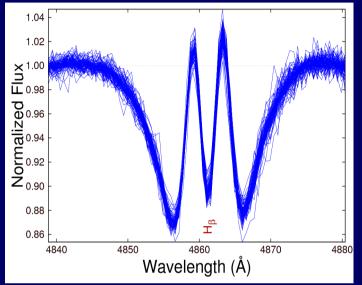
- 1) Звезды типа <mark>у Cas</mark> являются подгруппой Be/Oe звезд;
- 2) Рентгеновские светимости $L_{\rm X} \sim 10^{31}$ - 10^{33} erg/s;
- 3) Температура излучающей в рентгене плазмы звезд типа γ Cas достигает 10-20 keV и более, в предположении, что рентгеновское излучение чисто тепловое;
- 4) Жесткость рентгеновских спектров звезд типа <mark>у Cas</mark> превышает 1.6
- 5) Рентгеновское излучение переменно на шкалах времени вплоть до минут.

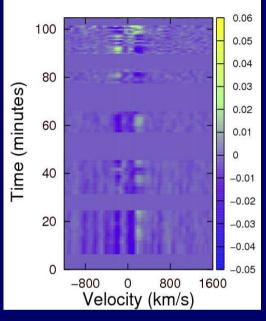
К настоящему времени известно **26** звезд типа <mark>γ Cas</mark> и 2 кандидата. **16** звезд этого типа могут наблюдаться в России (δ>-10°)

18.11.202409/21/22

Сравнение рентгеновских спектров ОВ звезд

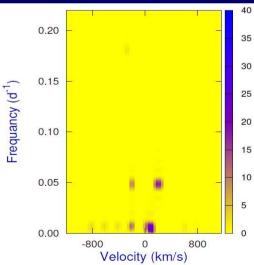

Сравнение спектра ОВ звезд со спектром <mark>у Cas</mark> (Gunderson+ 2024)


18.11.202409/21/22


Получено **7230** спектров звезд типа **у Cas** (БТА, SAI25, 1.25 ZTE)

V558 Lyr

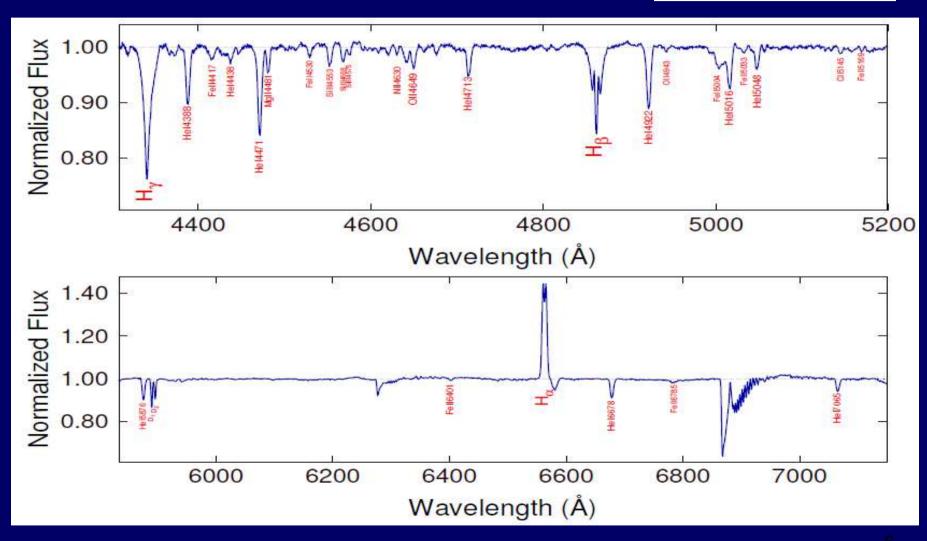
18.4.2024 Κ**ΓΟ**, SAI25, TDS


Профили линий и динамические спектры линий ${ m H}lpha$ и ${ m H}eta$

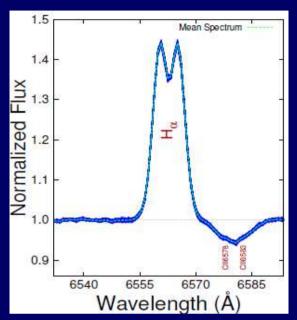
No. comp	Р, мин	α
1	1.22±0.02	10 -2
2	1.77±0.03	10 -3
3	5.00±0.25	10-2
4	21.2±4.6	10-4

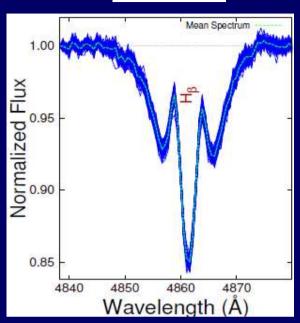
Фурье спектр вариаций профилей линии Нα

Рентгеновские наблюдения 13.11.2019, XMM Newton


No. comp	Р, мин	α	
1	1.16±0.02	10 ⁻²	

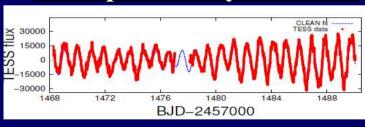
В чем разница между обычными **Be** звездами и звездами типа у Cas?

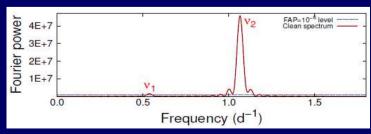

 ω Ori: $\overline{B3Ve}$

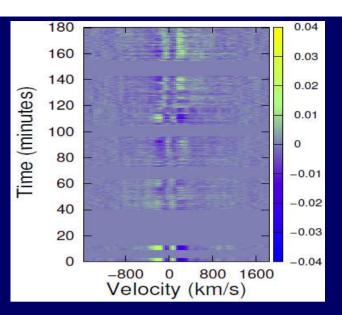


Средний нормированный спектр 🔞 Ori в красном канале (вверху) и в синем канале (внизу)

18.4.2024 CMO, SAI25, TDS






Line profiles and dynamic spectra of $H\alpha$ and $H\beta$ lines

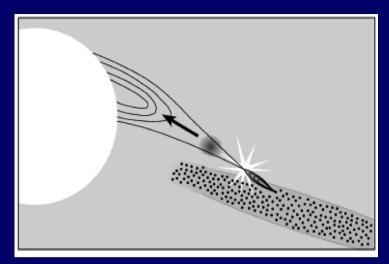
No. comp	P, min	α
1	150.1±125.2	10 -6
2	138.6±106.5	10 -6
3	128.7±92.0	10 -6
4	76.7±32.6	10-4
5	36.8±7.5	10 -5

TESS photometry of **o** Ori

No. comp	P, days	α
1	1.86±0.16	10 -6
2	0.94 ± 0.04	10 -6

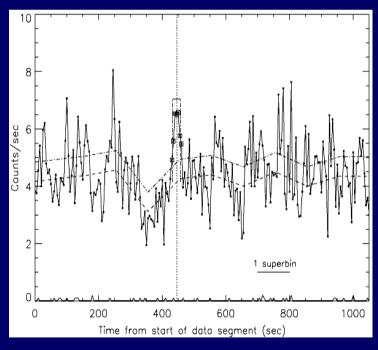
X-ray luminosity (SRG) Lx=(3.66±1.83)·10²⁹erg/s (Nazé & Robrade, 2023)

X-ray luminosity is 3 orders lower than that of γ Cas type stars

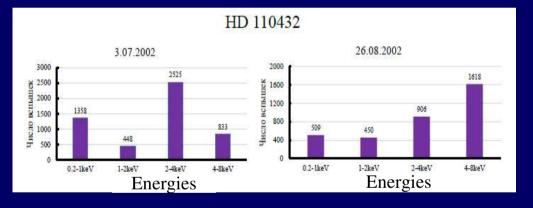

Характер переменности у обычных Ве звезд и звезд типа γ Cas подобен, однако амплитуда переменности профилей линий у звезд типа γ Cas В 3-5 раз выше

Возможные механизмы генерации рентгеновского излучения

- 1) Двойственность. Излучение маломассивной звезды или аккреция на компактную звезду
 - а) Нейтронную звезду (Postnov et al., 2017)
 - b) Белый карлик (Vieira et al. 2017)
 - с) вторичный компонент маломассивная вспыхивающая звезда
- 2) Взаимодействие декреционного диска с локальным магнитным полем звезды (Smith et al. 2016)
- 3) Возможное нетепловое рентгеновское излучение, возникающее в результате обратного комптоновского рассеяния UV фотонов на релятивистских электронах в рамках Chen & White (1991) модели (Kholtygin & Ryspaeva 2020, 2021)
- 4) Фотосферная активность (аналог солнечных вспышек)


18.11.202409/21/22

Взаимодействие локальных магнитных полей звезды и магнитного поля диска



Пересоединение магнитных силовых линий приводит к появлению **рентгеновских вспышек**, которые будут давать значимый вклад в рентгеновские кривые блеска (Smith+2016)

Выделение вспышки в интервале времени 445 с (пунктир) в рентгеновской кривой блеска ВZ Сти в 2002 г.. Нижняя пунктирная линия - скорости отсчета 45% процентиля; верхний - уровень 1σ над ними. Квадраты - наблюдаемые потоки (Smith+2012).

Числа вспышек BZ Cru в различных энергетических диапазонах в состояниях большого потока (слева) и малого поток (справа). Чем меньше рентгеновский поток, тем больше доля всплесков на энергиях выше 2 кэВ, что может быть связано с увеличением околозвездного поглощения на малых энергиях.

Двойственность звезд типа γ Cas

π Aqr

 M_1 =11±1.5 M_{sun} , R_1 =6.1±2.5 R_{sun} i=70° M_2 =1.8±0.2 M_{sun} (NS? or AF star) d=239 pc, P_{orb} =84.1 d, a=0.83 a.u.

Согласно Tsujimoto+2023 M<1.4 M_{sun} ⇒ Спутник π Aqr может быть WD

γ Cas

 M_1 =13-15 M_{sun} , R_1 =10 R_{sun} i=45° M_2 =0.98 M_{sun} (WD or FG star) d=188 pc, P_{orb} =203.1-203.7 d, a=1.63 a.u.

Кандидаты в двойные системы:

HD 44458, BZ Cru, V771 Sgr, HD 119682, HD 161103

		M (Be)	M_{comp}	i(0)	a (a.u.)
Star	P, d	(M_{sun})	(M_{sun})		
V 782 Cas	122	9	0.6 - 07	60-90	1.02
ζTau	133.0	11	0.87-1.02	60-90	1.17
HD 45995	103.1	10	1.0 ± 1	47	0.96
V 558 Lyr	83.3	8	0.7 - 0.8	60-90	0.77
SAO 49725	26.1	13	0.2 - 0.5	30-90	0.41
	137		0.4 - 0.7	30-90	1.23
V2156 Cyg	126.6	11	0.7 - 0.8	60-90	1.12
V810 Cas	75.8	12.5	0.7-0.8	60-90	0.83

Больше половины (14 из 24) звезд типа у Сав двойные или предположительно двойные типа Ве+WD или Ве+MS или Ве+sdO. Остальные звезды слишком слабы для построения кривых лучевых скоростей

Что мы знаем из анализа наблюдений

Что известно:

- 1) Периоды вариаций профилей оптических линий и вариаций оптических и рентгеновских кривых блеска близки. Это означает, что рентгеновское и оптическое излучение формируются примерно в одних и тех же областях, по крайней мере частично;
- 2) В спектрах всех звезд типа <mark>γ Cas</mark> присутствует комплекс линий в области 6.4-7.2 кэВ (Kα + FeXXV + FeXXVI). Можно сделать вывод, что часть рентгеновского излучения формируется в очень горячей плазме (**kT>10 кэВ**);
- 3) В рентгеновских кривых блеска наблюдается множество быстрых стохастических вспышек (пичков);
- 4) Зарегистрированы сверхбыстрые изменения рентгеновской яркости с периодами 50–90 секунд у звезд типа γ Cas HD45314, HD 45995, NGC6649 9 и V558 Lyr, которые могут соответствовать периодам вращения белых карликов в двойных системах Ве+WD;

Какие могут быть сделаны выводы:

- 1) Более горячая и более жесткая часть рентгеновского излучения возникает в результате аккреции на компактную вторичную звезду (WD или NS) в двойной системе;
- 2)Более холодная вспышечная часть образуется как за счет пересоединения линий магнитного поля в локальных магнитных контурах, так и в результате взаимо- действия локальных магнитных полей и декреционного диска.

Какие именно двойные системы относятся к звездам типа γ Cas: Be + NS или Be + WD?

Параметры типичных **Be+WD** систем (Gies+2023)

Parameter	High Mass			Low Mass		
	Be	WD	MS	Be	WD	MS
$M\left(\mathcal{M}_{\odot}^{\mathrm{N}}\right)$	11.1	1.2	1.2	6.5	0.7	0.7
$R (\mathcal{R}_{\odot}^{N})$	5.4	0.006	1.3	3.9	0.012	0.7
$T_{\rm eff}$ (kK)	25	57	6.2	19	42	4.4
$\triangle m$ (1450 Å) (mag)	O	12.7	24.4	O	9.8	36.6
$\triangle m$ (1.65 μ m) (mag)	O	13.7	4.8	0	11.5	5.5

Свидетельств присутствия MS или sDO спутников в наблюдени-ях на CHARA интерферометре не найдено. Белые же карлики в двойных системах **Be+WD** слишком слабы, чтобы быть обнаруженными.

Вывод:

Все звезды типа γ Cas являются широкими Ве+WD двойными системами

CHARA (Center for High Angular Resolution Astronomy) IR Interferometer

Обсерватория Маунт-Вильсон

Образование Be +WD двойных систем

M1			M2	a	T
Solar	masses		Solar masses	Solar radii	Million years
10.24	MS •	MS	4.42	58.59	0.00
9.93	Giant	MS	4.40	59.92	21.54
9.92	RLO fast	MS	4.40	59.95	21.59
4.54	RLO slow	MS	4.54	40.71	21.60
2.60	He star	Ве	4.93	66.09	21.90
2.34	He RLO	Ве	4.92	68.47	22.42
1.43	Hot cons	Ве	4.93	144.90	22.42
1.43	ONe WD	Be	4.92	144.90 0.7 a.u.)	22.55

Эволюционная схема образования двойных Be+WD звезд (Рагузова 2001)

Заключение:

Генерация рентгеновского излучения звездами типа у Сав происходит по по гибридному сценарию. Вспышечная часть полного потока рентгеновского излучения формируется за счет взаимодействия локальных магнитных полей звезды и магнитного поля диска, тогда как жесткая часть генерируется за счет аккреции вещества диска на быстро вращающийся белый карлик. Однако вариант Ве+NS систем не исключен

Аргументы против:

Langer+2020: взаимодействие локальных магнитных полей звезды и диска возможно и для обычных классических Ве звезд. В то же время рентгеновский поток классических Ве звезд на ~3 порядка ниже, чем у звезд типа у Cas. Почему?

Возможно, что локальные магнитные поля у звезд типа γ Cas сильнее, чем у обычных классических Be звезд или диск ближе к звезде? Или же мы еще что-то не понимаем в природе звезд типа γ Cas?

