Transport coefficients of superdense matter in nucleon cores of neutron stars in BHF approach. Comparison of different nucleon potentials

P. S. Shternin^{1*}, M. Baldo², H.-J. Schulze²

We study transport coefficients of npe μ matter in non-superfluid neutron star cores. These coefficients (in particular, thermal conductivity and shear viscosity) are mediated by the nucleon collisions. In [1] the nucleon-nucleon interaction was considered in the framework of Brueckner-Hartree-Fock formalism and the Argonne v18 nuclear potential was used supplied with the Urbana IX effective three-body forces. In the present study we compare different nuclear potentials and different three-body forces. We employ the same models as were used in Ref. [2] where the nucleon effective masses were considered. We find that different three-body forces can lead to the order-of-magnitude different values of nucleon transport coefficients, still they remain smaller than the lepton ones. The work is supported by RFBR grant # 16-32-00507-mol-a.

References

- [1] P. S. Shternin, M. Baldo, & P. Haensel, PRC 88, 065803 (2013)
- [2] M. Baldo, G. F. Burgio, H.-J. Schulze, & G. Taranto, PRC 89, 048801 (2014)

 $^{^{1}}$ Ioffe Institute, Politekhnicheskaya 26, 1940
21 St. Petersburg, Russia

²INFN Sez. di Catania, Via S. Sofia 64, 95123 Catania, Italy

^{*}E-mail: pshternin@gmail.com