01;03 Температурная зависимость вязкости

© Р.Л. Фогельсон, Е.Р. Лихачев

Воронежский государственный университет, 394693 Воронеж, Россия e-mail: phssd18@main.vsu.ru

(Поступило в Редакцию 13 ноября 2000 г.)

Из-за отличия реальных условий от идеальных при вязком течении жидкости в простой экспоненциальной зависимости вязкости от температуры появляется поправка к температуре, подобная поправкам к давлению и объему в уравнении состояния реального газа. Выражение для вязкости вследствие этого принимает следующий вид:

$$\eta = \eta_0 \exp\left(\frac{E}{k(T+T_0)}\right).$$

Показано, что имеющиеся в литературе экспериментальные данные для вязкости жидкостей разного типа подтверждают указанную температурную зависимость.

В работе [1] при исследовании деформации полимерных стекол была получена следующая зависимость экстремального напряжения σ от температуры T и скорости деформации v:

$$\sigma = (A + B \ln v) - (C + D \ln v)T, \tag{1}$$

где A, B, C, D — постоянные.

Если учесть, что при условиях эксперимента вязкость $\eta = \sigma/v$, то для температурной зависимости вязкости получается следующее выражение:

$$\eta = \sigma \exp\left(\frac{U - a\sigma}{k(\theta - T)}\right),\tag{2}$$

где U = k(A - CT)/D, a = k/D, $\theta = B/D$.

Выражение (2) отличается от формулы Эйринга [2, с. 491], полученной теоретически для случая больших напряжений, только тем, что вместо температуры Tв (2) стоит разность ($\theta - T$). Подобная разность в выражении вязкости была получена эмпирически и в некоторых других работах [3, с. 274; 4, с. 93].

Появление разности в экспоненциальной зависимости вязкости можно объяснить следующим образом. Из факта, что теплоемкость с_v одноатомных жидкостей близка к 3*R* [5, с.113], где *R* — газовая постоянная, следует, что в идеальном случае эти жидкости подобно твердым телам эквивалентны системе невзаимодействующих гармонических осцилляторов, подчиняющейся статистике Больцмана. Согласно Эйрингу [2, с. 461], при вязком течении жидкости частицам приходится преодолевать потенциальные барьеры. В классическом случае потенциальный барьер высотой Е могут преодолеть частицы, энергия которых не меньше Е. Поэтому вероятность перехода частиц через барьер будет пропорциональна числу частиц, имеющих энергию $\varepsilon > E$. Как показано в Приложении, для системы гармонических осцилляторов это число пропорционально

$$\exp(-E/kT).$$
 (3)

Этой же функции будет пропорциональна вероятность перехода частиц через барьер.

Реальные жидкости существенно отличаются от идеальной одноатомной жидкости, так как перемещения частиц в них значительно сложнее, чем простые колебания около постоянного центра. Кроме того, статистика Больцмана справедлива для равновесной системы, а вязкое течение жидкости является неравновесным процессом. Вследствие всего этого реальная вероятность перехода системы через потенциальный барьер должна отличаться от (3). Можно предположить, что в первом приближении в выражении (3) появляется поправка T_0 к температуре подобно тому, как в уравнении состояния реального газа появляются поправки к давлению и объему. В результате выражение (3) принимает следующий вид:

$$\exp\left(-\frac{E}{k(T+T_0)}\right).\tag{4}$$

Эйринг в своей теории использовал функцию (3). Если ее заменить на (4), то для вязкости полимерного стекла (случай больших внешних сил) получим уравнение (2), где $T_0 = -\theta$, а для вязкости обычных жидкостей (малые внешние силы) будем иметь следующее выражение:

$$\eta = \eta_0 \exp\left(\frac{E}{k(T+T_0)}\right).$$
(5)

Для проверки уравнения (5) было проанализировано большое число экспериментальных данных по вязкости различных жидкостей. Для этого, варьируя параметры η_0, E, T_0 , находили минимум величины

$$\delta = \frac{1}{n} \sum_{n} \left| \frac{\eta_e - \eta_t}{\eta_e} \right|,\tag{6}$$

которая представляет среднее относительное отклонение расчетных величин от экспериментальных данных. Здесь η_e — экспериментальная вязкость; η_t — теоретическая вязкость, рассчитанная по формуле (5); n — число

Жидкость	<i>Т</i> ,К	n	т	$\eta_0,$	Ε,	T_0, K	δ,%	Лите-
				10^{-5} Pa · s	kJ/mol			ратурная
								ссылка
Нонан	253-423	18	6.6	1.78	8.24	-25	0.36	[7,8]
Ундекан	253-473	18	13.6	2.07	8.07	-54	0.85	[7,8]
Бензол	285-400	24	3.6	0.705	12.02	27	0.85	[7]
п-Ксилол	283-403	13	3.2	1.11	11.2	39	0.27	[7]
Толуол	253-393	13	4.3	0.774	13.09	71	0.5	[7,8]
Этилбензол	253-393	13	4.4	1.34	10.48	29	0.33	[7,8]
Фреон-21	209-329	31	4.6	1.45	7.14	-2	0.08	[7]
Фреон-113	241-333	24	3.9	1.14	10.17	3.7	0.07	[7]
Фреон-114	209-333	32	5.2	1.63	7.71	0.5	0.08	[7]
Метиловый спир	183-333	15	25.4	1.22	8.64	-24	1.14	[7]
Этиловый спирт	183-348	25	60.5	0.198	17.82	42	1.15	[8]
Диэтиловый эфир	153-313	17	21.4	3.80	3.66	-58	1.94	[7]
Ацетон	183-333	16	9.1	2.16	6.22	-17	1.13	[8]
Нитробензол	273-480	19	9.5	4.49	6.54	-87	0.91	[8]
Уксусная кислота	283-383	11	3.4	2.71	7.34	-61	0.33	[8]
Бром	273-333	13	1.8	6.73	5.64	-41	0.14	[8]
Натрий	371-1200	10	4.6	5.71	11.21	170	0.39	[7]
Цинк	723–973	6	1.7	32.60	15.56	100	0.045	[8]
Ртуть	253-1073	24	2.6	53.52	2.613	0.75	0.035	[7]
Хлорид натрия	1098-1273	8	2.0	4.37	19.15	-440	0.66	[8]
Бензин	223-573	28	25.5	0.447	14.49	70	1.2	[7]
Керосин	223-573	28	72.3	3.96	5.88	-97	3.2	[7]
Селитряная смесь	423-823	41	15.3	28.86	6.97	-219.5	0.082	[7]
Масло ВМ-4	243-373	24	$1 \cdot 10^{5}$	6.52	7.5	-186	10	[7]
Смола	282-373	20	$2 \cdot 10^8$	8.25	14.65	-226	14	[3]
Раствор*	263-353	10	7.2	6.39	3.48	-162	1.1	[7]

Таблица 1.

* Водный раствор хлорида натрия (20 wt% NaCl).

Жилкость P, Bar T, KΕ, T_0, K $\delta,\%$ Литеп т η_0 , 10^{-5} Pa · s kJ/mol ратурная ссылка Вода 1 273-363 10 5.6 2.4152 4.7428 -139.860.0046 [7] Вода 20 273-483 22 13.7 2.4180 4.7460 -139.700.021 [7] [7] Водород 10 15 - 3012 3.5 0.00475 3.16 47 1.46 [7] 30 65-120 12 7 0.0985 5.3 48 2.43 Азот

Таблица 2.

использованных в расчете экспериментальных значений вязкости. При расчетах брали величину газовой постоянной $R = 8.31441 \text{ I} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ [6].

Расчеты показали, что уравнение (5) хорошо выражает температурную зависимость вязкости жидкостей. Результаты расчетов для некоторых жидкостей разного типа приведены в табл. 1 и 2, где кроме вычисленных параметров η_0, E, T_0 и δ указаны также температурные интервалы, в которых проводились измерения, число использованных в расчетах значений вязкости (*n*), отношение (*m*) максимального значения вязкости к минимальному в указанном интервале и литературные источники, данные которых использовались в расчетах. В табл. 2

9 Журнал технической физики, 2001, том 71, вып. 8

указано также давление *p*, при котором проводились измерения.

В случае жидкостей с очень большой вязкостью δ достигает 10–15%. Однако при этом не наблюдается закономерного отклонения экспериментальных значений вязкости от рассчитанной кривой. Если построить график зависимости $\lg \eta$ от T, то видно, что экспериментальные точки располагаются по обе стороны кривой и, следовательно, большие значения δ в этом случае связаны со сравнительно большими ошибками измерений.

В некоторых случаях крайние экспериментальные значения вязкости, измеренные около температуры плавления вещества и за температурой испарения, отклоняются 140

150

180

220

Таблица 3. $\eta_0, \ 10^{-5} \operatorname{Pa} \cdot \mathrm{s}$ $\delta,\%$ T_0, K E, kJ/mol10 39.85 0.134 12.64 38.14 13.26 0.098 30 60 35.82 14.19 0.062 70 35.02 14.52 0.055 80 34.26 0.047 14.85 100 32.60 15.56 0.045 120 31.27 0.049 16.23

30.13

29.70

27.80

25.72

Таблица 4.

16.87

17.16

18.24

19.65

0.058

0.071

0.092

0.126

T_0, \mathbf{K}	$\eta_0, \ 10^{-5} \operatorname{Pa} \cdot \mathrm{s}$	E, kJ/mol	$\delta,\%$
-8	54.118	2.515	0.176
-3	53.775	2.570	0.083
-1	53.665	2.591	0.049
0	53.590	2.603	0.037
0.5	53.555	2.609	0.035
0.75	53.520	2.613	0.035
1	53.500	2.616	0.035
1.5	53.477	2.621	0.037
2.5	53.425	2.631	0.046
5	53.300	2.656	0.079
10	52.941	2.715	0.162

от рассчитанной кривой значительно больше, чем основная масса значений. В этих случаях в окончательных расчетах указанные значения не учитывались, а в таблицах отсутствуют соответствующие им температуры.

В тех случаях, когда вязкость изменяется мало и число экспериментальных данных невелико, дно минимума δ оказывается сильно размытым и получается множество троек чисел η_0, E, T_0 , дающих одинаково хорошее согласие расчетных величин с экспериментальными. В таких случаях даже небольшие погрешности при измерениях вязкости могут привести к значительным ошибкам расчетных параметров. Пример сильного размытия минимума δ приведен в табл. 3, где даны результаты расчета для цинка. Значения параметров цинка, указанные в табл. 1, взяты на середине минимума. То же самое относится к хлориду натрия в табл. 1. Размытие минимума δ наблюдается у большинства исследованных металлов и неорганических соединений. Однако, если исследованный температурный интервал достаточно широк и соответственно число измеренных значений вязкости большое, минимум δ оказывается хорошо выраженным и параметры η_0, E, T_0 определяются достаточно точно. Пример такого случая показан в табл. 4, где представлены результаты расчета для ртути.

Из табл. 1,2 видно, что поправка к температуре T_0 имеет как отрицательный, так и положительный знак. Это можно объяснить тем, что факторы, нарушающие в системе идеальные условия, дают поправки разного знака. Результирующий же знак определяется тем фактором, который преобладает над другими. Можно предположить, что отклонение системы от равновесия создает отрицательную поправку к температуре. Об этом свидетельствуют следующие факты. Во-первых, в другом кинетическом явлении — диффузии, где наблюдается температурная зависимость коэффициента диффузии, аналогичная (4), поправка То всегда положительна [9]. В то же время диффузионный процесс в твердых и жидких веществах значительно ближе к равновесию, чем вязкое течение [10]. Во-вторых, при деформации полимерных стекол, когда действующие на образец силы велики и, следовательно, отклонение от равновесия большое, отрицательная поправка То по абсолютной величине даже превосходит температуры, при которых полимер находится в стеклообразном состоянии. Так, в [1] для полиметилметакрилата $\theta = 415 \, \text{K}$, для полистирола $\theta = 388 \, \text{K}$. Эти температуры близки к температурам размягчения соответствующих веществ.

В заключение отметим, что, как видно из работы [1], высота потенциального барьера U может зависеть от температуры по линейному закону $U = U_0 - \beta T$. В этом случае измеряемая на опыте энергия E для обычных жидкостей уже не будет определять только высоту потенциального барьера, а будет еще зависеть от T_0 : $E = U_0 + \beta T_0$.

Приложение

Рассмотрим систему, состоящую из N осцилляторов с частотой ω . Найдем число осцилляторов n_E , которые при температуре T будут иметь энергию $\varepsilon \ge E$. Используя в рамках статистики Больцмана нормированную вероятность того, что осциллятор находится в *n*-м состоянии с энергией

$$\varepsilon_n = \hbar \omega \left(n + \frac{1}{2} \right),$$

будет иметь

$$n_E = N \cdot \frac{\sum_{n=n_0}^{\infty} \exp(-n\hbar\omega/kT)}{\sum_{n=0}^{\infty} \exp(-n\hbar\omega/kT)} = N \exp(-E/kT). \quad (\Pi 1)$$

Здесь учтено, что $\hbar\omega$ — очень малая величина по сравнению с *E*, поэтому с достаточно большой точностью выполняется равенство $n_0\hbar\omega = E$. Выражение (П1) получается и в том случае, когда осцилляторы имеют разные частоты, так как экспоненциальный член не зависит от частоты.

Список литературы

- Лазуркин Ю.С., Фогельсон Р.Л. // ЖТФ. 1951. Т. 21. Вып. 3. С. 267–286.
- [2] Глесстон С., Лейдлер К., Эйринг Г. Теория абсолютных скоростей реакций. М.: ИЛ, 1948. 583 с.
- [3] Гатчек Э. Вязкость жидкостей. М.; Л.: ОНТИ, 1935. 312 с.
- [4] Тобольский А. Свойства и структура полимеров. М.: Химия, 1964. 322 с.
- [5] Шахпаронов М.И. Введение в молекулярную теорию растворов. М.: ГИТТЛ, 1956. 507 с.
- [6] Рекомендуемые значения физических постоянных // УФН. 1975. Т. 115. Вып. 4. С. 623–633.
- [7] Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Физмат, 1972. 720 с.
- [8] Справочник химика. Т1. Л.: Химия, 1971. 1071 с.
- [9] Фогельсон Р.Л., Лихачев Е.Р. // ФММ. 2000. Т. 90. № 1. С. 62–65.
- [10] Фогельсон Р.Л. Термодинамическая и кинетическая теория диффузии. Воронеж: Изд-во ВГУ, 1992. 86 с.