Three-Component Cs Variometer

Metrological parameters

Magnetic field range (Z) \dots 20 000 ÷ 65 000 nT
Transverse (X,Y) components range ±1 000 nT
Data sampling rate 1 \div 10 samples/sec
Short-time sensitivity < 15 $\text{pT}\cdot\text{Hz}^{-1/2}$
Frequency band 2.5 Hz
Reproducibility ±0.2 nT
Initial tilt 1 range $\pm 1^0$
Maximal field change rate 750 nT/sec

¹ Tilt = angle between the field vector and the sensor axis

Technical parameters

Interface Serial ((RS232)
Time sync precision 1	0 ⁻⁷ sec
Warming-up time 4	5 min
Power 27B 3A or 220E	0.4A
Power consumption	90 W

Dimensions and weight:

Sensor	230×230×230	mm, 5Kg
Electronics	500×200×70	mm, 3Kg
Power converter 400)x170x100 mm,	1.5 Kg
Data/power cable).2 Kg/m

New compact and fast three-component variometer measuring the total terrestrial magnetic field intensity in $20\div65\mu$ T range and two transverse components in $\pm1\mu$ T range.

Constructively the device consists of the sensor and electronic block; the sensor consists of Cs-magnetometer placed into the coil system. The coil system frame is made of quartz and installed on a quartz base. At the moment we are developing the new more compact version of the instrument with higher order thermostabilized coil system.

NB! Three-component Cs Variometer is a complex instrument, requiring special treatment. The device installation and periodical checks be conducted only by specially trained and qualified personnel.

BASIC PRINCIPLES

The variometer constitutes a scalar Cesium sensor placed into the center of 3D coil system aligned along terrestrial field H_0 . The coil system produces DC magnetic field H_{ZC} compensating ~95% of H_0 , magnetic field H_{XY} rotating in the plane perpendicular to H_0 , and DC magnetic fields H_{XC} and H_{YC}

The scalar sensor measures the total magnetic field H which is the vector sum of the fields listed above. If H_0 deviates from Z oscillating components appear in H; these components are used as signals for the X-Y feedback systems producing DC magnetic fields H_{XC} and H_{YC} compensating variations of transverse Earth field components. These fields amplitudes are used as the measure for X and Y field components

A Cesium optically pumped sensor was chosen as the most appropriate scalar device - since the total field in the center of the coil system does not exceed 7,000 nT, and Cs resonance line in such a low field is quite narrow and symmetric.

Long-term stability of the device is mostly determined by the coil system; the procedures of calibration of X,Y,Z coil constants and their cross-coefficients are also implemented on micro-processor level, and they do not require any external magnetometric equipment.

Our research team is combined of the Atomic RadioSpectroscopy Lab of A.F.Ioffe Phys.-Tech. Institute and Radio-Optical Spectroscopy Lab of S.I.Vavilov State Optical Institute. In the field of ultra-precise quantum magnetometers the team posses the huge experience going back to 60-es. By now we have already designed at least six new types of quantum magnetometer of unique features.

E.B.Alexandrov, M.V.Balabas, A.S.Pazgalev, N.N.Yakobson, A.K.Vershovskii. Double-resonance atomic magnetometers: From gas discharge to laser pumping. - Laser Physics, 6, #2, 1996, pp.244-251

Terminal program

- **ü** Shows magnetometer virtual panel on the computer screen;
- Sends commands to the magnetometer;
- ü Receives data from the magnetometer;
- ü Allows to control the magnetometer parameters with the virtual visual controls;
- Processes data string and shows data on the virtual panel;
- ü Calculates statistics such as Allan variances;
- ü Saves data and graphs to file.

Research Team

Contacts:

Prof. Eugene B.Alexandrov	ealexandrov@bk.ru
Dr. Anton K.Vershovskiy	<u>antver@mail.ru</u>
Dr. Anatoly S. Pazgalev	<u>pazgalev@yandex.ru</u>

Ioffe Phys.-Tech. Institute RAS Atomic RadioSpectroscopy Lab 26, Polytechnisheskaya, St.-Petersburg, 194021 Russia Tel: +7 812 292-73-15 Fax: +7 812 297-10-17