Radio Frequency Studies of the Pulsar Binary PSR J1614–2318

K. V. Mikhailov1,2*, J. van Leeuwen2,1, M. S. E. Roberts3, J. W. T. Hessels2,1, S. M. Ransom4, G. H Janssen2, R. P. Breton5

1Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
2ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands
3Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, California 94602-3017, USA
4National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
5Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester, M13 9PL, UK

PSR J1614–2318, a radio pulsar binary unexpectedly discovered during the Parkes survey of unidentified EGRET γ-ray sources in 2002 [1, 2], has a number of unique features. Along with a significant (nearly 100%) pulse duty cycle at low frequencies, the binary possesses a very low-mass companion ($M_c \sim 0.08 M_\odot$) but spins way slower ($P_{\text{spin}} = 33.5$ ms) than what standard evolutionary models predict [3]. Moreover, binary orbital period and companion mass ratio agrees with the theory only at low orbital inclinations (see Fig. 1). We outline 13 years of multi-frequency and radio timing observations of PSR J1614–2318. An optical non-detection of the companion down to the 25th magnitude suggests it is likely a white dwarf, whereas an unmeasured Shapiro delay again signifies the orbit is not close to edge-on. We provide an updated timing solution with multi-wavelength radio profiles, discuss potential multi-component profile distribution as well as possible formation scenarios for such a binary system. Our results suggest an interplay between an aligned rotation, inefficient accretion, and a possibly high-mass neutron star.

References

*E-mail: K.Mikhailov@uva.nl