So How Do Radio Pulsars Slow-Down?

V. S. Beskin

1Lebedev Physical Institute, Moscow, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny, Russia

In 1983 our team have shown that for zero longitudinal electric current circulating in the pulsar magnetosphere the energy losses W_{tot} vanish for any inclination angle χ [1]. This effect (confirmed later by L. Mestel group [2]) results from full screening of the magneto-dipole radiation by magnetospheric plasma. This implies that the pulsar braking results fully from impact of the torque K due to longitudinal currents.

On the other hand, rotating magnetized star can be slowed down only due to the action of the Ampère force connecting with surface currents J_s: $W_{\text{tot}} = -\dot{\Omega}K$, where

$$K = \frac{R^4}{c} \int J_s(Bn) \, do = \frac{R^3}{4\pi} \int \{ [n \times B^{(3)}](B^{(0)}n) + [n \times B^{(0)}](B^{(3)}n) \} \, do. \quad (1)$$

Here the indices $(0, 3)$ correspond to expansion powers on small parameter $\varepsilon = \Omega R/c$. Careful analysis for vacuum magneto-dipole radiation surprisingly shows that in Landau-Lifshits solution both terms play the role while in Deutsch solution only the first one (giving, certainly, the same well-known result).

Returning to magnetosphere filling with plasma, one can find that the torque acting on the star by surface currents J_s closing the longitudinal electric currents [1] $K_{\text{sur}} \parallel \approx -m_2 \Omega^3 c^3 i_s$, $K_{\text{sur}} \perp \approx -m_2 \Omega^3 \left(\frac{\Omega R}{c} \right) i_a$, $I_s \dot{\Omega} = K_{\parallel}^A + (K_{\perp}^A - K_{\parallel}^A) \sin^2 \chi$, \quad (2)

corresponds to first term in (1). Here we introduce two components of the torque K parallel and perpendicular to the magnetic dipole m. Besides, dimensionless current $i = j / j_{\text{GJ}}$ (normalization to ‘local’ Goldreich-Julian current density $j_{\text{GJ}} = |\Omega \cdot B| / 2\pi$ with scalar product) also separated into symmetric and antisymmetric contributions, i_s and i_a, depending upon whether the direction of the current is the same in the north and south parts of the polar cap, or opposite.

Hence, to satisfy Spitkovsky’s relation $\dot{\Omega} \propto (1 + \sin^2 \chi)$ we should have to assume too large antisymmetric current $i_a \sim \varepsilon^{-1}$ while in reality $i_a \sim \varepsilon^{-1/2}$. Thus, it is necessary to assume additional contribution resulting from mismatch between magneto-dipole and magnetospheric radiation and corresponding to the second term in (1)

$$K_{\perp}^{\text{mag}} = -A \frac{B_0^2 \Omega^3 R^6}{c^3} i_a. \quad (3)$$

For $i_a \sim \varepsilon^{-1/2}$ we obtain $A \sim \varepsilon^{1/2}$. This implies that for local GJ current $i_s \approx 1$ for most inclination angles one can neglect the additional term K_{\perp}^{mag}, as was done in [1].

References