Transport coefficients of superdense matter in nucleon cores of neutron stars in BHF approach. Comparison of different nucleon potentials

P. S. Shternin1, M. Baldo2, H.-J. Schulze2

1Ioffe Institute, Politekhchnicheskaya 26, 194021 St. Petersburg, Russia
2INFN Sez. di Catania, Via S. Sofia 64, 95123 Catania, Italy

We study transport coefficients of npe\(\mu\) matter in non-superfluid neutron star cores. These coefficients (in particular, thermal conductivity and shear viscosity) are mediated by the nucleon collisions. In [1] the nucleon-nucleon interaction was considered in the framework of Brueckner-Hartree-Fock formalism and the Argonne v18 nuclear potential was used supplied with the Urbana IX effective three-body forces. In the present study we compare different nuclear potentials and different three-body forces. We employ the same models as were used in Ref. [2] where the nucleon effective masses were considered. We find that different three-body forces can lead to the order-of-magnitude different values of nucleon transport coefficients, still they remain smaller than the lepton ones. The work is supported by RFBR grant \# 16-32-00507-mol-a.

References

*E-mail: pshternin@gmail.com