Структурные дефекты и глубокие центры в эпитаксиальных слоях 4*H*-SiC, выращенных методом сублимационной эпитаксии в вакууме

© А.А. Лебедев, Д.В. Давыдов, Н.С. Савкина, А.С. Трегубова, М.П. Щеглов, Р. Якимова*, М. Syväjärvi*, E. Janzén*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Университет Линчёпинга, S-58183 Линчёпинг, Щвеция

(Получена 31 марта 2000 г. Принята к печати 3 апреля 2000 г.)

Проведено исследование параметров глубоких центров в слабо легированных слоях 4*H*-SiC, выращенных методами сублимационной эпитаксии и CVD. Обнаружено два глубоких центра с уровнями энергии E_c -0.18 эВ и E_c -0.65 эВ (центр Z1), которые предположительно связаны со структурными дефектами кристаллической решетки SiC. Показано, что концентрация центра Z1 уменьшалась с уменьшением концентрации нескомпенсированных доноров N_d – N_a в исследованных слоях. При одинаковом значении N_d – N_a она оказывалась меньше в слоях с большей плотностью дислокаций.

1. Введение

Известно, что центры с глубокими уровнями (ГЦ) оказывают влияние на такие параметры полупроводниковых приборов, как время жизни неосновных носителей заряда, токи утечки, величина и температурный коэффициент напряжения пробоя p-n-структур. Известно также, что кроме атомов примесей источником образования ГЦ могут быть собственные дефекты кристаллической решетки полупроводника. Поэтому для оптимизации параметров приборов необходимо исследовать влияние структурных дефектов на спектр ГЦ в запрещенной зоне. Особенно актуальными такие исследования являются для карбида кремния, где собственные дефекты входят в состав практически всех известных ГЦ [1] (или полностью образуют их).

Цель настоящей работы — сравнительное исследование спектра ГЦ в эпитаксиальных пленках 4*H*-SiC, полученных сублимационной эпитаксией с использованием подложек SiC с различной степенью структурного совершенства.

2. Образцы

Основой для выращивания эпитаксиальных слоев являлись подложки SiC, полученные по методу Лели [2] и модифицированному методу Лели (МЛ подложки) [3]. В качестве МЛ подложек были использованы кристаллы, коммерчески выпускаемые фирмой CREE [4], а также изготовленные в Санкт-Петербургском электротехническом государственном университете (СПбЭГТУ). Подложки Лели изготовлены на Подольском химикометаллургическом заводе (ПХМЗ) [5]. Эпитаксиальные слои выращивались в Физико-техническом институте им. А.Ф. Иоффе (ФТИ) [6] и в Университете Линчёпинга, Швеция (LiU) [7] методом сублимационной эпитаксии (СЭ), а также методом газофазовой эпитаксии (CVD — chemical vapor deposition) фирмой CREE [4]. Толщина *n*-слоя составляла 5-7 мкм, либо ~ 30 мкм (для слоев, выращенных в LiU), толщина подложек около 400 мкм. На поверхности эпитаксиальных слоев методом магнитронного распыления Ni были сформированы диоды Шоттки с диаметрами 400–800 мкм. Омические контакты на обратной стороне подложки были получены вжиганием слоя напыленного Ni при температуре ~ 1000°C в вакууме.

3. Эксперимент

3.1. Рентгеновские данные

В промышленно изготавливаемых МЛ подложках SiC плотность дислокаций, как правило, составляет $10^4 - 10^6$ см⁻², кроме того, в них присутствуют протяженные микроканалы "микропайпы" (micropipes). С использованием "классического" метода Лели возможно получение подложек SiC с плотностью дислокаций 10-104 см-2 при отсутствии микропайпов [8]. Однако подложки Лели имеют маленькую площадь (менее $1.5 \, \text{cm}^2$), кроме того данным методом крайне редко удается вырастить кристаллы политипа 4H, наиболее перспективные для создания полупроводниковых приборов, что делает их промышленное применение неперспективным. Ранее [9,10] на основании рентгеновских исследований МЛ подложек 6H- и 4H-SiC до и после выращивания эпитаксиального слоя методом СЭ, было показано, что структурное совершенство слоя может быть выше, чем у подложки, использовавшейся при росте. Согласно данным сканирующей электронной микроскопии, наблюдалось полное заращивание мелких дефектов и частичное "залечивание" крупных дефектов подложки (макропайпов). В то же время в эпитаксиальных слоях SiC, выращенных методом CVD, существенного уменьшения плотности дислокаций не наблюдалось.

В настоящей работе структурное совершенство подложек с уже выращенными эпитаксиальными слоями также оценивалось рентгеновской дифрактометрией

Образец	Метод (место) изготовления		$N_d - N_a,$ см $^{-3}$	ω_{Θ} , в рефлексе	$N_{dc},$ см $^{-3}$	
					Z1 ($E_c - 0.7$ $3B$),	$E_c - 0.18 \mathrm{sB},$
	подложки	слоя		(101.7)	$\sigma_n=10^{-14}\mathrm{cm}^{-2}$	$\sigma_n = 4 \cdot 10^{-15} \mathrm{cm}^{-2}$
S-187	МЛ (СПбЭГТУ)	СЭ (ФТИ)	$4.5\cdot10^{16}$	20-250	$1.5\cdot 10^{14}$	$< 10^{13}$
S-002	Лели (ПХМЗ)	СЭ (ФТИ)	$3.1 \cdot 10^{16}$	8–9	$6\cdot 10^{14}$	$< 10^{13}$
V0017-4	MЛ (CREE)	CVD (CREE)	$1.5\cdot 10^{16}$	50-60	$< 10^{13}$	$< 10^{13}$
CS189	MЛ (CREE)	CЭ (LiU)	$1.05\cdot 10^{16}$	12-30	$2.5 \cdot 10^{14}$	$< 10^{13}$
CS220	MЛ (CREE)	CЭ (LiU)	$3.4 \cdot 10^{15}$	8-15	$3.5 \cdot 10^{13}$	$3.2 \cdot 10^{14}$
CS219	MЛ (CREE)	CЭ (LiU)	$2 \cdot 10^{15}$	12-30	$3.5 \cdot 10^{13}$	$6 \cdot 10^{14}$

Параметры исследованных эпитаксиальных структур

Примечание. МЛ — модифицированный метод Лели, СЭ — метод сублимационной эпитаксии, CVD — метод газофазной эпитаксии; N_{dc} — концентрация обнаруженных глубоких центров.

в асимметричном рефлексе ($10\overline{1}.7$ Си $K\alpha$) в режиме Θ -сканирования. Глубина формирования дифракционного максимума для данного рефлекса (~ 5 мкм) не превышает толщину эпитаксиальных слоев. Результаты измерений представлены в таблице.

Как видно из таблицы, значения полуширин кривых качания (ω_{Θ}) для СЭ слоев образцов CS189, CS220, CS219 незначительно отличаются от образца S-002, со слоем на подложке Лели, имеющим наилучшую характеристику эпитаксиального слоя. Высокое качество эпитаксиаль-

ных слоев на подложках, полученных методом Лели, обеспечивается за счет структурного совершенства этих подложек. Таким образом, можно заключить, что подложки образцов серии CS должны быть слабо нарушены. В полуширинах, полученных на образце S-187, наблюдается большой разброс значений, который указывает на слишком неоднородное распределение дефектов в подложке. Для образца V0017-4 с эпитаксиальным слоем, изготовленным методом CVD, значение полуширин заметно увеличено.

Рис. 1. Зависимости Аррениуса для обнаруженных глубоких центров: Z1 (1, 3), E_c – 0.18 эВ (2, 4) в образцах (см. таблицу): (1, 2) — CS 219, 3 — S-187, 4 — S-187 после облучения протонами с энергией 8 Мэв.

Измерение C-U-характеристик производилось на стандартной установке с параллельной схемой замещения и синусоидальной частотой 10 кГц. Определенные из C-U-характеристик концентрации нескомпенсированных доноров ($N_d - N_a$) и концентрации обнаруженных центров, определенных из амплитуд DLTS-сигнала, в образцах различных типов представлены в таблице.

При исследовании глубоких центров (ГЦ) в верхней половине запрещенной зоны было обнаружено два типа ловушек с уровнями энергии: $E_c - (0.16 \div 0.18)$ эВ и $E_c - 0.65$ эВ. Последний известен в литературе как центр Z1 [11]. На рис. 1 представлены зависимости Аррениуса для обнаруженных ГЦ. Как видно из рисунка, наблюдается совпадение времен перезарядки центра Z1 во ФТИи LiU-слоях, изготовленных в ФТИ им. А.Ф. Иоффе и Университете Линчёпинга соответственно. Тождественность параметров этого центра в слоях выращенных в разных установках, имеющих различный примесный состав паровой фазы, подчеркивает его чисто дефектный характер. Более мелкий центр не был обнаружен в образцах S-002 и S-187, однако после облучения протонами образца S-187 там появлялся центр с очень близкими параметрами [12].

На рис. 2 представлена зависимость концентрации центра Z1 (N_{Z1}) от величины $N_d - N_a$ в исследовавшихся в настоящей работе образцах. Как видно из рисунка, для большинства структур характерно увеличение концентрации центра Z1 с ростом величины $N_d - N_a$. Из общей зависимости выпадает образец V0017-4 (где этот центр не был обнаружен), а также S-187 (где концентрация Z1 оказалась значительно меньше, чем можно было ожидать из величины $N_d - N_a$). Отметим, что в первом случае

Рис. 2. Зависимость концентрации центра Z1 от величины $N_d - N_a$ в исследованных образцах.

эпитаксиальный слой был выращен методом CVD и для него величина ω_{Θ} была выше, чем у использовавшейся подложки, а во втором для выращивания слоя методом СЭ использовалась подложка с низким структурным совершенством.

Можно также отметить, что концентрация центра с уровнем энергии $E_c - (0.16 \div 0.18)$ эВ, наоборот, росла с уменьшением величны $N_d - N_a$ в слое, однако данных по этому центру (в том числе и в литературе) недостаточно для установления четкой корреляции.

4. Обсуждение результатов

Как следует из полученных рентгеновских данных, структурное совершенство СЭ слоев 4*H*-SiC не уступает структурному совершенству использовавшихся для их роста МЛ подложек. В процессе сублимационного роста образования новых дислокаций не происходит. Таким образом, можно сделать вывод о структурных свойствах эпитаксиальных слоев 4*H*-SiC, выращенных методом СЭ, аналогичный выводу для СЭ слоев 6*H*-SiC.

Согласно данным ЭПР [10,11], оба из обнаруженных глубоких центров в СЭ слоях 4*H*-SiC связаны со структурными дефектами решетки. Более мелкий центр является элементарным дефектом — одиночной вакансией в подрешетке кремния или межузельным атомом, а центр Z1 — вакансией в подрешетке углерода.

Ранее в работе [13] для 6H-SiC было показано, что при одинаковых значениях $N_d - N_a$ концентрация глубоких центров для СЭ слоев на 2-3 порядка выше, чем для CVD-слоев, и при этом полуширина ω_{Θ} для CVD-слоя больше. В работе [13] высказывалось предположение, что поскольку при CVD-эпитаксии рост слоев SiC происходит при существенно более низких температурах, чем при СЭ (~ 1500 и 2000°С соответственно), то в СVD-слоях еще не существует условий для релаксации напряжений через образование освязанных со структурными дефектами ГЦ. Такая релаксация в данном случае может происходить, например, за счет образования большого числа дислокаций. Другими словами, дислокации, образующиеся в процессе роста CVD-слоя, являются стоком для элементарных дефектов решетки. В СЭ слое такой сток отсутствует и данные дефекты образуют электрически активные ГЦ. Такое предположение объясняет наблюдавшуюся в настоящей работе ме́ньшую концентрацию глубоких уровней и большую плотность дислокаций в CVD-слоях 4H-SiC по сравнению со слоями, полученными сублимационной эпитаксией.

5. Заключение

Проведенные исследования подтверждают ранее обнаруженную для слоев 6*H*-SiC взаимосвязь между плотностью дислокаций, концентрацией нескомпенсированных доноров и концентрациями глубоких центров в эпитаксиальных слоях 4*H*-SiC. Согласно полученным данным, концентрация характерного фонового центра Z1 в 4*H*-SiC уменьшалась с уменьшением величины $N_d - N_a$. При одинаковом значении $N_d - N_a$ она оказывалась меньше в слоях с большой плотностью дислокаций.

Список литературы

- [1] А.А. Лебедев. ФТП, 33, 129 (1999).
- [2] J.A. Lely. Ber. Dt. Keram. Ges., 55, 229 (1955).
- [3] Yu.M. Tairov, V.F. Tsvetkov, J. Cryst. Growth, 43, 209 (1978).
- [4] J.W. Palmor, J.A. Edmond, H.S. Kong, C.H. Carter, Jr. Physica B, 185, 461 (1993).
- [5] А.А. Глаговский, Е.В. Грановский, А.К. Дроздов, В.М. Ефимов, Г.Я. Скринникова, Б.В. Смирнов, М.Г. Траваджан, М.П. Чертков, В.А. Шевченко. *Матер. 2-й Всес. конф.* по физике широкозонных полупроводников (Л., ЛЭТИ, 1980) с. 226.
- [6] N.S. Savkina, A.A. Lebedev, D.V. Davydov, A.M. Strel'chuk, A.S. Tregubova, M.A. Yagovkina. Mater. Sci. Eng. B, 61–62, 165 (1999).
- [7] M. Syväjärvi, R. Yakimova, M. Tuominen, A. Kakanakova-Georgieva, M.F. MacMillan, A. Henry, Q. Wahab, E. Janzén. J. Cryst. Growth., **197**, 155 (1999).
- [8] A.A. Lebedev, A.S. Tregubova, V.E. Chelnokov, M.P. Scheglov, A.A. Glagovskii. Mater. Sci. Eng. B, 46, 291 (1997).
- [9] N.S. Savkina, A.A. Lebedev, A.S. Tregubova, M.P. Scheglov. Abstracts Int. Conf. on Silicon Carbide and Rel. Mater. (October 10–15, 1999, Research Tringle park, NC, USA) No 368.
- [10] M. Tuominen, R. Yakimova, M. Syväjärvi, E. Janzén. Mater. Sci. Eng. B, 61-62, 167 (1999).
- [11] T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W.J. Choyke, A. Schoner, N. Nordel. Phys. St. Sol. (a), **162**, 199 (1997).
- [12] А.А. Лебедев, А.И. Вейнгер, Д.В. Давыдов, Н.С. Савкина, А.М. Стрельчук, В.В. Козловский. ФТП, 34(9), 39 (2000).
- [13] А.А. Лебедев, Д.В. Давыдов. ФТП, **31**, 1049 (1997).

Редактор Т.А. Полянская

Structure imperfections and deep centers in 4*H*-SiC epilayers grown by sublimation epitaxy in vacuum

A.A. Lebedev, D.V. Davydov, N.S. Savkina, A.S. Tregubova, M.P. Scheglov, R. Yakimova*, M. Syväjärvi*, E. Janzén*

Ioffe Physicotechnical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia * Linköping University, S-58183 Linköping, Sweden

Abstract Parameters of deep centers in low doped 4*H*-SiC epilayers grown by sublimation epitaxy and CVD, were investigated. Two deep centers $E_c - 0.18 \text{ eV}$ and $E_c - 0.65 \text{ eV}$ (centr Z1) have been observed, which can be connected with structural defects of the SiC crystal lattice. It was shown that concentration of Z1 centre decreased with diminishing the $N_d - N_a$ value in epilayers. In the case of equal values of $N_d - N_a$, the Z1 concentration was less in epilayers of a hiher dislocation density.