Microcavity Exciton-Polariton Qubits based on Long Lived Rabi Oscillators

S.S. Demirchyan¹, I.Yu. Chestnov¹, A.P. Alodjants^{1,2}, M.M. Glazov^{3,4}, and A.V. Kavokin^{4,5}

¹Department of Physics and Applied Mathematics, Vladimir State University named after A.G. and N.G. Stoletovs, Vladimir, 600000, Russia ²Russian Quantum Center, Novaya str. 100, 143025, Skolkovo, Moscow, Russia ³Ioffe Physical-Technical Institute of the RAS, 26 Polytekhnicheskaya, St.-Petersburg 194021, Russia ⁴Spin Optics Laboratory, St. Petersburg State University, Ul'anovskaya, Peterhof, St. Petersburg 198504, Russia ⁵School of Physics and Astronomy, University of Southampton, SO17 1NJ, Southampton, UK

Abstract

Polaritonics is an interdisciplinary research area at the boundary of optics and solid state physics. It is aimed at the studies of light-matter interaction and dynamics of exciton-polaritons, or shortly polaritons: quasi-particles with bosonic statistics formed as a result of the light-exciton coupling. Nowadays polaritonics represents an indispensable tool for investigation of quantum coherent and nonlinear phenomena occurring at the matter-field interface in various area of condensed matter physics, quantum and atom optics.

Semiconductor microcavities serve as a solid-state laboratory to study dynamical and quantum effects in open and non-equilibrium systems of bosons. Particularly, one of the main achievements in the field of polaritonics is the creation of and manipulation with condensates characterized by a macroscopic occupation of a single quantum state and extended temporal and spatial coherences. In this sense, polaritonics presents a significant interest for quantum information science.

We propose a novel physical mechanism for creation of long lived macroscopic exciton-photon qubits in semiconductor microcavities with embedded quantum wells in the strong coupling regime, [1]. The polariton qubit is a superposition of lower branch (LP) and upper branch (UP) exciton-polariton states. We argue that the coherence time of Rabi oscillations can be dramatically enhanced due to their stimulated pumping from a permanent thermal reservoir of polaritons. We discuss applications of such qubits for quantum information processing, cloning and storage purposes.

[1] S.S. Demirchyan, I.Yu. Chestnov, A.P. Alodjants, M.M. Glazov, and A.V. Kavokin, arXiv:1401.3509-cond-mat, Submitted to Physical Review Letters, 2014