X-ray properties of the mode-switching pulsar PSR B0943+10

S. Mereghetti^{1*}, L. Kuiper², A. Tiengo^{3,1}, J. Hessels^{4,8}, W. Hermsen^{2,8}, K. Stovall⁵, A. Possenti⁶, J. Rankin⁷, P. Esposito⁸, R. Turolla⁹, D. Mitra^{7,10}, G. Wright¹¹, B. Stappers¹¹, A. Horneffer¹², S. Oslowski¹², M. Serylak¹³, J.-M. Grießmeier¹³

¹INAF-IASF Milano, via E. Bassini 15, I-20133 Milano, Italy

²SRON, Sorbonnelaan 2, 3584 CA, Utrecht, The Netherlands

³Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, I-27100 Pavia, Italy

⁴ASTRON, Postbus 2, 7990 AA Dwingeloo, The Netherlands

⁵Dept. of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA

⁶INAF - Osservatorio Astronomico di Cagliari, I-09047 Selargius, Italy

⁷Physics Department, University of Vermont, Burlington, VT 05405, USA

⁸Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands

⁹Università di Padova, via F. Marzolo 8, I-35131 Padova, Italy

 $^{10}\mathrm{National}$ Centre for Radio Astrophysics, Ganeshkhind, Pune 411 007, India

¹¹Jodrell Bank Centre for Astrophysics, University of Manchester, UK

 $^{12}\mbox{Max-Planck-Institut}$ für Radioastronomie, Auf dem Hügel 69, 53121, Bonn, Germany

¹³Observatoire de Paris, CNRS, Université d'Orléans, OSUC, 18330 Nançay, France

The prototypical mode-switching pulsar PSR B0943+10 has been extensively studied in the radio band since many years and more recently it has been found to vary also in X-rays. It alternates between two states: in B (radio-bright) mode, its radio emission displays a regular pattern of drifting subpulses, while during the Q (radioquiescent) mode the radio pulses have a chaotic pattern and the X-ray flux is higher by a factor ~ 2.4 . Previous X-ray observations only partially constrained the spectrum of PSR B0943+10, especially during the X-ray-fainter B-mode, where pulsations could not be detected.

A new, longer campaign of observations was obtained with XMM-Newton and the LOFAR, LWA and Arecibo radio telescopes in November 2014. This allowed us to detect X-ray pulsations also during the B-mode and to better constrain the spectral and variability properties. We found that in Q-mode the pulsed emission has a thermal blackbody spectrum with temperature $\sim 3.4 \times 10^6$ K and the unpulsed emission is a power-law with photon index ~ 2.5 , while during B-mode both the pulsed and unpulsed emission can be fit by either a blackbody or a power law with similar values of temperature and photon index. These results support a scenario in which both unpulsed non-thermal emission, likely of magnetospheric origin, and pulsed thermal emission from a small polar cap ($\sim 1500 \text{ m}^2$) with a strong non-dipolar magnetic field ($\sim 10^{14} \text{ G}$), are present during both radio modes and vary in intensity in a correlated way. This is broadly consistent with the predictions of the partially screened gap model and does not necessarily imply global magnetospheric rearrangements to explain the mode switching.

^{*}E-mail: sandro@iasf-milano.inaf.it