Об упругих характеристиках графена и силицена

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei_Davydov@mail.ru

(Поступила в Редакцию 25 мая 2009 г.)

В рамках предложенной ранее модели энергии связи атомов углерода в графене получены аналитические выражения для констант центрального k_0 и нецентрального k_1 взаимодействий для 2D-(графен, силицен) и 3D-(алмаз, кремний) структур. Для 2D-структуры определен параметр относительных смещений Клейнмана. Показано, что отношение k_0/k_1 зависит только от размерности структуры.

Работа выполнена в рамках программы Президиума РАН "Квантовая физика конденсированных сред", ведомственной целевой программы "Развитие научного потенциала высшей школы" (2009–2010) Минобрнауки РФ № 2.1.1/2503 и поддержана грантом РФФИ (проект № 07-0200636а).

Исследования механических свойств углеродных систем в настоящее время только начинаются, но представляются весьма перспективными [1]. В работе [2] был предложен подход к расчету энергии связи атомов углерода в графене, основанный на модифицированном методе связывающих орбиталей Харрисона, а в [3] вычислены силовые константы центрального k_0 и нецентрального k_1 взаимодействий. Недавно появилось сообщение о создании кремниевого аналога графена, названного силиценом [4]. В настоящей работе проведен расчет силовых констант для силицена, а также получено выражение для параметра относительных смещений Клеймана.

В работах [2,3] энергия связи атома $E_{\rm atom}^{\rm 2D}$ в двумерном (2D) слое, приходящаяся на один атом, была представлена в виде

$$E_{\text{atom}}^{\text{2D}} = -3|V_2| \left(1 - S + \frac{3}{4} \left(\frac{V_1}{V_2}\right)^2\right).$$
(1)

Здесь ковалентная энергия $V_2 = \eta_2(\hbar^2/m_0d^2)$, где коэффициент $\eta_2 = -3.26$ для sp^2 -орбитали и -3.22 для sp^3 -орбитали, \hbar — приведенная постоянная Планка; m_0 — масса свободного электрона, d — расстояние между ближайшими соседями (БС); металлическая энергия $V_1 = (\varepsilon_s - \varepsilon_p)/4$, где ε_s и ε_p — энергия *s*- и *p*-состояний; *S* — интеграл перекрытия. Выражение (1) является приближенным, позволяющим простым образом осуществлять переход от результатов, полученных для 2D-структуры, к структуре 3D, для чего нужно умножить (1) на 4/3 и учесть различия параметров V_2 и *S* [2,3]. В настоящей работе, однако, мы используем более точное выражение вида

$$E_{\text{atom}}^{m}(d) = -n_{m}|V_{2}|\left(1 - S + \beta_{m}\left(\frac{V_{1}}{V_{2}}\right)^{2}\right),$$
 (2)

где m = 2 или 3 — индекс, соответствующий 2D- или 3D-структуре, n_m — число БС ($n_2 = 3, n_3 = 4$), $\beta_2 = 2/3$, $\beta_3 = 3/4$. Так как отношение $(V_1/V_2)^2 \ll 1$ (см. [2,3] и далее), приведенное уточнение приводит лишь к незначительным поправкам.

Определим величину интеграла перекрытия S из условия равновесия $(\partial E^m_{\rm atom}/\partial d)_{\bar{d}} = 0$. Учитывая, что $S \propto d^{-1}$, получим

$$S(\bar{d}) \equiv \bar{S} = \frac{2}{3} \left(1 - \beta_m \left(\frac{V_1}{V_2} \right)^2 \right). \tag{3}$$

Подставляя (3) в (2), найдем энергию связи на один атом в положении равновесия

$$\bar{E}_{\text{atom}}^{m} \equiv E_{\text{atom}}^{m}(\bar{d}) = -\frac{1}{3} n_{m} |V_{2}| \left(1 + 5\beta_{m} \left(\frac{V_{1}}{V_{2}}\right)^{2}\right).$$
(4)

Определим силовую константу центрального взаимодействия k_0^m , описывающую реакцию одной связи¹ на изменение ее длины

$$k_0^m = \left(\frac{\partial^2 E_{\text{bond}}^m}{\partial d^2}\right)_{\bar{d}},\tag{5}$$

где $E_{\text{bond}}^m = E_{\text{atom}}^m / n_m$ — энергия, приходящаяся на одну связь, \bar{d} — равновесное значение расстояния d между БС. Воспользовавшись выражениями (2) и (3), получим

$$k_0^m = \frac{2}{\bar{d}^2} |V_2| \left(1 - 5\beta_m \left(\frac{V_1}{V_2}\right)^2 \right).$$
(6)

Введем также энергетическую центральную константу

$$C_0^m = \bar{d}^2 \left(\frac{\partial^2 E_{\text{atom}}^m}{\partial d^2}\right)_{\bar{d}},\tag{7}$$

описывающую реакцию атома на изменение длины его *n*_m-связей [3,5]. Так, если длины всех связей изменились

¹ Отметим, что введенная здесь центральная силовая константа k_0^m отличается от использованной в [3] константы k_0 .

на величину δd , упругая энергия W_0 , приходящаяся на один атом, равна $C_0^m (\delta d/\bar{d})^2$. Нетрудно видеть, что $C_0^m = n_m \bar{d}^2 k_0^m$.

Нецентральная силовая константа k_1 определяется как [3]

$$k_1^m = \frac{1}{\bar{d}^2} \left(\frac{\partial^2 E_{\text{bond}}^m}{\partial \vartheta^2} \right)_{\vartheta=0},\tag{8}$$

откуда

$$k_1^m = \frac{2}{3\bar{d}^2} \lambda |V_2| \left(1 - 5\beta_m \left(\frac{V_1}{V_2}\right)^2\right),\tag{9}$$

где

$$\lambda = -\sqrt{2} \frac{V_{sp\sigma} + \sqrt{2}V_{pp\sigma}}{V_{ss\sigma} - 2\sqrt{2}V_{sp\sigma} - 2V_{pp\sigma}}.$$
 (10)

Здесь введены матричные элементы $V_{ss\sigma} = \langle s | \hat{V}_2 | s \rangle$, $V_{sp\sigma} = \langle s | \hat{V}_2 | p \rangle$, $V_{pp\sigma} = \langle p | \hat{V}_2 | p \rangle$ оператора ковалентной энергии \hat{V}_2 между соответствующими атомными волновыми функциями $| s \rangle$ и $| p \rangle$ [3,5,6]. Положим $C_1^m = n_m k_1 d^2$ [3,5]. При получении выражения (5) мы полагали, что все три связи, принадлежащие данному атому, деформируются одинаково (отклоняются от положения равновесия на угол ϑ), причем $\delta V_2 = -\lambda V_2 \vartheta^2$ [3,5]. Учтено также, что

$$\delta \bar{S} = -\frac{4}{3} \beta_m \lambda \left(\frac{V_1}{V_2}\right)^2 \vartheta^2.$$
(11)

Сопоставление выражений (6) и (9) приводит к соотношениям

$$k_1^m = \frac{\lambda}{3} k_0^m, \quad C_1^m = \frac{\lambda}{3} C_0^m.$$
 (12)

Как показано в [3], для графена и силицена, т.е. для 2D-структур, $\lambda = 0.66$, тогда как для алмаза и кремния (3D-структуры) $\lambda = 0.85$ [7].

Определим теперь параметр Клейнмана ξ , описывающий относительное смещение подрешеток при деформации (см. [5]. С. 261). Рассмотрим 2D-структуру, растянутую вдоль оси x (см. рисунок). Соответствующие смещения равны $u_i = \varepsilon x_i$, где ε — постоянная деформация, x_i — координата атома в недеформированной решетке. Все атомы, изображенные на рисунке темными кружками, могут смещаться на величину v относительно атомов, изображенных светлыми кружками (внутреннее смещение подрешеток). Положим $v = \varepsilon \xi y_2 = (\varepsilon \xi \overline{d}/2)$.

Будем считать, что при изменении длины связи на величину δd соответствующая упругая энергия (на одну связь) есть $w_{0x} = (k_0 \bar{d}/2) (\delta d/\bar{d})^2$ (здесь и далее опускаем у констант верхние индексы *m*). С другой стороны, если угол между двумя связями, центрированными на одном и том же атоме, изменяется на величину $\delta \psi$, то упругая энергия равна $w_{1x} = (k_1 \bar{d}/2) (\delta \psi/\bar{\psi})^2$, где $\bar{\psi} = 2\pi/3$ — равновесный угол.

Для деформации, изображенной на рисунке, изменения длин связей 01 и 02 равны $\delta d^{(1)} =$ $= \varepsilon[(u_1\sqrt{3}/2) - v/2] = (\varepsilon \bar{d}/4)(3 - \xi)$. Изменение же

Двумерная структура графена и силицена.

длины связи 00' есть $\delta d^{(2)} = v = \varepsilon \xi \bar{d}/2$. Соответствующая упругая энергия равна

$$W_{0x} = (k_0 \bar{d}^2 / 2) [2(\delta d^{(1)} / \bar{d})^2 + (\delta d^{(2)} / \bar{d})^2]$$

или

V

$$W_{0x} = (C_0 \varepsilon^2 / 48)[(3 - \xi)^2 + 2\xi^2].$$
(13)

Рассматривая угловые деформации (см. рисунок), можно показать, что изменение угла между связями 01и 02 есть $\delta\psi = (\sqrt{3}/2)\varepsilon(1+\xi)$. Два других угла (между связью 00' и связями 01 и 02) изменяются на величину $-\delta\psi/2$. Таким образом, $W_{1x} = (3k_1d^2/4)(\delta\psi)^2$, откуда

$$W_{1x} = (9C_1\varepsilon^2/48)(1+\xi)^2.$$
(14)

Минимизируя упругую энергию $W_x = W_{0x} + W_{1x}$ по параметру Клейнмана ξ , получим

$$\xi^{2D} = \frac{C_0 - 3C_1}{C_0 + 3C_1} \tag{15}$$

или с учетом (12)

$$\xi^{2\mathrm{D}} = \frac{1-\lambda}{1+\lambda},\tag{16}$$

что при $\lambda = 0.66$ дает значение 0.20. Тогда, подставляя (16) в выражение для упругой энергии *W*, с учетом (12) получаем

$$W_x = \frac{1}{2} \varepsilon^2 C_x, \quad C_x = \frac{1}{8} C_0 (2 + \lambda).$$
 (17)

Рассмотрим теперь другой тип деформации 2D-структуры: растяжение вдоль оси *y*, направленной вдоль связи 00'. Соответствующие смешения равны $v_i = \varepsilon y_i$. Легко показать, что $v^{(1)} = \varepsilon d/2$ для связей 01 и 02, $v^{(2)} = \varepsilon d$ для связи 00'. Изменение угла между связями 01 и 02 равно $\delta \psi = -(\sqrt{3}/2)\varepsilon$, а вариация двух других углов равна $-\delta \psi/2$. Тогда соответствующая упругая энергия равна

$$W_y = \frac{1}{2} \varepsilon^2 C_y, \quad C_y = \frac{1}{8} C_0(3+\lambda).$$
 (18)

Таким образом, модули, описывающие растяжения по осям *x* и *y*, соотносятся как

$$\frac{C_x}{C_y} = \frac{2+\lambda}{3+\lambda},\tag{19}$$

что дает 0.73. Это соотношение допускает простую экспериментальную проверку.

Параметр	Графен	Алмаз	Силицен	Кремний
<i>d</i> , Å	1.42	1.54	2.25	2.35
$ V_2 \mathrm{eV}$	12.32	10.35	4.91	4.44
$ V_1 , eV$	2.08	2.08	1.80	1.80
λ	0.66	0.85	0.66	0.85
$ \bar{E}_{\mathrm{atom}} ,\mathrm{eV}$	13.5	15.9	7.1	9.6
C_0, eV	66.9	70.3	16.3	13.6
k_0 , N/m	177	119	17.1	9.9
C_1 , eV	14.7	19.9	3.6	3.9
k_1 , N/m	38.9	33.7	3.8	2.8

Параметры и результаты расчета для графена, алмаза, силицена и кремния

Примечание. Здесь опущен верхний индекс *m* у силовых констант.

 $\xi^{3D} =$ Отметим, что для 3D-структуры $= (C_0 - 4C_1)/(C_0 + 8C_1)$ [5], что соответствует $\xi^{3D} = (3-4\lambda)/(3+8\lambda) \approx -0.04$. Отметим, что при этом рассматривался случай, когда деформация изменяет только два угла тетраэдра из шести. Отрицательно значение параметра Клейнмана свидетельствует о том, что смещение атома произошло в направлении, обратном первоначально предполагаемому. Так, при подгонке силовых констант по фононным спектрам для алмаза было получено $\xi^{3D} \approx -0.02$ (см. табл. 9.1 в [5]). Мы, однако, не подгоняли наши константы, а вычисляли. При этом мы были вынуждены несколько упростить выражение для энергии отталкивания, полагая $E_{\text{rep}}^m = n_m SV_2$ и опуская добавку $n_m \Delta E_{\text{rep}}^2$ [2]. Эта добавка вносит лишь малый вклад в энергию связи E_{atom}^m , но так как $\Delta E_{
m rep} \propto d^{-12}$, ее вклад в силовые константы (определяемые вторыми производными энергии по *d*) может быть значительным. Следовательно, мы недооцениваем константу центрального взаимодействия, из-за чего и получаем отрицательные значения ξ^{3D} .

В таблице представлены результаты расчетов для 2Dи 3D-структур углерода и кремния. Величина $\bar{d} = 2.35$ Å для объемного кремния приведена в [8]. Значение $\bar{d} = 2.25$ Å для силицена взято из работы [9], где рассматривались кремниевые нанотрубки. Отметим, что силовые константы существенно зависят от значения \bar{d} : $k_{0.1} \sim \bar{d}^{-4}$, $C_{0.1} \sim \bar{d}^{-2}$.

Как и следовало ожидать, величина энергии связи $|E_{\text{atom}}^{2\text{D}}|$ меньше $|E_{\text{atom}}^{3\text{D}}|$, что обусловлено меньшим количеством БС в 2D-структуре по сравнению с 3D. С другой стороны, энергии E_{bond}^m , приходящиеся на одну связь, различаются только за счет различия длин связей \overline{d} в 2D- и 3D-структурах.

Во всех рассмотренных случаях силовые константы $k_{0.1}^{\text{2D}} > k_{0.1}^{\text{3D}}$. Таким образом, реакция 2D-структур на механическое возмущение "острее", чем в 3D-случае. Что же касается энергетических констант центрального взаимодействия C_0 , то здесь для углеродных структур имеем $C_0^{\text{2D}} < C_0^{\text{3D}}$, тогда как для кремниевых получаем

противоположное неравенство. Отметим, однако, что фононные частоты определяются силовыми, а не энергетическими константами.

Для уточнения модели упругих характеристик графена и силицена требуются экспериментальные данные (модули упругости, фононный спектр).

Список литературы

- [1] А.В. Елецкий. УФН 177, 233 (2007).
- [2] С.Ю. Давыдов, А.А. Лебедев, Н.Ю. Смирнова. ФТТ 51, 452 (2009).
- [3] С.Ю. Давыдов. ФТТ 51, 2041 (2009).
- [4] A. Kara, C. Léandri, M.E. Dávila, P. de Padova, B. Ealet, H. Oughaddou, B. Aufray, G. Le Lay. ArXiv: 0811.2611 (2008).
- [5] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983). Т. 1. 381 с.
- [6] W.A. Harrison. Phys. Rev. B 27, 3592 (1983).
- [7] W.A. Harrison. Phys. Rev. B 24, 5835 (1981).
- [8] Ч. Китель. Введение в физику твердого тела. Наука, М. (1987). 792 с.
- [9] S.B. Fagan, R.J. Baierle, R. Mota. Phys. Rev. B 61, 9994 (2000).

² Для определения этой добавки нужно знать модули сжатия, не измеренные (насколько известно автору) для графена и силицена.