Spectra of accretion columns in X-ray pulsars

M.I. Gornostaev1,2,*, K. A. Postnov1†, E. A. Sokolova-Lapa1,2

1Moscow M.V. Lomonosov State University, Sternberg Astronomical Institute, 13, Universitetskij pr, 119234, Moscow, Russia
2Moscow M.V. Lomonosov State University, Faculty of Physics, 1, Leninskie Gory, 119234, Moscow, Russia

We discuss recent spectral correlations with changing mass accretion rate found in transient X-ray pulsars, including the spectral hardness increase and saturation in high-luminosity sources and cyclotron resonant scattering feature (CRSF) energy increase with X-ray luminosity in low-luminosity sources. In high-luminosity pulsars, 2D calculations of radiation-dominated accretion columns with Compton-saturated sidewall spectra with taking into account of reflection from the neutron star (NS) surface are able to explain the observed spectral hardness ratio correlations \cite{1}. In low-luminosity pulsars, the X-ray spectrum is produced in semi-transparent plasma behind collisionless shock above the NS surface, and CRSF is formed in a resonant layer in inhomogeneous magnetic field of NS. This physical model can explain the observed CRSF correlations, including the energy dependence, line width and depth changes with X-ray luminosity. We apply this model to the recent analysis of RXTE observations of GX 304-1 \cite{2} and NuSTAR observations of Cep X-4 \cite{3}.

References

*E-mail: mgornost@gmail.com
†E-mail: kpostnov@gmail.com